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We consider cotunneling through a quantum dot in the presence of spin-flip processes induced by the
coupling to acoustic phonons of the surrounding. An expression for the phonon-assisted cotunneling current is
derived by means of a generalized Schrieffer-Wolff transformation. The influence of the spin-phonon coupling
on the heating of the dot is considered. The result is evaluated for the case of a parabolic semiconductor
quantum dot with Rashba and Dresselhaus spin-orbit coupling and a method for the determination of the
spin-phonon relaxation rate is proposed.
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I. INTRODUCTION

In the past years, prospective applications in spintronics
and quantum computation1–4 have lead to a growing interest
in the magnetic properties of nanoscale systems. A variety of
systems ranging from semiconductor quantum dots over mo-
lecular magnets5–9 down to single atoms on surfaces have
been studied in detail.10,11 For the investigation of such sys-
tems, transport measurements provide an excellent tool. Re-
cently, the Zeeman splitting of two spin levels has been mea-
sured via inelastic tunneling spectroscopy, both in GaAs
quantum dots12 and in single Mn atoms on a surface which
have been addressed by a scanning tunneling microscopy
�STM� tip.10 Using the same technique, the singlet-triplet
splitting in few-electron quantum dots has been
determined.13

For the applications mentioned at the beginning, it is cru-
cial that effects like relaxation and the loss of quantum co-
herence resulting from the coupling of the nanosystem to its
surrounding environment are sufficiently weak. In particular,
a detailed knowledge about these effects is a prerequisite for
the assessment of the suitability of a specific system for ap-
plication purposes. In the case of the electron spin in semi-
conductor quantum dots, relaxation at low magnetic fields is
dominated by the hyperfine coupling to the nuclei,14–16 while
at higher fields, the spin-orbit interaction induced coupling to
acoustical phonons is most relevant.17,18 It turns out that both
effects are sufficiently weak, and correspondingly long spin-
relaxation times have been reported.19–21 For the single-atom
experiments reported in Ref. 10, the strength of different
coupling mechanisms is not yet clear, however, and the mea-
surement schemes which were used in the semiconductor
case are not directly applicable.

In the present work, we study to what extent inelastic
cotunneling spectroscopy can yield information about intrin-
sic spin-flip processes due to a coupling to bosonic degrees
of the freedom in the surroundings. We put forward a general
approach for the calculation of the cotunneling current22,23 in
the presence of such spin-flip processes. Subsequently, we
apply the general formalism to the case of cotunneling across
GaAs/AlGaAs semiconductor quantum dots and propose a
method for the determination of the spin-relaxation rate.

The outline of the present work is as follows. In Sec. II,
we start by introducing the model for the quantum dot
coupled via a tunneling Hamiltonian to two fermionic leads

and via a spin-phonon coupling to a bosonic environment. In
Sec. III, we put forward a generalized Schrieffer-Wolff trans-
formation, which, in the limit of a weak spin-phonon cou-
pling, allows one to eliminate to lowest order the dot-lead
coupling. We then derive, in Sec. IV, expressions for the
elastic and inelastic cotunneling current in the presence of
the spin-phonon coupling. For the evaluation of the current,
the knowledge of the occupation probabilities of the spin
states on the dot is required. Their dynamics is governed by
a master equation, which is discussed in Sec. V. The experi-
mentally most relevant quantity, the differential conductance
as a function of the bias voltage, is evaluated in Sec. VI. In
Sec. VII, we apply the general result to a realistic model
describing a recent experiment by Kogan et al. �Ref. 12�.
Secction VIII briefly discusses the low-temperature behavior.
The final conclusions are presented in Sec. IX.

II. MODEL

We consider transport across a quantum dot in a spin-1 /2
ground state contacted to two leads in the presence of an
intrinsic spin-flip mechanism due to the coupling of the dot
to a phonon bath �see Fig. 1�. The total system consisting of
dots, leads, and phonons is described by the Hamiltonian

H = H0 + HT + HS. �1�

Here, H0 is the Hamiltonian of the isolated dot, the ideal
leads �=L, R, and the phonons, i.e.,

FIG. 1. Sketch of the quantum dot coupled via the tunneling
Hamiltonian HT to two leads at electrochemical potentials �L and
�R and to a phonon bath via the spin-phonon coupling Hamiltonian
HS. The dot can be either empty �0�, in one of the spin directions ↑
and ↓, which are split by the Zeeman energy �↓↑, or in the singlet
state S.
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H0 = �
�=↑,↓

E�n� + Un↑n↓ + �
�k�

��kn�k� + �
q

� �qnq. �2�

The number operator of the dot spin is given by n�=d�
†d�,

where d� �d�
†� destroys �creates� an electron with spin

�= ↑ ,↓ on the dot. An externally applied magnetic field Bz
in the z direction leads to a Zeeman splitting �↓↑=E↓−E↑
=−g�BBz of the single-particle dot levels. Furthermore, due
to electron-electron interaction, the simultaneous occupation
of the dot by two electrons costs the additional energy U.
The leads �=L,R are modeled as Fermi liquids, i.e., by non-
interacting quasiparticles with energy ��k, where k is the
wave vector and � the spin. The number operator n�k�

=c�k�
† c�k� for the corresponding state is defined in terms of

the fermionic creation and destruction operators c�k�
† and

c�k�, respectively. Each lead is filled up to an electrochemi-
cal potential ��, and thus the mean occupation numbers obey
the Fermi distributions f����= �exp���−��� /kBT�+1�−1.
Here, an externally applied bias voltage V maps to a differ-
ence �L−�R=eV. In the present work, we consider transport
across a singly occupied dot in the cotunneling regime. This
imposes the condition E�����E�+U for �= ↑ ,↓ and �
=L,R. The last term in Eq. �2� describes the phonons of the
environment, which consist of a collection of modes charac-
terized by a wave vector q with occupation numbers nq
=aq

†aq. Here, the bosonic operators aq
† �aq� create �destroy� a

phonon in the mode q. Note that for reasons of notational
simplicity, a possible branch index has been suppressed here,
but can be added in the end results. At equilibrium, the
phonons are described by the Bose distribution nB���
= �exp�� /kBT�−1�−1.

The coupling of the dot to the leads is modeled by the
tunneling Hamiltonian

HT = �
�k�

T�kc�k�
† d� + H.c. , �3�

where, for reasons of simplicity, we have assumed spin-
independent tunnel matrix elements T�k. For later use, we
introduce the corresponding tunneling rates �per spin direc-
tion�

����� =
2	

�
�

k
�T�k�2
�� − ��k� . �4�

So far, except for the presence of two instead of one lead, the
Hamiltonian corresponds to the one of the single-site Ander-
son model,24 which has been extensively studied in the
literature.25

Finally, we assume that the dot spin interacts with the
phonon system via a spin-phonon coupling of the form

HS = �
q

�Mq,x�x + Mq,y�y��aq + a−q
† � . �5�

In order to guarantee the hermiticity of the coupling Hamil-
tonian, the coefficients have to fulfill Mq,i=M−q,i

* for all q
and i=x ,y. Furthermore, we have introduced the spin opera-
tors �x=d↓

†d↑+d↑
†d↓ and �y = i�d↓

†d↑−d↑
†d↓�. Again, we can

characterize the coupling by a spectral density, which is de-
fined as

D��� =
	

�
�
q

�Mq,x + iMq,y�2
�� − �q� . �6�

Note that the coupling does not contain dephasing terms pro-
portional to �z=d↑

†d↑−d↓
†d↓ or to the total number of elec-

trons n=n↑+n↓ on the dot. For the electron spin in a quantum
dot, this is justified to a very good approximation, as was
shown in Ref. 17. In this regard, the present model differs,
e.g., from the so-called Anderson-Holstein model,26,27 which
only contains coupling terms of this kind.

III. SCHRIEFFER-WOLFF TRANSFORMATION

Since we are interested in transport in the cotunneling
regime where the dot occupancy is only changed virtually, it
is advantageous to eliminate to lowest order the tunneling
Hamiltonian HT, which changes the number of electrons on
the dot by one. A standard method to achieve this goal is the
so-called Schrieffer-Wolff transformation,28 which we gener-
alize to the case where a spin-flip coupling HS is present.
Accordingly, we perform the canonical transformation to the
Hamiltonian

H̄ = eSHe−S = H0 + HS +
1

2
�S,HT� + O�HT

3� , �7�

where the generator S of the transformation has to fulfill the
condition �S ,H0+HS�+HT=0. In order to obtain an explicit
expression for the generator S, we now use that, as has been
discussed in the introduction, in all relevant cases, the spin-
flip coupling is weak and can be treated perturbatively.
Hence, we can expand

S = L0
−1HT − L0

−1�L0
−1HT,HS� + O�HS

2� . �8�

Here, L0 is the Liouvillian of the decoupled dot, leads, and
phonon system.36 We, thus, arrive at the transformed Hamil-
tonian

H̄ 	 H0 + HS +
1

2
�L0

−1HT,HT� +
1

2
�L0

−1�L0
−1HT,HS�,HT� .

�9�

The first commutator corresponds to the standard Schrieffer-
Wolff transformation28 and yields a contribution

1

2
�L0

−1HT,HT� = Hdir,ex + Hren + H2e. �10�

Here, the first term contains the direct and exchange interac-
tion between the dot and the leads

Hdir,ex =
1

2 �
���kk���

T�kT��k�
*

��k − E�
� �n�̄

�c�k�
† c��k�� − �d�̄

†d�c�k�
† c��k��̄�

+ H . c. �11�

We denote flipped spins by ↑̄=↓ and vice versa. Here and in
the following, the sums over � run over �= ±1. Furthermore,
we have introduced the abbreviations n�

�= �1−�� /2+�n� and
E�

�=E�+ ���+1� /2�U. The next contribution to Eq. �10� is
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the renormalization of the dot Hamiltonian H0,

Hren = �
�k��

�T�k�2

��k − E�
�n�̄

�n�. �12�

As this contribution can be absorbed in the definition of H0,
it will be ignored in the following. The last term, which
describes processes that change the electron number on the
dot by two, reads

H2e =
1

2 �
���kk���

�
T�kT��k�

*

��k − E�
� d�̄d�c��k��̄

† c�k�
† + H . c. �13�

Later, we shall focus on the sector of the Hilbert space where
the dot is singly occupied, and hence, H2e can be neglected,
as well.

Similarly, we can decompose the phonon-mediated con-
tributions to the transformed Hamiltonian �9� into

1

2
�L0

−1�L0
−1HT,HS�,HT� = Hdir,ex

ph + Hren
ph + H2e

ph. �14�

Here, the relevant contribution containing direct and ex-
change terms reads

Hdir,ex
ph =

1

2 �
���kk���

T�kT��k�
* X�k���n�

�c�k�
† c��k��̄

− �d�
†d�̄c�k�

† c��k��� + H . c . , �15�

where we have introduced the phonon operator

X�k�� = �
q,i=x,y

Mq,i�i
��̄

��k − E�
�
 aq

��k − E�̄
� − � �q

+
a−q

†

��k − E�̄
� + � �q

� . �16�

Furthermore, the transformation leads to a renormalization of
the spin-phonon coupling

Hren
ph = −

1

2 �
�k�

�T�k�2X�k�−d�
†d�̄ + H . c. �17�

Finally, a two-electron tunneling term

H2e
ph =

1

2 �
���kk���

�T�kT��k�X�k��d�d�̄c��k��
† c�k�

† + H . c.

�18�

is generated, which, for the same reasons as above, will be
disregarded together with the renormalization term �17�.

IV. CURRENT

The mean current I��t� across contact �=L,R is given by
the expectation value of the time derivative of the total num-
ber of electrons N�=�k�n�k� in lead � multiplied by the elec-
tron charge −e, i.e.,

I��t� = − e�Ṅ�
 = −
ie

�
��H̄,N��
 . �19�

For the evaluation of this expectation value, we switch to the
interaction picture to obtain29,30

I��t� =
ie

�
�

0

t−t0

d���Ñ˙ ��t − t0�,H̃1�t − � − t0��
 . �20�

Here, the tilde denotes interaction picture operators with re-

spect to H0 and H1 : = H̄−H0 is the coupling part of the ef-
fective Hamiltonian and the expectation value has to be
taken at time t−�− t0.

In the long-time limit t
 t0, the mean value of the current
becomes time independent, and we find that due to charge
conservation IL=−IR. Hence, we can write the total current
as I= IRL− ILR, where I��� is the contribution of the electrons
flowing from lead � into lead ��. In the cotunneling regime,
where E�����E�+U for �= ↑ ,↓ and �=L,R, the dot is,
up to exponentially small corrections, always occupied by a
single electron and, hence, is characterized by the occupation
probabilities p�= �n�
 with p↑+ p↓=1. The currents I��� can
then be written as23,31

I��� = e�
���

W������p�, �21�

where W������ is the rate for an electron tunneling from lead
� into lead �� when the dot was initially in the state � and is
in the state �� afterward. By convention, a process with ��
=� is called elastic cotunneling, while the case with ��= �̄ is
referred to as inelastic cotunneling.22

The contribution due to the cotunneling without participa-
tion of phonons to the rates W������ will be designated by
W

������

�0� . In addition, the phonon-assisted cotunneling process

contributes with rates W
������

�1� to the total rates W������

=W
������

�0� +W
������

�1� . In Secs. IV A and IV B, we discuss these
two contributions in detail. Note that we thereby restrict our-
selves to temperatures above the Kondo temperature, where
correlations between the dot spin and the collective spin of
the electrons in the lead do not play a role. We shall come
back to a brief discussion of the low-temperature behavior in
Sec. VIII.

A. Elastic and inelastic cotunneling

Evaluating the current expression �20� for the direct and
exchange terms �11�, we arrive at the elastic cotunneling rate

W�����
�0� =

�

2	
� d��������������

�0�,el���f�����1 − f������

�22�

with ��
�0�,el���= �E�̄+U−��−2+ �E�−��−2. Similarly, the in-

elastic cotunneling rate is given by

COTUNNELING CURRENT THROUGH QUANTUM DOTS… PHYSICAL REVIEW B 73, 045328 �2006�

045328-3



W���̄��
�0� =

�

2	
� d������ − ��̄���������

�0�,inel���

�f�����1 − f���� − ��̄��� , �23�

where ��
�0�,inel���= ��E�̄+U−��−1− �E�̄−��−1�2. In the inelas-

tic case, the energy ��̄� is deposited in or extracted from the
dot. Correspondingly, the initial energy � of the tunneling
electron coming from lead � differs by the same amount
from the final energy of the electron in lead ��. Inelastic
cotunneling is, thus, strongly suppressed for temperatures
and external voltages much smaller than ��̄�.

To a very good approximation, the energy dependence of
the coupling rates ����� can be ignored in the energy range
contributing to the integrals in the rate expressions �22� and
�23�. Furthermore, near one of the resonances, e.g., for E�

����E�̄+U, we can expand the dominant energy denomi-
nator of ��

�0�,el��� and ��
�0�,inel���, respectively, and carry out

the energy integration.37 This yields the approximate rates

W������
�0� 	

������

2	

1

�������
2 �1 +

1

4�������
2 �4	2�kBT�2 + �����

+ �����2����− ���� − ����� , �24�

where we have introduced the function

���� =
�

1 − exp�− �/kBT�
�25�

as well as the energies

������� =
E�� − ��� + E� − ��

2
�26�

and ����=���−��. Here, terms of the order
O��max�kBT , �����+���� � � /��������4� have been neglected
in the curly brackets.

Phonon-assisted elastic and inelastic cotunneling

We now come to the current contributions due to the pres-
ence of the spin-phonon coupling. Using Hdir,ex

ph from Eq.
�15�, we obtain after a straightforward but lengthy calcula-
tion, the rates for the phonon-assisted elastic cotunneling

W�����
�1� =

�

8	2 � d��������� � d�������el
�1���,���

�N�� − ���f�����1 − f������� . �27�

The corresponding energy denominator

�el
�1���,��� = �

�
� 1

�E� + U − ���E�̄ + U − ���

+
1

�E� − ���E�̄ − ����2

�28�

now depends on both the energy before and after the phonon
emission and/or absorption. Note that as explained above, we

use the term “elastic” only to indicate that the dot state be-
fore and after the cotunneling process is identical. From the
point of view of the electron system, the phonon-mediated
cotunneling process is, of course, no longer elastic. Rather,
the electrons either emit the energy �−�� due to the stimu-
lated and spontaneous emission of phonons or absorb the
energy ��−� from the phonon system. Both processes are
captured by the function

N���� = D���/ � ��nB���� + 1� + D�− ��/ � �nB�− ��� .

�29�

Similarly, we obtain the “inelastic” phonon-mediated co-
tunneling rates

W���̄��
�1� =

�

8	2 � d��������� � d�������inel
�1� ��,���

�N�� − �� − ��̄��f�����1 − f������� �30�

with

�inel
�1� ��,��� = �

�
� 1

�E� + U − ���E� + U − ���

−
1

�E� − ���E� − ���
�2

. �31�

For the further evaluation of the rate formulas, we again
assume energy-independent dot-lead couplings ��. Since the
energy denominators in Eqs. �28� and �31� are already of
fourth order in ���, we can neglect their energy dependence
around �=��=� to get a result valid to the same order as in
Eq. �24�. Carrying out one of the energy integrals, we obtain
the approximate result for both rates

W������
�1� 	

������

8	2 
 1

��̄��
2

����
2 +

1

����
2

��̄��
2 �

�� d��N������− ���� − ���� − ��� �32�

with the energy differences ���=E�−��. We now consider a
spectral density of the spin-phonon coupling of the form

D�� � 0� = � � �c
1−s�s �33�

with the dimensionless spin-phonon coupling parameter �,
the cutoff frequency �c, and an exponent s, which depends
on the nature of the coupling. In order for our master-
equation approach to be valid, we have to restrict ourselves
to exponents s�1. The exponent s=1 corresponds to the
so-called Ohmic case, and below, we will find s=3 or s=5
for a spin-orbit-mediated coupling to phonons. Inserting the
spectral density �33� into Eq. �32�, we can write the rates as

W������
�1� 	 ����c�1−s

������

8	2 
 1

��̄��
2

����
2 +

1

����
2

��̄��
2 �

� �kBT�1+sJs�− ����� + �����/kBT�

���− ���� − ����� �34�

with
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Js�a� =
1 − e−a

a
�

0

�

dx sgn�ln x�
�ln x�s

x − 1

ln x + a

x − e−a . �35�

In the interesting cases of s=1, 3, and 5, we find for the
integral

J1�a� =
1

6
�4	2 + a2� , �36�

J3�a� =
1

60
�4	2 + a2��8	2 + 3a2� , �37�

J5�a� =
1

42
�2	2 + a2��4	2 + a2��8	2 + a2� . �38�

In the general case, one can readily show that Js�a� is an
even function, i.e., Js�a�=Js�−a� for all s and a.

V. MASTER EQUATION

For the evaluation of the current expressions given in Sec.
IV, we still need the occupation probabilities p�. Their dy-
namics is governed by the master equation32

ṗ� = − W�̄�p� + W��̄p�̄ �39�

with the total rates W�̄�=W�̄�
cot +W�̄�

flip. Here, W�̄�
cot

=����W���̄�� is the spin-flip rate due to inelastic cotunneling,
which, in contrast to the current formula �21�, also contains
processes involving a single lead only. Furthermore, spin-flip
processes due to the spin-phonon coupling �5� have to be
taken into account in the master equation �39�. These pro-
cesses lead to the additional rate

W�̄�
flip =

2

�
N����̄� . �40�

In the stationary limit, the solution of the master equation is
given by p�= �1+W�̄� /W��̄�−1, where we have used the nor-
malization condition p↑+ p↓=1. Note that since elastic cotun-
neling leaves the dot state invariant, besides the spin-flip rate
W�̄�

flip, only the rates for the inelastic cotunneling processes
appear in the master equation.

Figure 2 shows the ratio p↑ / p↓ of the populations as a
function of the bias voltage V in the presence of an Ohmic
environment for different coupling strengths �. Near thermal
equilibrium, i.e., for voltages far below the onset of inelastic
cotunneling, i.e., eV� ��↓↑ � ,kBT, the total rates and thus the
populations fulfill the detailed balance relation p�̄ / p�

=W�̄� /W��̄=exp�−��̄� /kBT�. For higher bias voltages, in-
elastic cotunneling leads to a population of the excited dot
state, i.e., a heating of the dot. This heating effect becomes
less pronounced in the presence of the spin-phonon coupling,
where the relaxation due to the rate �40� equilibrates the
system. For a quantitative estimate of the heating effect, we
consider the deviation h of the population ratio from its equi-
librium value

h = � p↑
p↓

− exp��↓↑/kBT�� . �41�

Using the detailed balance relation for the rates W�̄�
flip, we

then find

h =
�exp��↓↑/kBT� − W↑↓

cot/W↓↑
cot�

1 + W↑↓
flip/W↓↑

cot . �42�

Thus, even for a nonzero difference in the numerator, the
heating effect becomes suppressed for W↑↓

flip
W↓↑
cot. In Fig. 2,

we indicate the onset voltages of the heating regime, defined
by the relation W↑↓

flip=W↓↑
cot by vertical dashed lines.

Finally, we remark that heating effects are suppressed
when the dot-lead coupling is asymmetric,23 say �L
�R. In
this case, the excitation of the dot, which is dominated by
processes involving the tunneling from one lead to the other
and which, hence, is proportional to the product �L�R, is
negligible compared to the relaxing effects resulting from the
coupling to the left lead, which are proportional to �L

2. Such
a situation may occur, e.g., when measuring the current
through an atom or molecule on a surface which is contacted
on one side by a STM tip10 �cf. also discussion at the end of
Sec. VII�.

VI. DIFFERENTIAL CONDUCTANCE

Having all the information for the evaluation of the cur-
rent �21� at hand, we can now turn to the experimentally
relevant quantity, the differential conductance g=dI /dV. As
a function of the bias voltage, this quantity shows a charac-
teristic step at the onset of inelastic cotunneling around
��↓↑ � /e, when another transport channel becomes accessible.
It is known that the width of this step is proportional to the
temperature T, while the broadening of the dot states due to
their coupling to the leads does not play a role. Compared to

FIG. 2. Ratio p↑ / p↓ of the populations as a function of the bias
voltage V in the presence of an Ohmic bath with different coupling
strengths �. The parameters are �↓↑=0.1E0, T=0.01E0, and ��L

= ��R=0.02E0. Here, E0= �E1−�� is the energy difference between
the energy E1=E↑=E↓ of the degenerate dot level and the Fermi
energy �=�L=�R in the leads in the absence of both the magnetic
field and the bias voltage. The dashed vertical lines indicate the
onset of the heating regime defined by W↑↓

flip=W↓↑
cot.
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a measurement in the sequential tunneling regime, an experi-
ment can thus achieve a much higher precision for the deter-
mination of the splitting �↓↑ �see Refs. 10 and 12�. An open
question, however, is how spin-flip processes taking place
during the cotunneling process affect such a measurement.

Let us first consider the zero-temperature case without
heating where the dot is always in its ground state which we
assume to be the spin-up state. Evaluating the current using
the approximate cotunneling rates �24� and �34�, we then find
for the contribution due to elastic cotunneling

gel =
e2 � �L�R

2	�L↑R↑
2 �1 +

1

4�L↑R↑
2 �4	2�kBT�2 + 3�eV�2�

+
����c�1−s

4	

 �L↑R↑

2

�↓L
2 �↑R

2 +
�L↑R↑

2

�↑L
2 �↓R

2 �
� �kBT�s�kBTJs�eV/kBT� + eVJs��eV/kBT��� , �43�

where Js��a�=dJs�a� /da. In order to obtain a compact expres-
sion for the inelastic cotunneling current, we furthermore
assume positive voltages V�0 and not too high temperatures
kBT��↓↑. Then only the tunneling from the left to the right
contact is relevant, i.e., the total current I is to a very good
approximation given by IRL. Furthermore, away from the
step around V	�↓↑ /e, we can use that up to exponentially
small corrections ����	0 for ��kBT and ����	� for �

kBT. Thus, for eV��↓↑, the inelastic cotunneling current
vanishes and for voltages eV
�↓↑, it contributes with

ginel =
e2 � �L�R

2	�L↓R↑
2 �1 +

1

4�L↓R↑
2 �4	2�kBT�2 + 3�eV − �↓↑�2�

+
����c�1−s

4	

 �L↓R↑

2

�↑L
2 �↑R

2 +
�L↓R↑

2

�↓L
2 �↓R

2 ��kBT�s�kBTJs��eV

− �↓↑�/kBT�� + �eV − �↓↑�Js���eV − �↓↑�/kBT�� �44�

to the differential conductance. Particularly interesting is the
step in between, which is centered around V=�↓↑ /e. In order
to obtain an estimate for its width �Vstep, we determine the
onset Von of inelastic cotunneling by using a linear approxi-
mation of the differential conductance around the center of
the step, g�V�	g��↓↑ /e�+g���↓↑ /e��V−�↓↑ /e� and inter-
secting with the purely elastic cotunneling curve �43� �see
Fig. 3�: gel�Von�=g��↓↑ /e�+g���↓↑ /e��Von−�↓↑ /e�. Approxi-
mately, we can determine the solution of this nonlinear equa-
tion by employing a linear approximation for the elastic co-
tunneling curve around the center of the step. Doing so, we
obtain Von=�↓↑ /e−ginel��↓↑ /e� /ginel� ��↓↑ /e�. Defining the
width as twice the difference Von−�↓↑ /e gives

�Vstep =
6kBT

e
�1 − 3
 kBT

�L↓R↑
�2�1 + �

1

6	

 �L↓R↑

4

�↑L
2 �↑R

2

+
�L↓R↑

4

�↓L
2 �↓R

2 ��3Js��0� + 2Js��0��
 kBT

��c
�s−1�� .

�45�

As mentioned above, the width is essentially proportional to

the temperature. We also find that the spin-flip processes
only modify the higher-order corrections in kBT /�L↓R↑.
Here, the spin-flip coupling contribution is proportional to �
and to a positive prefactor of the order of one and has a
temperature dependence which depends on the ratio of ther-
mal and cutoff energy. In fact, we find that with increasing
coupling constant � the width of the inelastic cotunneling
step becomes reduced.

We now turn to the discussion of the heating effects by
taking into account the stationary probability distribution ac-
cording to the master equation �39�. Figure 4 shows the dif-
ferential conductance as a function of the voltage in the pres-
ence of an Ohmic spin-flip coupling of strength �. In the
upper panel, the case of a symmetric dot-lead coupling is
depicted. As discussed above, this is the situation where
heating effects are most relevant, and for �=0, we indeed
observe a noticeable deviation from the steplike behavior for
voltages V��↓↑ /e. With increasing spin-flip coupling
strength �, however, the dot is driven to equilibrium and the
overshooting of the differential conductance curve disap-
pears. As mentioned at the end of Sec. V, heating effects are
suppressed when the dot-lead coupling is strongly asymmet-
ric. Such a situation is shown in panel �b� of Fig. 4. In this
case, the influence of the spin-phonon coupling is much
weaker. For larger voltages, the effect of phonon-assisted
inelastic cotunneling becomes visible, as can be inferred
from the inset of panel �b�.

In Fig. 5, the step width defined by the onset of inelastic
cotunneling is shown as a function of the spin-flip coupling
strength � for different ratios �L/�R. For equal coupling to
both leads, the main effect again comes from the suppression
of the heating with increasing �. The inset of Fig. 5 depicts
the � dependence for larger �. As described by the analytical
expression �45�, the width drops linearly. Due to the finite
temperature, there is a slight offset compared to the full so-
lution, however.

VII. COMPARISON WITH EXPERIMENTS

We now apply the general results to the specific experi-
mental situation of Ref. 12 and analyze the relevance of spin-

FIG. 3. Sketch of the procedure employed for the determination
of the onset Von and of the width �Vstep of the inelastic-cotunneling
step. The dashed line shows the extrapolation of the differential
conductance curve below the step. The dash-dotted line corresponds
to the linear approximation of the step shape.

JÖRG LEHMANN AND DANIEL LOSS PHYSICAL REVIEW B 73, 045328 �2006�

045328-6



phonon coupling effects in this case. In order to do so, we
model the 2D quantum dot by an isotropic parabolic lateral
confinement characterized by the frequency �0 in the ab-
sence of a magnetic field. In a magnetic field Bz perpendicu-
lar to the two-dimensional electron gas �2DEG�, the relevant
frequencies then are �1,2=���c /2 with the cyclotron fre-
quency �c= �e �Bz /m*c, where m* is the effective electron

mass and �=��0
2+�c

2 /4 corresponding to the effective lat-
eral confinement length l=��m* /� �for more details, we re-
fer the reader to Ref. 18�. The parameters for the GaAs quan-
tum dot of Ref. 12 are g=−0.16, m*=0.067me, Bz=11 T, and
we assume ��0=1.1 meV.

We consider the influence of both Rashba33 and
Dresselhaus34 spin-orbit coupling, which are characterized
by spin-orbit lengths �R=�D=8 �m �see the appendix�. For
a piezoelectric coupling to longitudinal and transversal pho-
non modes in the limit ��c� min�� ,d�, where d	5 nm is
the vertical confinement length, the spectral density �33� of
the spin-phonon coupling is cubic, i.e., s=sPE=3. The pref-
actors for the longitudinal and transverse contributions are
given by

�PE,L =
QD

2 + QR
2

70	 � �cL
3 
 eh14

�
�2

�46�

�PE,T =
QD

2 + QR
2

105	 � �cT
3 
 eh14

�
�2

�47�

with the speed of sound cL=4.73�105 cm/s and cT=3.35
�105 cm/s of the longitudinal and transversal acoustic pho-
non modes, respectively. The density of GaAs is �
=5.319 g/cm3 and the electron-phonon coupling parameters
are eh14=1.2�107 eV/cm and �=13.2. The spin-orbit cou-
pling strength enters via the dimensionless coupling
constants17,18

QR,D =
l

�R,D
�−

��1

��1 � �↓↑
+

��2

��2 ± �↓↑
� . �48�

The cutoff frequencies for the piezoelectric coupling are
given by �c,PE,L=cL/ l and �c,PE,T=cT/ l. Note that the lead-
ing contribution to QR,D is linear in Bz, and consequently the
rate �40� is proportional to Bz

5 for low magnetic fields Bz.
In the case of a deformation potential coupling to acoustic

phonons, the spectral density is proportional to �5, i.e., s
=sDA=5, and the prefactor is given by

�DA =
�0

2�QD
2 + QR

2 �
24	 � �l2cL

3 �49�

with �0=6.7 eV. The cutoff is at the frequency �c,DA=cL/ l.
Taking into account the magnetic-field dependence of the
prefactor �DA, the leading contribution to the rate �40� is
proportional to Bz

7 at low magnetic fields. Thus, the spin-
phonon coupling due to the deformation potential electron-
phonon interaction is only relevant for rather high magnetic
fields. Furthermore, we take a temperature T=15 mK and
dot-lead coupling rates ��L= ��R=17.5 �eV from Ref. 12.
Finally, we assume a value �E1−� � =0.4 meV, where E1 and
� are the energy of the degenerate dot level and the Fermi
energy, respectively, in the absence of the bias voltage and
the magnetic field. An external bias is assumed to drop sym-
metrically across both contacts.

FIG. 5. Step width �Vstep=2ginel� ��↓↑ /e� /ginel��↓↑ /e� as a func-
tion of the coupling strength � to an Ohmic bath for different ratios
of the tunneling rates �L,R, where the product �2�L�R= �0.02E0�2 is
kept constant. The other parameters are as defined in Fig. 4. The
horizontal dashed line shows the width according to Eq. �45� for
�=0. In the inset, the behavior for larger � is shown together with
the step width without heating according to Eq. �45� �dashed�.

FIG. 4. Cotunneling conductance g as a function of the bias
voltage V in the presence of an Ohmic bath with different coupling
strengths �. The parameters are �↓↑=0.1E0, T=0.01E0, and �a�
��L= ��R=0.02E0, �b� ��L=0.2E0 and ��L=0.002E0 with E0 as
defined in the caption of Fig. 2. In the inset of panel �b�, the relative
difference between the differential conductance g in the presence of
the spin-phonon coupling and the differential conductance g0 with-
out spin-phonon coupling is depicted.
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Figure 6 depicts the differential conductance as a function
of the bias voltage for the given set of parameters. Compar-
ing the result of the calculation including the spin-orbit in-
duced spin-phonon coupling �solid line� with the one without
this coupling �crosses�, we can conclude that these effects
play a negligible role in the experiment by Kogan et al.
However, as shown in the inset of Fig. 6, by reducing the
dot-lead coupling by a bit more than one order of magnitude,
one reaches a regime where the equilibration of the dot due
to the spin-phonon coupling becomes relevant. As discussed
in Sec. V, the transition to this regime is determined by the
relation W↑↓

flip=W↓↑
cot, which for eV��↓↑ yields the tunneling

rate

�on,heat = ��L↓R↑�� 2	W↑↓
flip

���eV − �↓↑�
. �50�

This relation can be employed for the determination of the
spin-flip rate W↑↓

flip by means of a cotunneling transport mea-
surement. In order to do so, one has to determine the critical
tunneling rate �on,heat marking the transition between the re-
gime of the dot being in equilibrium and the one where heat-
ing effects are relevant. As an indicator for this transition,
one can measure the ratio of the differential conductance
above and below the inelastic cotunneling step. Determining
this quantity as a function of the dot-lead coupling strength
yields �on,heat �cf. inset of Fig. 6� and via Eq. �50� the spin-
flip rate W↑↓

flip.
Let us finally discuss whether such a measurement

scheme would also apply to transport experiments through
single atoms or molecules on a surface, e.g., the ones re-
ported in Ref. 10. There, the tunnel-coupling to the two leads
is strongly asymmetric, one contact being via the insulating
surface and the other via a STM tip. As has been discussed at
the end of Sec. V, heating effects are suppressed in this case.
Indeed, the form of the differential conductance-voltage

characteristics seen in Ref. 10 can—above the Kondo
temperature—be very well described by an equilibrium prob-
ability distribution of the spin state of the atom. However, for
a not too small tunnel-coupling across the insulating layer, it
should be possible to enter the heating regime by adjusting
the atom-tip coupling strength appropriately. If this coupling
strength is not too far away from the critical value given by
Eq. �50�, it should be possible to measure the intrinsic spin-
relaxation rate due to phonons by using a similar scheme as
the one proposed above, although only the atom-STM cou-
pling strength can be controlled easily. On the other hand, it
is in principle feasible to control the molecule-surface cou-
pling strength by modifying the chemical binding of the mol-
ecule to the surface, as was shown in Ref. 11, so the pro-
posed scheme could be applied to such a situation, as well.

VIII. SCALING BEHAVIOR

So far, we have restricted the discussion to the case of
temperatures well above the so-called Kondo temperature
TK. For lower temperatures, correlations between the dot
spin and a collective spin degree of freedom of the electrons
in the leads become important and a perturbative treatment
of the problem breaks down. This leads to the so-called
Kondo effect, which has been analyzed in great detail in the
literature for the Anderson model.25 We now briefly discuss
the effect of additional spin-flip processes due to the term HS
using the poor man’s scaling approach put forward by
Anderson.35 In order to keep the discussion as simple as
possible, we consider a simplified version of our effective
Hamiltonian �9�, which ignores the lead-dependence,
momentum-dependence, and spin-dependence of the cou-
pling constants as well as the direct interaction between the
lead states

H̄ = H0 − JSd · s + JS�XSd
x + YSd

y�

− J1�XSd
x + YSd

y�n�0� + J2�Xsx + Ysy� . �51�

Here, we have introduced the spin operators

s =
1

2 �
���kk����

c�k�
† ����c��k��� and �52�

Sd =
1

2 �
���

d�
†����d��, �53�

where � is the vector consisting of the three Pauli matrices.
The density of lead electrons at the position of the dot is
given by

n�0� = �
���kk��

c�k�
† c��k��. �54�

The phonon operators are defined as X=�qMq,x�aq+a−q
† � and

Y =�qMq,y�aq+a−q
† �.

During the scaling procedure, contributions due to excita-
tions of electrons and holes far away from the Fermi energy
�=0, at a cutoff energy ±D, are successively integrated out.
If the resulting effective interaction is again of the form �51�,
we can absorb it in the coupling constants. Note that in gen-
eral, the coupling constants thereby acquire a momentum

FIG. 6. Differential conductance g as a function of the bias
voltage V for the parameters given in the main text. The crosses
show the result in the absence of the spin-phonon coupling. In the
inset, the ratio of the differential conductance g1 at V1=1.5�↓↑ /e
�see arrow in the main panel� and the differential conductance g0 at
zero voltage for different values of the dot-lead coupling rates �
=�L=�R. The dashed vertical line designates the value given by
Eq. �50� and the arrow the dot-lead coupling rate in the experiment
�see Ref. 12�.
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dependence. However, as long as the cutoff energy is still
large enough, this dependence can be ignored for the relevant
states near the Fermi energy. Doing so, we obtain the usual
scaling equations for the exchange constant J

dJ

dD
= − 2�

J2

D
, �55�

which, in particular, is not influenced by the other terms in
the Hamiltonian �51�. The renormalization of the electron-
phonon coupling constant is given by

dJS

dD
= �JJ2 �

�k

���k��D
1

D + ���k�
= �4 ln 2��2JJ2, �56�

while the coupling constants J1 and J2 remain invariant.
Here, � is the density of states in the leads. In the antiferro-
magnetic case, where J�0 scales to � as D→0, the same
holds true for the spin-phonon coupling constant JS. We con-
clude that far away from the active region around the Fermi
energy, neither the pure spin-flip term proportional to JS nor
the phonon-assisted tunneling terms, i.e., the last two terms
in the Hamiltonian �51�, modify the scaling behavior of the
Kondo-type coupling of the dot spin to the leads.

IX. CONCLUSIONS

We have theoretically studied the influence of a spin-
phonon coupling on the cotunneling through a nanoscale sys-
tem. By means of a Schrieffer-Wolff transformation, we have
derived an explicit Hamiltonian in which the relevant cotun-
neling processes appear to lowest order. This allowed us to
evaluate the rates for elastic and inelastic cotunneling in the
presence of spin-flip processes. We found that the width of
the inelastic cotunneling step is only weakly influenced by
the spin-flip processes. More important are the relaxation
effects of the spin-phonon coupling which counteract the
heating of the quantum dot due to inelastic cotunneling. Con-
sidering a realistic model for a recent experiment,12 we pro-
pose a new way of determining the spin relaxation rate due
to spin-phonon coupling in a cotunneling experiment.
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APPENDIX: DERIVATION OF SPIN-PHONON COUPLING
HAMILTONIAN

In this appendix, we derive the spin-phonon coupling �5�
starting from a Hamiltonian describing an electron in a two-
dimensional electron gas with an external magnetic field Bz
in the z direction

H0 =
P2

2m* + U�r� +
1

2
g�BBz�z, �A1�

where P=p+ ��e � /c�A�r� is the kinetic momentum, U�r� is
the confinement potential, and A�r�= �Bz /2��−y ,x ,0� is the

vector potential. For x ,y ,z pointing along the main crystal-
lographic axes of the GaAs crystal, and the electron gas lying
in the �001� plane, the spin-orbit interaction assumes the
form

HSO = HD + HR �A2�

with the Dresselhaus34 and Rashba33 contributions

HD = �D�− �xPx + �yPy�, HR = �R��xPy − �yPx� .

�A3�

The strength of the spin-orbit coupling is conveniently mea-
sured in terms of the spin-orbit lengths �D= � /m*�D and
�R= � /m*�R. Finally, the orbital degrees of freedom of the
electron are coupled to the phonon system via the electron-
phonon interaction He−ph=�qMq�r��aq+a−q

† �, where a
branch index has been suppressed.

Applying to the Hamiltonian H=H0+HSO+He−ph, a
Schrieffer-Wolff transformation which eliminates HSO to
lowest order and projecting on the orbital ground state, we
obtain to lowest order the spin-phonon coupling

HS = �0��S,He−ph��0
 , �A4�

where the generator S of the canonical transformation has to
fulfill �S ,H0�=−HSO. From Eqs. �A1� and �A3�, we can infer
that the generator can be written in the form S= i�Ax�x

+Ay�y� with Ax and Ay being Hermitian operators which act
on the orbital degrees of freedom only. Hence, we obtain

HS = i�0��Ax,He−ph��0
�x + i�0��Ay,He−ph��0
�y . �A5�

Letting Mq,i= �0 � ��i ,Mq�r�� �0
 for i=x ,y, we thus arrive at
the coupling Hamiltonian �5�.

For a quantum dot with parabolic lateral confinement �see
Sec. VII�, it is useful to choose coordinates rotated by 45�

around the z axis,17 i.e., we let x→ �x+y� /�2 and y→ �y
−x� /�2. In this new coordinate frame, the generator S of the
canonical transformation is defined in terms of

Ax =
�R

2�
��1

m*�y + px

��1 − �↓↑
+ �2

m*�y − px

��2 + �↓↑
�

+
�D

2�
��1

m*�y + px

��1 + �↓↑
+ �2

m*�y − px

��2 − �↓↑
� , �A6�

Ay =
�R

2�
��1

− m*�x + py

��1 − �↓↑
+ �2

− m*�x − py

��2 + �↓↑
�

+
�D

2�
��1

m*�x − py

��1 + �↓↑
+ �2

m*�x + py

��2 − �↓↑
� . �A7�

Note that this transformation diverges for magnetic-field
strengths with ��1,2±�↓↑=0. A detailed analysis of the re-
laxation rates in this case can be found in Ref. 18. On the
other hand, for ��↓↑ � � ��1,2, the leading contribution to the
relaxation rates comes from the terms linear in �↓↑�Bz �see
Ref. 17�.
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