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Intergranular crack formation in a cylindrical bicrystalline Ni nanowire containing a negative wedge discli-
nation is studied via continuum mechanics and atomistic simulations. The continuum theory predicts a critical
disclination strength above which the disclination is unstable and an equilibrium crack can grow from it. For
the atomistic simulations, a disclination is inserted into an fcc cylinder of 25 nm radius containing a special
�=5�310� ��=53.13° � tilt grain boundary. Molecular statics relaxations are then performed starting from
structures both without and with an initial interfacial crack. The continuum and atomistic calculations show
very close agreement in the critical disclination strength �11.6° and 11.1°, respectively, for a nanowire of 25 nm
radius�, and general agreement in the stable crack length, the crack opening profile, and the stress field of the
disclinated crack in the nanowire. Critical disclination strengths in the range of 4°–6° are also predicted for
nanostructured materials prepared by severe plastic deformation for grain sizes in the range of 200–100 nm.

DOI: 10.1103/PhysRevB.73.045410 PACS number�s�: 61.72.Lk, 62.25.�g

I. INTRODUCTION

In the last decades, ultrafine-grained �UFG� or nanostruc-
tured materials have been the subject of great scientific
interest.1–6 Experiments have shown that these materials can
have significantly modified physical properties as compared
to their coarse-grained counterparts1–4 and a unique combi-
nation of mechanical properties such as high strength and
high ductility.5,6 To take full advantage of UFG materials,
their fracture mechanisms and the basic factors influencing
their strength should be addressed in detail. Recently, a few
molecular dynamics simulations of the fracture behavior of
nanocrystalline metals have been performed.7,8 In these stud-
ies, however, only nanocrystals with the lowest grain sizes
�12 nm and less� were considered and only the effect of the
small grain size was addressed. Meanwhile, experiments and
theoretical modeling show that UFG materials contain discli-
nations �rotational defects�,9,10 which induce high long-range
stresses. These defects have different origins for nanocrystals
prepared by different methods. In UFG metals produced by
severe plastic deformation,2,5,6 they form at triple grain
boundary �GB� junctions due to an accumulation of disloca-
tions at GBs caused by incompatibilities in the strain of
grains.11–14 In heavily deformed metals, junction disclina-
tions with a strength up to 3° have been observed by trans-
mission electron microscopy.11,15,16 Disclinations inside
grains were observed by high-resolution electron microscopy
in mechanically milled, nanocrystalline iron.17 In nanocrys-
tals prepared by inert gas condensation followed by compac-
tion disclinations can form both in nanoparticles during their
growth and in GBs and junctions during the subsequent
consolidation.18 Disclinations can form also due to a termi-
nation of GBs during the growth of crystal thin films on
substrates.19

Due to the singular internal stress fields induced by dis-
clinations, they serve as preferential sites for crack
formation.9,10,20 Consequently, the investigation of the
mechanisms of crack formation near disclinations and the

study of the crack characteristics are of fundamental impor-
tance for predicting the durability of nanostructured films,
coatings, and bulk materials.

The first model of crack formation at a triple junction
disclination was proposed by Rybin and Zhukovskii.20 As-
suming a cleavage energy of 2 J m−2, for the grain size of
0.5 �m they predicted that a wedge disclination with a
strength of 1.7° had an equilibrium crack length of about
0.07 �m. Essentially the same estimate was obtained by
Gutkin and Ovid’ko for unsplit wedge disclinations.21 These
authors also predicted that the splitting of disclinations into
ones with smaller strengths resulted in an amorphization of
junctions and an increase of the equilibrium crack length.

Accurate estimates of the crack length due to disclinations
were made by Wu and Zhou.22 In the cited paper, the stress
intensity factors and the opening displacement of a crack in a
finite isotropic homogeneous cylinder containing a negative
wedge disclination were calculated. The theory was exact in
the sense that all boundary conditions were satisfied properly
and the stress redistribution due to the crack growth was
taken into account intrinsically in the governing equations.
The theory predicted the existence of two equilibrium crack
lengths at any value of the disclination strength. The shorter
crack is unstable and has a length decreasing with an in-
crease of the cylinder radius and disclination strength, while
the longer one is stable and exhibits an opposite dependence
on the radius and strength. However, the crack was assumed
to be a Zener-type crack growing from the disclination in one
direction only. Examination of the stress field of a wedge
disclination in a cylinder and atomistic simulations carried
out by the present authors suggest that a real crack is more
likely to grow in both directions and this has not been taken
into account in all the cited works. In addition, it is not clear
a priori that the results obtained by continuum mechanical
calculations are applicable for nanometer-sized solids.

The formation and growth of cracks have been exten-
sively studied by atomistic computer simulations.23–32 These
simulations, by the use of either molecular statics or molecu-
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lar dynamics methods, allow the elucidation of the crack tip
processes �cleavage or dislocation emission� and the calcula-
tion of the equilibrium crack lengths. However, the role of
disclinations in crack formation has never been addressed by
atomistic simulations.

The present paper is devoted to the study of the formation
of a double-ended crack from a wedge disclination in a cy-
lindrical nanowire by means of both continuum mechanics
theory and atomistic computer simulations. Atomistic simu-
lations for a particular cylinder radius, equal to 25 nm here,
are used to validate the predictions of continuum mechanics
analysis. These predictions are then used to estimate the criti-
cal disclination strength, at which a crack is initiated near the
disclination core, and the equilibrium crack length as func-
tions of the disclination strength for any value of the cylinder
radius. Interpreting the cylinder radius as the screening dis-
tance for the disclination elastic fields, conclusions for bulk
nanostructured materials will then be extracted. A bicrystal-
line cylinder is considered for the atomistic study, but for the
simplicity of the continuum calculations an isotropic cylinder
is assumed.

II. CONTINUUM MODEL

A. Problem description and boundary conditions

Consider a negative wedge disclination centered in an iso-
tropic homogeneous cylinder of radius R, as illustrated in
Fig. 1�a�. The disclination has the strength �, its line coin-
cides with the cylinder axis, and the plane strain condition is
assumed. Denote the shear modulus and the Poisson’s ratio
of the cylinder material by G and v, respectively. Rectangu-
lar coordinates �x ,y� and polar coordinates �r ,�� are defined
on a circular cross section of the cylinder, both originating at
the disclination line. A crack of length 2l with the disclina-
tion at its center is assumed for convenience to lie along the
x axis, although for the isotropic material assumption the
crack can be along any radial direction. Two sets of boundary
conditions need to be satisfied in this problem. One is that
the outer surface of the cylinder is traction-free with the ra-
dial and shear stresses being zero at r=R, i.e.,

�rr�R,�� = 0, �r��R,�� = 0. �1�

The other is that the crack surface is traction-free with the
normal and shear stresses being zero at the crack location,
i.e.,

�yy�x,0� = 0, �xy�x,0� = 0, �− l � x � l� . �2�

B. Solutions by superposition

To obtain the solutions for the crack, e.g., its stress inten-
sity factor �SIF�, the crack in the original problem of Fig.
1�a� is modeled by an initially unknown distribution of in-
finitesimal edge dislocations in Fig. 1�b�. The transformed
problem in Fig. 1�b� is further decomposed into the two ad-
ditive subproblems of Figs. 1�c� and 1�d�, in which the cyl-
inder is subjected to the internal loading of the disclination
and that of the distribution of edge dislocations with un-
known densities �x and �y �the subscripts x and y represent

two Burgers vector components of the edge dislocations�,
respectively. The fundamental solutions selected for each
subproblem, i.e., the stress field of a disclination in a finite
cylinder in subproblem 1 and that of an eccentrically located
dislocation in a finite cylinder in subproblem 2, automati-
cally satisfy Eq. �1�. In contrast, Eq. �2� is satisfied only after
the superposition of the two subproblems, which leads to the
solutions of �x and �y. Therefore the solution method is exact
in the sense that all the boundary conditions are satisfied
properly and any stress distribution due to crack growth is
taken into account intrinsically. Stress redistribution is ne-
glected in almost all previous works on disclinated cracks,
i.e., the disclination stress field is assumed to be undisturbed
by the crack.

In the subproblem of Fig. 1�c�, the Airy stress function for
a wedge disclination lying along the axis of a cylinder has
been given by Romanov and Vladimirov as9

	� =
1

2
D��x2 + y2��ln��x2 + y2

R
� −

1

2
� , �3�

where D=G /2
�1−��. The normal and shear stress compo-
nents on the plane y=0 due to the disclination are obtained
by differentiating Eq. �3� and subsequently setting y=0, i.e.,
�yy

� �x ,0�= ��2	� /�x2�y=0 and �xy
� �x ,0�= ��2	� /�x�y�y=0. The

differentiation results show that the shear stress component is
zero and the normal stress is symmetric about the origin,

FIG. 1. Decomposition of the original problem into subproblems
1 and 2. �a� Original problem of a double-ended crack �length 2l�
due to a negative disclination �strength �� at the center of a cylinder
�radius R�. �b� Modeling the crack by a distribution of edge dislo-
cations with densities �x and �y. �c� Subproblem 1: the cylinder
containing the disclination at its center. �d� Subproblem 2: the cyl-
inder containing the distribution of edge dislocations at the original
crack location.
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which justifies the assumption of a double-ended crack of
length 2l wedged open by the disclination at the crack center.

In the subproblem of Fig. 1�d�, the Airy stress functions
for a discrete edge dislocation at the eccentric location
�x ,y�= �x� ,0� have been given by Eshelby as33

	x
� = Dbx�x���− y ln�q2

q1
� +

R2y�R2 − x�2�
q1

2x�3 �x −
R2 + x�2

2x�
�� ,

	y
� = Dby�x����x − x��ln� q2R

q1x�
� +

1

2x�
�r2 − R2��R2 − x�2�

�� xx� − R2

q1
2x�2 +

1

R2�� , �4�

where bx�x�� and by�x�� are the x and y components of the
Burgers vector of the discrete dislocation, respectively, and r,
q1, and q2 are given by r2=x2+y2, q1

2= �x−R2 /x��2+y2, and
q2

2= �x−x��2+y2, respectively. The normal and shear stress
components on y=0 due to a discrete dislocation are then
obtained as �yy

� �x ,0 ;x��= ��2�	x
�+	y

�� /�x2�y=0 and
�xy

��x ,0 ;x��= ��2�	x
�+	y

�� /�x�y�y=0. Note that by�x�� and
bx�x�� are present in �yy

� �x ,0 ;x�� and �xy
��x ,0 ;x��, respec-

tively, so that the expressions for the two stress components
are decoupled. The stress components for a distribution of
dislocations can be obtained by replacing bx�x�� and by�x�� in
�xy

��x ,0 ;x�� and �yy
� �x ,0 ;x�� with �x�x��dx� and �y�x��dx�,

respectively, and then taking integration with respect to x�
from −l to l.

To satisfy Eq. �2�, the normal and shear stresses at the
crack location in the two subproblems are superimposed and
set equal to zero, i.e.,

�yy
� �x,0� + 	

−l

l

�yy
� �x,0;x��dx� = 0, �5�

�xy
� �x,0� + 	

−l

l

�xy
��x,0;x��dx� = 0, �6�

where −l�x� l. Equations �5� and �6� are two decoupled
singular integral equations with the unknown density func-
tions �x�x�� and �y�x��, respectively. Since �xy

� �x ,0�=0, it is
easily determined that Eq. �6� has the solution �x�x��=0. This
leaves only �y�x�� in Eq. �5� unsolved. Substituting the ex-
pressions for �yy

� �x ,0� and �yy
� �x ,0 ;x�� 
with by�x�� replaced

by �y�x��dx�� into Eq. �5� yields

	
0

l �y�x��
x� − x

dx� + 	
0

l � 1

x� + x
+

3R6x + R2x3x�2 − �R2 + x2��3R4x� − 2R2x�3 + xx�4�
R2�R2 − xx��3

−
3R6x + R2x3x�2 − �R2 + x2��− 3R4x� + 2R2x�3 + xx�4�

R2�R2 + xx��3 ��y�x��dx� = ��1 + ln
x

R
� �0 � x � l� . �7�

The integration range 
0, l� in Eq. �7� has been changed from

−l , l� in Eq. �5� because the symmetry of the crack about
the origin implies that the dislocation distribution for
modeling the crack is antisymmetric about the origin, i.e.,
�y�x��=−�y�−x�� 
see Fig. 1�d��. Equation �7� is a Cauchy
singular integral equation, and its right side consists of a
logarithmic singularity at x=0. It is expected that �y�x�� will
have singularities at x�=0 and l which correspond to the
disclination location and the crack tip location, respectively.
To solve this equation, the numerical method of Gerasoulis is
used.34 His method has also been successfully adapted to the
solutions of similar singular integral equations.22,35–37

Once �y�x�� is known, the stress field in the nanowire
containing the disclinated crack, i.e., that shown in Fig. 1�a�,
can be determined. For instance, the stress component
�yy�x ,y� is the sum of the corresponding components in the
subproblems of Figs. 1�c� and 1�d�:

�yy�x,y� = �yy
� �x,y� + 	

−l

l

�yy
� �x,y ;x��dx�, �8�

where �yy
� �x ,y� and �yy

� �x ,y ;x�� are determined from the sec-
ond order derivatives of the Airy stress functions, as were

similarly done for the special cases of �yy
� �x ,0� and

�yy
� �x ,0 ;x��. The disclinated crack is a pure mode I crack

�with normal opening� since �x�x��=0 implies that the crack
does not have a mode II �tangential� opening. The mode I
SIF of the crack can be determined from the following equa-
tion as x approaches the crack tip from outside the crack, i.e.,
KI= limx→l
�2
�x− l��yy�x ,0��, where �yy�x ,0� is the total
stress component obtained by superposition. With reference
to the work by Wu and Zhou,22 if the integration interval

−l , l� is normalized to 
−1,1� the limit is obtained as

KI = D�
3l

2
�1/2

y�1� , �9�

where y�1� is the value of the function y�t� evaluated
at the crack tip t=1, and y�t� is related to the dislocation
density according to �y�t�=y�t� /�1− t2, −1� t�1.
Furthermore, the opening displacement 
uy�x ,0��
=uy�x ,0+�−uy�x ,0−� in the y direction 
see Fig. 1�a�� of the
mode I crack can be obtained directly from the dislocation
density �y�x��:
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uy�x,0�� = − 	
l

x

�y�x��dx� �− l � x � l� . �10�

III. ATOMISTIC MODEL

For the atomistic simulations, a disclination is inserted
into a bicrystalline cylinder consisting of two fcc crystals
with a common 
001� axis initially delimited by a symmetric
tilt GB with the reciprocal coincidence site density �=5,
plane �310�, and misorientation angle �=53.13° 
Fig. 2�a��.
The tilt axis is parallel to the cylinder axis. In this case, the
insertion of a disclination with strength � will delineate two

001� tilt GBs: �=5 �1=53.13° on one side and a boundary
with misorientation angle �2=�1−���1 on the other side.
To construct this system, two relaxed 
001� bicrystals with
misorientation angles �1 and �2 are prepared first by separate
simulations using the same interatomic potential. These are
cut along the �110 lattice planes as shown in Fig. 2�b� and
the resulting wedges are brought into contact at a common
origin. The �110 lattice planes of the two bicrystals will then
be misoriented by the angle � /2= ��1−�2� /2 and the lattices
will overlap. To remove this overlap and match the lattice
planes and thus finish the construction of the disclination,
each atom of the system is displaced by a vector calculated
on the basis of isotropic elasticity theory for wedge
disclinations.38 Eventually one obtains a disclinated cylinder
shown in Fig. 2�c�. Varying the misorientation angle �2 of the
left bicrystal, one can vary the strength � of the disclination.

In the particular case presented in Fig. 2 the second GB is
of the type �=5�210� �2=36.87°, such that �=16.26°. The
GBs �=5�210� and �310� are two of the four favored GBs
for the tilt axis 
001�, each of which is composed of a con-
tiguous sequence of one type of structural unit.39,40 In Fig. 2
the structural units of these boundaries are outlined. The
other two favored GBs for this axis are the crystal lattice
planes �110� ��=0° � and �100� ��=90° �. The structural units
of the boundaries �110�, �210�, �310�, and �100� are denoted
by the letters A, B, C, and D, respectively.41,42 The atomic
structures of all other GBs with this axis are described in the

structural unit model.39–41 According to this model, each GB
whose misorientation angle is intermediate between the mis-
orientation angles of two adjacent favored GBs �e.g., B and
C�, consists of the structural units of these boundaries taken
in a certain proportion and arrangement. The structural unit
sequences per GB period characteristic of the GBs chosen to
construct disclinations with varying strengths are presented
in Table I. The dots in sequences characterizing the structure
of centered GBs mean that the periods of these boundaries
consist of two half-periods with the same stacking of units
which are displaced with respect to each other by a0 /2 along
the tilt axis 
001�.39 The geometry of each GB in the table is
characterized by two integers m and n the meaning of which
is clear from Fig. 3, in which the left GB is a symmetric tilt
boundary characterized by m=13 and n=5. The period vec-
tor of the boundary can be represented through the crystal-

lographic vectors of one of the grains as H� =mu�1+nu�2, where

u�1= �a0 /2�
11̄0� and u�2= �a0 /2�
110� with a0 denoting the
lattice parameter. The reciprocal coincidence site density of
the boundary is calculated as �= �m2+n2� if m2+n2 is odd,
and �= �m2+n2� /2 if m2+n2 is even. In this case, �=97, and
the misorientation angle is calculated as �=2 arctan�n /m�
=42.08°. The right half-period of the boundary is represented
in a nonrelaxed geometrical model, whereas the left one in
the structural unit model. The structure described in the
structural unit model is obtained from the geometrical one by
combining each pair of atoms which are too close to each
other near the GB plane into one atom �these pairs are en-
closed by ellipses in Fig. 3� and subsequent atomic relax-
ation. In the structural unit model this GB is represented by
the sequence BBBC.BBBC.

When bringing the two bicrystals into contact, one should
bear in mind that in general they have different volume ex-
pansions. The volume expansion e of a GB is defined as the
difference between the volumes of a bicrystal containing the
boundary and an ideal crystal, both having the same number
of atoms, per unit area of the boundary.40 In terms of atom-
istic simulations, e is equal to a relative rigid-body shift of
adjoining crystals in the direction normal to the GB plane
during relaxation from an initial structure constructed by the
use of the geometrical coincidence site lattice model. The
difference of volume expansions will result in an edge dislo-
cation with a Burgers vector normal to the GB plane that
shares a line with the disclination. In order to study the ef-
fects caused purely by disclinations, the Burgers vector of
this dislocation must be set to a minimum value. This can be
done on the basis of the concept of geometrically necessary
junction dislocations recently introduced for triple
junctions.43 This concept as applied to the junction of two
boundaries under consideration is illustrated also in Fig. 3,
which shows the construction of a disclination with the
strength �=11.06°. As the right half-period of the left GB is
not decomposed into structural units, one can see that atoms
on different �110 planes, two of which are marked by bro-
ken lines, are differently dislocated from the GB plane. The
junction can be located at a line crossing an atom of any of
the types denoted by the Greek letters �, �, �, and �. In Fig.
3 it will be located at a �-type position. When welding the
two bicrystals, atoms on the surface of the left bicrystal de-

FIG. 2. Schematic of constructing an initial configuration in the
atomistic model. �a� An fcc bicrystal with 
001� �1=53.13° tilt GB.
�b� Two fcc bicrystals with 
001� �2=36.87° �left� and 
001�
�1=53.13° �right� tilt GBs, respectively. �c� A bicrystalline nano-
wire containing an �=16.26° wedge disclination, constructed from
the two bicrystals in �b�, along the central axis. Note that black and
gray solid circles distinguish atoms lying on two successive �002�
lattice planes.
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picted by open circles must be superposed with gray atoms
of the right bicrystal and deleted �in fact, these circles illus-
trate empty sites�. As one can see from the figure, this will
involve not only a rotation corresponding to the disclination
but also a translation normal to the GB plane to a distant �b
equal to the distance between the two closely spaced atoms
on the edge of the left bicrystal. This translation forms a
geometrically necessary dislocation whose Burgers vector
magnitude �b oscillates with the position of the junction. For
a junction located at an �-type position �b=0. In addition,
volume expansions of both bicrystals will occur during re-

laxation as indicated by double arrows in the figure. There-
fore the net Burgers vector magnitude of the junction discli-
nation will be equal to b=�b+e2−e1. Varying �b this
Burgers vector can be made as close to zero as possible.

Table I summarizes the characteristics of GBs used to
construct disclinations and the strength values of the result-
ing disclinations, which are used for simulations in the
present paper. For convenience, the negative signs for the
disclination strengths are dropped here and elsewhere. The
minimum Burgers vector magnitudes of the accompanying
dislocations are also presented in the table.

Disclinations constructed by the proposed method can be
considered as junction disclinations, since they form a junc-
tion of two GBs having different misorientation angles. Elas-
tically, they are equivalent to disclinations introduced either
in a perfect crystal or in a tricrystal or any other aggregate
provided that the properties of the crystals are isotropic. On
the atomic level, they will be similar to triple junction dis-
clinations. Therefore the results obtained in the present paper
can be extended to predict some properties of triple junction
disclinations.

In the simulations, disclinations are inserted into cylinders
with an initial radius of R=25 nm. The systems constructed
contain about 2.6�105 atoms. They serve as ready initial
configurations for one series of the simulations, in which the
behavior of growing cracks is studied. In the other series of
simulations, initial cracks are inserted into the disclinated
cylinder. The crack is opened by a simple construction of an
approximate displacement field for atoms in the region
�x�� l0, �y��y0� l0 such that there are no too closely spaced
atoms. This allows us to avoid instabilities at the start of
simulations. For small values of the disclination strength
smaller initial cracks are inserted and they have the shape of

TABLE I. Geometrical characteristics of the modeled GBs and disclinations.

Number Structural unit sequence n /m � �deg� � �deg� b �Å�

First GB

C 1/2 53.13 0 N.A.

Second GB

1 BBC 2/5 43.60 9.53 0.32

2 BBBCBBCBBCBBC. BBBCBBCBBCBBC 17/43 43.14 9.99 0.02

3 BBBCBBC. BBBCBBC 9/23 42.74 10.39 0.14

4 BBBC. BBBC 5/13 42.08 11.06 0.19

6 �3B�C�3B�C�4B�C 8/21 41.71 11.42 0.03

7 �3B�C�4B�C. �3B�C�4B�C 11/29 41.54 11.59 0.05

8 BBBBC 3/8 41.11 12.02 0.10

9 �6B�C 4/11 39.97 13.16 0.01

10 �10B�C 6/17 38.88 14.25 0.04

11 B.B 1/3 36.87 16.26 0.55

12 A�10B� 5/16 34.71 18.42 −0.02

13 A�3B�.A�3B� 3/11 30.51 22.61 −0.07

The letters A, B, and C denote the structural units of the GBs �=0/0°, �=5/36.87°, and �=5/53.13°, which
are favored boundaries for the tilt axis 
001� �Refs. 39 and 40�. n and m are two integers determining the
geometry of the boundaries; the misorientation angle is defined as �=2 arctan�n /m�. Minimum possible value
of the net dislocation Burgers vector is also presented.

FIG. 3. Detailed schematic of the construction of a junction
disclination from two bicrystals. The left GB is a �=97
��=42.08° � GB with parameters m=13 and n=5. The left half-
period of this GB is shown as decomposed into structural units
�indicated by closed polygons� in the BBBC stacking, of which
atoms �, �, �, and � occupy the possible positions for locating a
disclination line. When two bicrystals are brought into contact to
form the disclination, the open circles of the left bicrystal are re-
placed by the gray atoms of the right bicrystal. The junction line
will coincide with the chain of gray atoms normal to the plane of
view, as marked by the cross symbol.
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a double-ended wedge of half-length l0. For large values of
the disclination strength long elliptic cracks are inserted with
the long half-axis length l0. In all cases l0 is chosen to be
slightly larger than the crack half-length predicted by the
continuum calculations for given values of �. These struc-
tures with initial cracks are designed to study the behavior of
closing cracks.

Starting from the initial structures described above, the
structures of disclinated cylinders are simulated by molecular
statics, i.e., by energy relaxation at zero absolute tempera-
ture. Interatomic forces are described by the embedded atom
method �EAM�.44 A potential of this method for Ni is used. It
is fitted to the lattice period a0=3.52 Å, and the elastic con-
stants c11=233 GPa, c12=154 GPa, and c44=128 GPa.
The cutoff distance of the original potential is equal to
rc=4.8 Å. The above values of the elastic constants are also
used to calculate Voigt averages for the shear modulus and
Poisson ratio: G=92.6 GPa and v=0.281. These values are
used to calculate the crack characteristics in the continuum
mechanics approach.

Relaxation is performed by the code XMD—Molecular
Dynamics for Metals and Ceramics authored by J. Rifkin at
the University of Connecticut.45 This method adds some dis-
tance to the cutoff distance rc, so that rc=5.8 Å. Due to this,
the minimum simulation cell size along the 
001� direction
compatible with the minimum image convention46 is equal to
Hz=4a0=14.08 Å�2rc. Fixed periodic boundary conditions
are applied in this direction, since we consider the disclina-
tion under the plane-strain condition. In the other two direc-
tions the system has finite sizes, i.e., the cylinder has a free
lateral surface.

For an estimate of the critical SIF KIC=�4�fG / �1−v� the
cleavage energy 2�f should be known. This parameter is cal-
culated in the atomistic model for two GBs, the right bound-
ary �=5�310� and a sample left boundary �=5�210� �GB
No. 11 in Table I�, as a difference between the energies of a
bicrystal with separated grains and the one having a relaxed
GB structure: 2�f=2�s−�, where �s and � are the specific
surface and GB energies. For both boundaries the value of
2�f=2.22 J m−2 has been found. This value is used for the
estimate of the critical SIF: KIC=0.756 MPa m1/2 in the con-
tinuum model that assumes a symmetric crack. In general,
other GBs listed in Table I can have cleavage energies dif-
ferent from this value and this can result in some fine effects
on the crack formation as will be discussed below. However,
the differences are not too large, as can be deduced, for ex-
ample, from the maximum difference of about 0.2 J m−2 be-
tween the energies of 
001� GBs in Ni in the misorientation
interval 36.87°–53.13°.42

IV. RESULTS

A. Numerical estimates by continuum model

The SIFs are calculated for a disclinated crack in a bic-
rystalline cylinder with R=25 nm. Figure 4 plots the depen-
dence of the SIF on the normalized half-crack length l /R for
some of the values of � shown in Table I.

Analyzing Fig. 4 one can come to the following conclu-
sions. For ��11.56°, the SIFs are less than the critical SIF

for all crack lengths. This means that below the value
�c�11.6°, referred to as the critical disclination strength, no
crack can exist in the cylinder of the given radius. When
���c there are two values of the equilibrium crack length.
The shorter crack is unstable, while the longer crack is
stable. With increasing disclination strength the unstable
crack length decreases, while the stable crack length in-
creases.

The critical disclination strength is a physical characteris-
tic, which is important for the failure prediction of materials
containing disclinations. This characteristic depends on the
screening radius of the long-range stresses of the defect �in
this case, the radius of the cylinder�. This dependence is
illustrated in Fig. 5, which shows a linear relationship in
log-log scale with a slope of −0.5. It can be interpolated with
good accuracy by the relationship

FIG. 4. Variation of the model I SIF with the normalized half-
crack length l /R for different disclination strengths �. The nano-
wire radius is R=25 nm. The critical disclination strength for crack
formation is �=11.56°, estimated from the curve tangential to the
straight line KIC=0.756 MPa m1/2. For ��11.56°, the KIC line in-
tersects the curves at two locations, which correspond to two equi-
librium crack lengths.

FIG. 5. Dependence of the critical disclination strength for crack
formation on the nanowire radius.
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log �c = log 55.7 − 0.5 log R or �c �
55.7
�R

, �11�

where R is substituted in nm and �c is in degrees. As one can
see from this relationship, the critical strength of disclination
slowly decreases with the increasing radius of the cylinder.

B. Results of atomistic simulations

The simulations show that small-strength disclinations
have a stable structure with a nonbroken core, which does
not differ significantly from the initial structure. To compare
the atomistic model with an elastic model of the disclination,
maps of the normal stress �yy�x ,y� and hydrostatic pressure
�i=1

3 �ii�x ,y� /3 are calculated using both methods for a dis-
clination with the strength �=11.06° accompanied by a
0.19 Å edge dislocation 
Figs. 6�a�–6�d��. In the atomistic
model, the product of the stress at a given atomic site with
the local atomic volume at this site is calculated.47 The stress
is then determined from this product by simply dividing it by
the atomic volume of the ideal Ni lattice, Va=10.94 Å3. Thus
atomic level stresses are calculated approximately. Compar-
ing the stress maps, one can make two important conclu-
sions. First, there is a significant influence of the anisotropy
on the stress distribution. Second, stress values in the far-
field compare well, but near the disclination line stresses in
the atomistic model increase more slowly than those in the
elastic one.

When the strength of the disclination increases, a greater
disorder is observed in its core. At a certain value of the
strength the disclination is no longer stable: it opens a crack
along the GBs on both of its sides. With a further increase of
the disclination strength the length of the crack also in-
creases. Figure 7 shows the sequence of relaxed structures
obtained with a crack-free initial structure. The critical dis-
clination strength �c, at which the disclination initiates a
crack, cannot be exactly determined from the atomistic
computations. For �=9.99° one sees a very small crack,
while for �=10.39° no definite crack is observed, and at
�=11.06° a crack is open again. This nonmonotonic behav-
ior is most probably due to an interplay between the discli-
nation strain energy release and the GB cleavage energy. The
latter depends on the GB period. Generally, a shorter period
GB has a lower energy and correspondingly higher cleavage
energy. The left GB corresponding to �=9.99° has a longer
period than that corresponding to �=10.39° and hence a
smaller GB cleavage energy 
compare GB periods
h=a0��n2+m2� /2 and the stacking of structural units for
boundaries No. 2 and No. 3 in Table I�. At ��11.06° there
are no stable disclinations: cracks will always nucleate. Con-
sequently, the approximate value for the critical disclination
strength at R=25 nm obtained from the above data is
�c�11.1°.

The cracks illustrated in Fig. 7 correspond to the stable
cracks studied in Sec. II. In qualitative agreement with the
results of the continuum model, the equilibrium length of
these cracks increases with the strength of the disclination.
However, the crack sizes determined from the atomistic
simulations are nearly twice less than those predicted by the
continuum approach for the same strength values �Fig. 4�.
Analysis of the atomic structures near cracks shows that the
cracks do not open in a purely brittle matter. At disclination
strengths close to �c there is significant atomic disorder near

FIG. 6. Normal stress �yy maps �a, b� and hydrostatic stress
�i=1

3 �ii�x ,y� /3 maps �c, d� of a nanowire containing an 11.06°
wedge disclination and a 0.19 Å edge dislocation. The results in �a�
and �c� are calculated by the continuum model, while those in �b�
and �d� by the atomistic model. The nanowire has a radius of
25 nm, but the maps only represent the inner part of the nanowire
with a radius of 15 nm. Stress contours from outer to inner part of
cylinder: 0, 1, 2.5, 5, 7, and 10 GPa.

FIG. 7. Atomic structures near a negative wedge disclination
with the strength equal to �a� 9.99°, �b� 10.39°, �c� 11.06°, �d�
13.16°, and �e� 22.61° obtained by relaxation from initial structures
containing no cracks. Atoms on all �002� planes are represented by
black circles. The studied nanowire has a radius of 25 nm and its
center coincides with the center of each figure.
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the crack tips 
Figs. 7�a�–7�c��. At larger values of the dis-
clination strength one observes the nucleation of a small
crack ahead of the main crack 
see the left side of Fig. 7�d��.
Such a behavior has been observed earlier by Farkas in the
simulations of crack propagation under load in a NiAl or-
dered alloy.32 At even larger disclination strength there is a
significant relaxation of the disclination stress field by the
emission of dislocations from the crack. For example, these
dislocations are seen as black spots in Fig. 7�e� where a crack
grown from the �=22.61° disclination is illustrated. The dis-
location seen on the upper part of Fig. 7�e� is visualized via
a magnified view shown in Fig. 8. A further analysis shows

that the dislocation has the Burgers vector b� = �a0 /2�
101̄�,
which has a projection equal to a0 /2 on the �001� plane.
Corresponding �100� extra half-planes are easily detected in
the figure for each dislocation.

C. Comparison of continuum and atomistic model results

In general, all cracks have the shape of a double-ended
wedge as predicted by the continuum analysis. However, in
many cases the cracks predicted by the atomistic method
have asymmetric shapes: it usually propagates a longer dis-
tance along one of the GBs than along the other. In all these
cases dislocation emission is observed mainly in the direc-
tion of the short wing of the crack. This indicates a signifi-
cant trapping effect of the dislocation emission on the crack
growth.

In order to exclude the dislocation emission, simulations
with a starting structure containing an initial crack are also
carried out for the same values of the disclination strength as
described in Sec. III. In this case the tips of equilibrium
cracks always have an ordered atomic structure. The results
of these simulations are presented in Fig. 9, along with the
data of continuum mechanics calculations. In this case a
crack open near a disclination with the strength �=11.06° is

closed back. At higher values of � the cracks are not closed.
This confirms that the critical disclination strength is
�c�11.1°. As one can see from Fig. 9, stable crack lengths
calculated by the atomistic simulations are now very similar
to the values obtained from the continuum model calcula-
tions. At � slightly larger than �c, there is a significant scat-
ter of the values of the crack length calculated by the atom-
istic simulations around the continuum model predictions. At
larger � the crack length increases monotonically. At
�=13.16° the agreement between the two calculations is
very close, while at �=16.26° the atomistic model result is
approximately 15% less than the continuum model result.
The discrepancy increases at large � when l→R.

Figure 10 plots the distribution of the normal stress �yy
around the disclinated crack of half-length l=0.38R in a
nanowire of radius R=25 nm. The disclination strength is
�=13.16°. The left and right parts of the figure show the
predictions of the continuum and atomistic models, respec-

FIG. 8. Magnified view of Fig. 7�e�, showing the emission of a
dislocation from a disclinated crack during atomistic simulations.

FIG. 9. Dependence of the stable crack length on the disclina-
tion strength as calculated by the continuum model �open circles�
and the atomistic model �crosses�. The studied nanowire has a ra-
dius of 25 nm.

FIG. 10. Comparison of the maps of the normal stress �yy,
which are calculated from the continuum model �a�, and the atom-
istic model �b�, respectively, in a nanowire of radius R=25 nm con-
taining a disclination of strength �=13.16°. The nucleated crack
due to the disclination reaches a half length of l=0.38R in both
models. Stress contours from outer to inner part of cylinder: 0, 1,
2.5, 4, 5.5, and 9 GPa.
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tively. It can be seen that the overall agreement is satisfac-
tory, given the fact that the continuum model assumes iso-
tropic homogeneous medium while the atomistic model does
not. Dependences of the stress on distance from the crack
tips and the stress concentrations near the tips as predicted by
the two models are also very similar.

Figure 11 overlays the crack profile predicted by Eq. �10�
onto that predicted by the atomistic simulation �with a starter
crack� for the case of �=13.16° and R=25 nm. A very good
agreement between the predictions of the two approaches is
found. The largest crack opening displacement is estimated
to be about 1.34 nm, and the half-crack length is l=0.38R.
Some disagreement, barely noticeable, arises from the slight
asymmetry of the crack predicted by the atomistic model.

V. DISCUSSION

In the continuum fracture mechanics approach, the stabil-
ity of a preexisting crack under the given conditions is a key
characteristic to be investigated. For instance, at KI=KIC a
Griffith crack in an infinite medium subjected to a remote
load normal to the crack is unstable, while it is stable if
subjected to a normal line load acting at the crack surface. In
a disclinated cylinder, Wu and Zhou were the first to show
that there are two equilibrium crack lengths, one for an un-
stable crack and the second for a stable longer crack.22 The
unstable crack length was shown to decrease with an in-
crease of the radius of the cylinder, i.e., the screening dis-
tance of the disclination long-range stresses, while the stable
crack length depends on the cylinder radius in the opposite
manner.

A new result of the present work, fundamentally different
from the earlier studies of disclinated cracks, is that there
exists a critical disclination strength �c below which the dis-
clination is stable with no crack formation while above
which a crack can nucleate. This is predicted directly for the
first time via atomistic simulations, and supported by the
continuum model, which predicts that the critical KI=KIC
condition can never be reached for any crack length for �
��c, see Fig. 4. This introduces a new concept of critical
disclination strength in the theory of fracture related to dis-
clinations. The concept is important in that it determines the

influence of disclinations on the strength of materials. As
shown by the present comparison, continuum mechanics cal-
culations can predict this characteristic with good accuracy
even for screening distances for the disclination stress field
lying on the nanometer scale ��c�11.1° vs 11.6° by atom-
istic calculation for R=25 nm�. In addition to our recent re-
sults on the applications of the disclination-structural unit
model to the calculations of GB energies,48–50 the current
work demonstrates that continuum mechanics models can
have a good predictive capability on the nanoscale.

For ���c, the continuum model predicts unstable cracks
less than a few nanometers in length. These predictions may
be considered unphysical, and inaccurate at best, since the
continuum theory is based on the linear elastic assumption
without taking the disclination core structure into consider-
ation. In the atomistic simulations starting from initial struc-
tures, which are nonequilibrium in nature since their dis-
placement fields are given by linear elastic isotropic theory,
the high internal strain within the disclination core would
likely initiate a crack that extends unstably until it reaches its
longer stable length. Any shorter unstable crack, even if it
physically exists, will not be easily captured by the atomistic
simulations due to the possibly unstable nature �as suggested
by the continuum theory� and the nonequilibrium initial
structures. Indeed, our atomistic simulations can only capture
the stable cracks, also predicted by the continuum theory.
From the current continuum and atomistic investigations, we
cannot yet make definite conclusions on the existence of the
nanometer-size unstable cracks.

Stable crack length above �c has been shown to increase
with the disclination strength by both approaches. However,
there are discrepancies between the results of continuum me-
chanics predictions and atomistic simulations. They are par-
ticularly large for the first method of simulation starting from
structures without an initial crack. These discrepancies war-
rant several explanations.

First, continuum mechanics calculations are performed in
the isotropic theory of linear elasticity. The significance of
elastic anisotropy is demonstrated in Fig. 6, which shows the
different shapes of the stress field calculated via the isotropic
theory and via the atomistic theory that is essentially aniso-
tropic. However, the errors due to this factor are not expected
to be too large in certain situations. For example, recent stud-
ies of brittle fracture in iron have shown that critical loadings
for cleavage calculated for different crack orientations from
anisotropic theory differ by no more than 10% from each
other.31 Therefore an error of the order of 10% may also be
expected when calculating this parameter using isotropic
theory. Nevertheless, as one can see from Fig. 4, a small
error of 10% in estimating the critical SIF can significantly
change the equilibrium crack length prediction.

Second, fracture is not purely brittle in the atomistic simu-
lations. In the first method of simulation, the crack tip re-
gions have a disordered atomic structure even when � is
slightly above �c 
Figs. 7�a�–7�c��. A part of the disclination
strain energy is spent on this disordering and the crack stops
at a length smaller than that predicted for ideal brittle frac-
ture. At higher disclination strength values this disorder is
retained. Moreover, some additional features appear. In some
cases, a small crack can nucleate ahead of the main crack and

FIG. 11. Overlay of the crack profile �dotted line� predicted by
the continuum model onto that predicted by the atomistic model for
the same case presented in Fig. 10. The largest crack opening dis-
placement is about 1.34 nm.
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separate from it by an uncleaved region 
Fig. 7�d��. At even
larger strength, a significant part of the disclination strain
energy is spent via another channel of relaxation: dislocation
emission 
Fig. 7�e��. This phenomenon is very common for
fracture in metals.29,30 Furthermore, even if a brittle fracture
can occur in real Ni bicrystals at certain given conditions,
empirical potentials may not make such a prediction. Recent
studies of crack propagation in silicon, for example, have
shown that most of the empirical potentials predict ductile
fracture, often in contradiction with experiments indicating
brittle fracture.24

The third factor that can significantly influence the equi-
librium crack length prediction is lattice trapping, which is
caused by the periodicity of the lattice. A crack in the lattice
overcomes a periodic energy barrier that can arrest its mo-
tion. This is similar to the trapping of lattice dislocations by
the Peierls barrier. It is well-known that due to the lattice
trapping a crack can be stable and cannot advance up to a
load KI

+�KIC, or can be stable and cannot heal down to a
load KI

−�KIC.25 Therefore, for a real crack in the discrete
lattice there may be a dead zone corresponding to a certain
interval with boundaries below and above the equilibrium
length predicted by the continuum theory.

The agreements between the predictions of the two ap-
proaches are much better, however, when the atomistic simu-
lations are carried out using the second method, i.e., by in-
troducing an initial crack. At intermediate values of the
disclination strength �=14° –16° the difference in predic-
tions is about 15%. At � slightly above the critical value
there is some scatter of the simulation results around the
continuum predictions. In this region, most probably, the dis-
creteness of the structure of the left GB, which changes non-
monotonically with the misorientation angle, plays an impor-
tant role. At high � the cracks have a length comparable to
the cylinder diameter. In the atomistic model, there is a sig-
nificant surface tension that is not taken into account in the
mechanics model. This surface tension induces a bulk com-
pression, which is nonuniform due to crack perturbation, that
might have a larger influence on the length of longer cracks
than on that of shorter ones. This is because a longer crack,
being closer to the cylinder boundary, interacts strongly with
the surface tension and also redistributes the stress signifi-
cantly compared to a shorter crack. This can explain the
increase of discrepancies between the results at large discli-
nation strengths.

It is also noteworthy that the atomistic and continuum
approaches yield reasonably consistent predictions in the
crack opening displacement and the stress distribution in the
nanowire containing the disclinated crack. This is in spite of
the fact that the nanowire is not only elastically anisotropic
but also bicrystalline in the atomistic model, while it is
purely isotropic and monocrystalline in the continuum
model. Continuum solutions for a finite anisotropic and in-
homogeneous medium containing a wedge disclination or
even an edge dislocation, are not presently available.

In view of the above discussion, the consistency between
the results of atomistic simulations and continuum mechan-
ics calculations can be considered quite satisfactory in terms
of the predictions of the critical disclination strength, the
stable crack length, the crack opening displacement, and the
stress field in the nanowire.

The obtained results can be used to estimate the critical
strength of disclinations in nanostructured metals. The stress
fields of a single disclination in a cylinder are screened on a
distance equal to the cylinder radius R.9,10 In a polycrystal,
the screening distance for the stress fields is of the order of
the grain size d. Therefore the cylinder radius R in this case
should be replaced by the grain size d: R�d. Then, by Eq.
�11� �c�5.6° for d=100 nm and �c=3.9° for d=200 nm.
These estimates are applicable to UFG metals prepared by
severe plastic deformation.2,4 However, disclinations in poly-
crystals are coupled into dipoles and quadrupoles.11,13 Taking
such n-pole configurations into account, the estimated criti-
cal strength may further decrease. With this note, the above
estimates seem not inconsistent with the results of experi-
mental measurements, which show the existence of disclina-
tions with strengths up to 3° in triple grain junctions of
heavily deformed metals.15,16 Further research on the critical
behavior of disclinations in multipole configurations is nec-
essary to shed light on this issue.

VI. CONCLUSIONS

In this paper, the atomistic and continuum models are
used for the first time to investigate a double-ended discli-
nated crack in a cylindrical nanowire of nickel. The con-
tinuum model for fracture takes into account the stress redis-
tribution due to crack generation in a finite isotropic cylinder.
The atomistic model is based on constructing a certain initial
structure for the wedge disclination in a bicrystalline cylin-
der, which may or may not contain an initial crack, and the
subsequent relaxation via molecular statics.

For a cylinder radius of 25 nm, the results of both the
atomistic and continuum models show general agreement in
the predicted critical disclination strength, the stable crack
length, the crack opening profile, and the stress distribution
in the cylinder. The key physical results are �1� the existence
of a critical value �11.1°–11.6° for the cylinder radius of
25 nm� for the disclination strength below which a crack
cannot nucleate, �2� the decrease of the critical disclination
strength with the inverse square root of the cylinder radius,
and �3� the increase of the stable equilibrium crack length
with the disclination strength. These results highlight certain
fundamental characteristics of disclinated solids with impli-
cations on the reliability of nanostructured materials. As an
important particular result, the limiting strength of disclina-
tions in nanostructured metals as a function of the grain size
can be estimated on the basis of the above results.
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