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The phonon dispersion relation and specific heat of single-walled BC3 nanotubes have been investigated
using a force constant model. The obtained phonon dispersion relation of BC3 sheet reproduces well the
experimental data. The tube-diameter dependent frequencies of both the radial breathing mode and the lowest
phonon mode E2g can be well fitted by a power law �=C /R� with tube radius R, where the scaling exponent
�=1 and the proportional constant C=939.6 cm−1 Å in the former and �=1.1 and C=321.5 cm−1 Å1.1 in the
latter, at variance with carbon nanotubes and BN nanotubes. The specific heat of BC3 nanotubes are also
calculated, less than that of the BC3 sheet, in which several crossings are observed at low temperature due to
the first optical phonon mode excited at different temperature. By virtue of the simple zone-folding model, in
addition, a universal formula is derived to describe the tube diameter dependence of specific heat for various
types of nanotube systems. The results provide an alternative way to characterize the BC3 nanotubes and
suggest the underlying quantized phonon structures in one-dimensional nanotube systems.
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I. INTRODUCTION

BC3 nanotubes �BCNTs� have been studied both theoreti-
cally and experimentally due to its unique physical
properties.1 For instance, electronic structure calculations in-
dicated that the band gaps of BCNTs are insensitive to the
diameter and chirality,2,3 different from that of carbon nano-
tubes �CNTs�, while their mechanical properties can be com-
parable to that of CNTs.4 Owing to the different geometrical
structures and compositions, especially, BCNTs are expected
to exhibit some outstanding thermal properties such as spe-
cific heat and thermal transport. From a practical point of
view, good thermal managements of BCNTs have potential
applications of future nanotube-based thermoelectrical de-
vices, which can greatly improve performances of the nano-
sized devices due to heat dissipations.

A very useful tool for the characterization of BCNTs is
Raman spectroscopy, which is widely used in the estimation
of diameter distribution of CNTs.5 In order to assign the
Raman peaks of BCNTs, one needs to calculate the phonon
modes of BCNTs. This means that lattice dynamics of
BCNTs may be of particular importance in the characteriza-
tion and thermal managements in the BCNT-based molecular
devices. As quasi-one dimensional �1D� nano functional ma-
terials, additionally, the lattice dynamics of CNTs and BN
nanotubes have been investigated in details, showing up
some singular thermal properties.6,7 The study of lattice dy-
namics of BCNTs would be very helpful to explore quantum
size effects and universal laws of thermal properties of
quasi-1D nanotube systems.

On the other hand, the structure of BC3 hexagonal sheet
may be very similar to that of Mg2BC3 with high supercon-
ducting transition temperature.8 From a microscopic point of
view, the electron-phonon coupling is one of the dominating
mechanisms for superconducting states. Therefore, the pho-
non calculations of BCNTs can contribute to understanding
of the underlying superconducting mechanism of BC3-based

compounds. In this paper, we perform the lattice dynamics
calculations of the BC3 sheet and BCNTs within a force con-
stant model. The results show that the phonon structures of
BCNTs are very different from that of CNTs. Combined with
its uniform energy gap, the BCNT may be a suitable candi-
date in future thermoelectrical nanodevices.

II. FORCE CONSTANT MODEL

Due to the nature of two-dimensional �2D� sheet, one can
build a force constant model to study the phonon dispersion
relation �PDR� of BCNT.9–12 Based on such a model, the
experimentally observed Raman modes of CNT samples had
been reproduced well.13–17 Here we firstly calculate the PDR
of BC3 sheet to fit the experimental phonon spectra of BC3
sheet. In this model, it is crucial to determine force constants
between two atoms. Similar to the graphite sheet,9,10 only
3�3 force constant matrices within the fourth nearest neigh-
boring distance are required to generate the dynamical ma-
trix D�k� of the BC3 sheet. In order to fit the experimental
phonon spectra of the BC3 sheet, the force constant param-
eters are presented in Table I, in which �r

n�A−B�, �ti
n�A−B�, and

�to
n�A−B� represent force constants between A atom and B atom

�B atom is the nth nearest neighbor of A atom� in the radial,
in-plane tangential and out-of-plane direction. With these pa-
rameters, we calculate in Fig. 1 the PDR of the BC3 sheet.
From Fig. 1, one longitudinal acoustic �LA� branch and one
transverse acoustic �TA� branch have been obtained with lin-
ear dispersion, while another TA branch with quadratic
wave-vector dependence.18–20 The quadratic behavior can be
explained by the fact that this mode is a 2D mode in BC3
sheet with n-fold �n�3� rotational symmetry. Moreover, the
majority of experimental phonon branches21 are reproduced
by present model. Good agreement between our theoretical
results and experiments shows that the parameters presented
in Table I are reasonable.
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III. RESULTS AND DISCUSSION

A. Phonon dispersion relations

In an BCNT, the force constant matrix can be obtained by
rotating the bond from the 2D plane to 3D cylindrical coor-
dinate system. The PDR of BCNTs can be further calculated.
As an example, we show in Fig. 2 the PDRs of zigzag �4,0�
and armchair �4,4� BCNTs. Compared with 2D BC3 sheet,
there are four acoustic modes at around � point from PDR of
BCNTs: Two degenerate TAs, one LA, and one twisting
�TWA�. The TA and LA modes have linear dispersions at low
energy, while there is a problem of nonzero frequency in the

TWA mode, just as in the CNT case.9,12 To avoid the un-
physical result, an improved method was proposed by Saito
et al.9 and Dobardzic et al.12 In present calculations of
BCNTs, the force constants have been rescaled using the
Saito’s method. The calculated frequency of TWA mode at �
point is close to zero, similar with that in the CNT case.9 It
may be expected that the exact zero frequency of TWA mode
can be obtained provided that a projecting method is applied,
as in Ref. 12. As a result, the dispersion of TWA mode ap-
pears to be linear at around � point. From Fig. 2, also, the
highest frequency in PDR is obtained to be about 1450 cm−1,
lower than 1600 cm−1 of CNT,9–12 which may be attributed
to the weak bonding in BCNTs. This indicates that BCNTs
are less stiff than CNTs, consistent with the tight binding
calculations.4

From Fig. 2, interestingly, it is seen that there are 120
distinct phonon branches, of which 48 branches are nonde-
generate and 72 branches are doubly degenerate. The number
NBCNT of distinct phonon branches of both armchair �n ,n�
and zigzag �n ,0� BCNTs can be expressed by

NBCNT = 48 + 24�n − 1� . �1�

This relation has an analogy to that of achiral CNTs7,22 with
N=12+6�n−1�. Then we have

NBCNT = 4NCNT. �2�

From space group theory, NCNT can be obtained from the
analysis of irreducible representation of CNTs.7,22 Therefore,
Eqs. �1� and �2� provide an alternative way to check the
classifications of phonon modes of BCNT.23 Such a classifi-
cation of BCNTs is not done so far, and thus the relation in
Eq. �2� is a significant result.

In Figs. 2�b� and 2�d�, we show the corresponding density
of states �DOS�, g���, of the �4,0� and �4,4� BCNTs. One
notices that in the low energy region, the DOS curves are
very flat for the two kinds of BCNTs. This is the conse-
quence of one dimensionality of BCNTs. In d-dimensional
system, usually, it follows g�����d/�−1 for an acoustic pho-
non branch of E�q��q�. For the 2D BC3 sheet, for example,
the dispersion E�q��q2 of the out-of-plane phonon leads to
g���=constant. In an BCNT, g��� is dominated by the linear
acoustic modes at low energy, and thus g��� is also a con-
stant, similar to that of the 2D BC3 sheet. Another important
feature in DOS is the first peak, originated from the first
optical phonon mode, which depends on the tube diameter of
BCNTs. When rolling an BC3 sheet into an BCNT, the cir-
cumferential quantization of wave vector results in the split-
ting of the phonon modes into multiply subbands, showing
up some sharp peaks in the DOS. The first peak is associated
to the first optical phonon mode �the first subband�, which is
shifted to higher frequency with the decrease of tube diam-
eter. This mode has an important effect on the specific heat
of BCNTs, discussed in detail below. Especially, the first
optical phonon mode �op is excited at temperature Top
= q�op /kB with kB and q the Boltzmann constant and the
Planck constant, so that the quantization of thermal conduc-
tance may be easily observed below Top. Small diameter tube
with the smooth contacts would be preferred to get high Top

TABLE I. Force constants of the BC3 sheet in units of
104 dyn cm−1.

Radial Tangential

�r
1�C−C�=32.0 �ti

1�C−C�=23.0 �to
1�C−C�=8.5

�r
1�B−C�=28.0 �ti

1�B−C�=18.0 �to
1�B−C�=5.8

�r
2�C−C�=8.00 �ti

2�C−C�=−3.00 �to
2�C−C�=−0.3

�r
2�B−C�=5.00 �ti

2�B−C�=−3.5 �to
2�B−C�=−0.40

�r
2�C−C�=7.0 �ti

2�C−C�=−2.80 �to
2�C−C�=−0.25

�r
3�C−C�=2.50 �ti

3�C−C�=−5.0 �to
3�C−C�=0.3

�r
3�B−B�=1.0 �ti

3�B−B�=−3.50 �to
3�B−B�=0.7

�r
3�C−C�=2.0 �ti

3�C−C�=−4.5 �to
3�C−C�=0.5

�r
4�B−C�=−1.8 �ti

4�B−C�=1.0 �to
4�B−C�=−0.22

�r
4�C−C�=−1.9 �ti

4�C−C�=2.0 �to
4�C−C�=−0.55

FIG. 1. Calculated phonon dispersion relation of the BC3 sheet
�solid lines� together with the experimental points �open circles�.
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due to the high frequency �op. Therefore, the first optical
phonon mode plays an essential role in quantization of ther-
mal conductance,24 especially for very narrow BCNTs.

Of all phonon modes, an important mode is the radial
breathing mode �RBM�, in which all atoms of a nanotube
move in the radial direction with the in-phase displacements,
as shown in Fig. 3�a� inset. We calculate in Fig. 3�a� the
frequency of RBM of BCNT as a function of tube radius R.
Obviously, the frequency of RBM increases with R decreas-
ing, which can be fitted by

�RBM = A/R , �3�

with A=939.6 cm−1 Å the proportional constant. The scaling
relation, Eq. �3�, is similar to that of CNTs, however, the
constant A is lower than 1170.0 cm−1 Å of CNTs.25 The
RBM can be used in the characterization of BCNT samples,
as in the case of CNTs.13–17 To further clarify the tube diam-
eter dependence of various modes, also, Fig. 3�b� shows the
lowest phonon mode E2g as a function of R. This mode has

the xy and x2-y2 symmetries,9 as shown by Fig. 3�b� inset.
The frequency of the E2g mode increases with R decreasing,
similar to that of RBM. The fitting formula is obtained by

�E2g
= B/R1.1, �4�

with B=321.5 cm−1 Å1.1. The decay exponent in Eq. �4� is
larger than that in Eq. �3�, showing the distinct dependence
of the various modes on the tube diameter. For small diam-
eter BCNTs, in addition, there appears a deviation from the
fitting formula. This can be attributed to the strong curvature
effect in small diameter nanotubes, which has been demon-
strated in detail based on the curvature energy.26 To satisfy
the requirements in nanotube-based device applications, the
characterization of BCNTs is very necessary. The scalings of
Eqs. �3� and �4� would be helpful in the future to characterize
BCNTs for fast selection in nanotube samples.

FIG. 2. �a� PDR and �b� DOS
of zigzag �4,0� BCNT; �c� PDR
and �d� DOS of armchair �4,4�
BCNT.

FIG. 3. Frequencies of �a� RBM and �b� E2g

of achiral BCNTs as a function of radius. The
solid lines are a linear fit to the data for BCNTs.
In the insets, the open and solid circles represent
the vibrational patterns of carbon and boron at-
oms, respectively.
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B. Specific heat

To explore the thermal properties in BCNT-based nanode-
vices, we can further calculate the specific heat CV�T� of both
the BC3 sheet and BCNTs in terms of the obtained DOS.
Here CV�T� is defined by

CV�T� =
q2

kBT2�
0

�max �2 exp�q�/kBT�
�exp�q�/kBT� − 1�2g���d� . �5�

In Fig. 4�a�, we plot the specific heat of the BC3 sheet and
the �n ,n� BCNTs �n=4,6 ,8�. From Fig. 4�a�, CV of both the
BC3 sheet and BCNTs increase with temperature T, finally
approaching the classical limit �not fully shown�, indepen-
dent of the particular systems.27 This is since more and more
phonon modes become populated with T increasing. Com-
pared with the BC3 sheet, interestingly, there appear several
crossings in CV curves of the various BCNTs at different T.
These crossings are attributed to the first optical phonon
modes excited at different Top in different BCNTs. In the
cases of CNTs, the predicted �op and Top have been observed
in specific heat experiments, showing a unique quantized
phonon structure.28 Our work indicates that the quantized
phonon structures may be universal in quasi-1D nanotube
systems, which may be observed in the BCNTs. At room
temperature, also, we calculate in the Fig. 4�b� the specific
heat of the armchair �n ,n� and zigzag �n ,0� BCNTs as a
function of n. From Fig. 4�b�, CV of both �n ,n� and �n ,0�
BCNTs increase with the tube diameter increasing, and reach
the value of the BC3 sheet. This feature is due to the fact that
DOS of larger tube-diameter BCNTs is close to the BC3
sheet, in which the PDR of BCNTs can be given by the
zone-folding from the PDR of the BC3 sheet. For a given n,
obviously, CV of a �n ,n� BCNT is larger than that of a �n ,0�
BCNT, the same as in the case of CNTs.12 The same trends in
the �n ,n� and �n ,0� CNTs can be seen in Fig. 4�b� inset.
These interesting behaviors may also be universal for
quasi-1D nanotube systems. To understand the physical ori-
gin of this universal behavior, we now calculate the PDR of
CNTs within a zone folding method. In spite of the defi-

ciency in low frequency region, the intermediate and high
frequency phonon modes can be described well by this
model.29 Here we take the armchair �n ,n� CNTs as an ex-
ample. The 1D PDR of CNTs is given by8,29

�1D
m	�k� = �2D

m �k
K2

�K2�
+ 	K1� , �6�

with m=1,2 , . . . ,6, 	=0,1 , . . . ,N /2−1, and −
 /T�k
�
 /T, where N is the number of atoms in the unit cell, K1
and K2 the unit wave vectors in the circumferential and axial
directions, �2D

m �k� the 2D PDR of a graphite sheet, k the 1D
continuous wave vector, and T is the magnitude of transla-
tion vector in the axis. The discrete value of 	 is the conse-
quence of wave vector quantization in the circumferential
direction. Figure 5�a� shows the 2D Brillouin zones of �5,5�
and �10,10� CNTs. Due to the similar symmetry of �5,5�
CNT with �10,10� CNT, the wave vectors of �5,5� CNT just
correspond to one-half of those of �10,10� CNT. Therefore,

FIG. 4. �a� Specific heat of armchair �4,4�,
�6,6�, and �8,8� BCNTs and BC3 sheet; �b� spe-
cific heat of BCNTs at T=300 K as a function of
the index n. For a comparison, the inset shows
the result of CNTs.

FIG. 5. �a� The 2D Brillouin zones of �5,5� and �10,10� CNTs;
�b� PDR of armchair �5,5� CNT �open circles�, and �10,10� CNT
�solid lines�.
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the PDR of �5,5� CNT is completely included in that of
�10,10� CNT, as shown in Fig. 5�b�. Similar relation be-
tween �n ,n� and �nl ,nl� tubes can be derived, where l is an
integer other than 1. In terms of this relation, the specific
heat of a �n ,n� tube can be directly related to that of a �nl ,nl�
tube. Changing the integral into the summation, Eq. �5� is
rewritten as

CV�T� = kB�
q,j

�q� j�q�
kBT

�2 eq�j�q�/kBT

�eq�j�q�/kBT − 1�2 , �7�

with j=1,2 , . . . ,3N, where q is the wave vector and � j�q� is
the frequency of q phonon mode. Since � j�q� of �5,5� tube is
only the part of that of �10,10� tube, CV of �5,5� tube is
smaller than that of �10,10�, i.e., CV

�5,5��CV
�10,10�. Similarly,

one can obtain CV
�n,n��CV

�nl,nl�. In the limit of n→
, on the
other hand, the discrete wave vectors of a �n ,n� tube would
turn into a continual 2D Brillouin zone. In this case, PDR of
the CNT is consistent with that of 2D graphite sheet, and
thus CV of the CNT approaches the limit of 2D graphite CV

2D.
As a result, an alternative formula of CV

�n,m� can be obtained
by

CV
�n,m� = CV

2D − E/R�, �8�

with E the scaling factor and � the scaling exponent. Eq. �8�
directly links the specific heat of a nanotube to that of a 2D
sheet, and shows the intrinsic relationship between thermal
properties of the nanotube and its geometrical structures. Ac-
tually, the derivation of Eq. �8� is regardless of its composi-
tions of the nanotube, which is in good agreement with the
fitted formulas of CV in CNTs.7 Therefore, Eq. �8� may show
a universal behavior of CV in various types of quasi-1D
nanotube systems.

IV. CONCLUSIONS

In summary, we investigate the phonon dispersion relation
and specific heat of the BC3 sheet and BCNT within a force
constant model. The force constant parameters have been
obtained by fitting the phonon spectrum of BC3 sheet to the
experimental data. The phonon spectra of BCNTs are calcu-
lated in terms of these force constants, of which the number
of distinct phonon branches is four times larger than that of
CNTs. It is shown that the frequencies of RBM and the low-
est phonon mode E2g of BCNTs are dependent on the tube
diameter, fitted well by the power law relations with various
scaling parameters, which is at variance with CNTs and BN
nanotubes. These scalings may be very helpful in the future
to characterize BCNTs for fast selection in nanotube
samples. Moreover, the specific heat of BCNTs is calculated,
less than that of the BC3 sheet. Due to the difference of the
first optical phonon mode, several crossings in specific heat
of various BCNTs have been observed, which may suggest
the underlying quantized phonon structures in BCNTs. A uni-
versal relation between the specific heat of a nanotube and its
geometrical structure is derived, which can provide a useful
help to explore quantum size effects and universal laws in
quasi-1D nanotube systems.
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