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Non-retracing orbits in Andreev billiards
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The validity of the retracing approximation in the semiclassical quantization of Andreev billiards is inves-
tigated. The exact energy spectrum and the eigenstates of normal-conducting, ballistic quantum dots in contact
with a superconductor are calculated by solving the Bogoliubov-de Gennes equation and compared with the
semiclassical Bohr-Sommerfeld quantization for periodic orbits which result from Andreev reflections. We find
deviations that are due to the assumption of exact retracing electron-hole orbits rather than the semiclassical
approximation, as a concurrently performed Einstein-Brillouin-Keller quantization demonstrates. We identify
three different mechanisms producing non-retracing orbits which are directly identified through differences

between electron and hole wave functions.
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I. INTRODUCTION

The dynamics of hybrid systems consisting of a normal-
conducting (N) quantum dot and a superconducting (S) wave
guide have recently raised much experimental' and
theoretical*~!? interest. This is due to the unusual and some-
times counterintuitive properties of the interface of normal-
and superconducting regions. An electron moving inside the
N region will be coherently scattered into a hole upon con-
tact with the superconductor [see Fig. 1(a)].!* This phenom-
enon is commonly referred to as Andreev reflection.!# In the
frequently used and remarkably successful semiclassical
Bohr-Sommerfeld (BS) method">~!7 it is assumed that the
Andreev reflection is perfect, i.e., that the path of the back-
scattered hole will exactly trace that of the incoming electron
(0,=-v,) [see Fig. 1(b)]. The consequences of this assump-
tion are profound: all trajectories emanating from the SN
interface are strictly periodic. The classical dynamics of the
combined SN system become entirely regular, even and in
particular when the normal-conducting cavity would feature
hard chaos.'® Unlike chaotic or integrable systems, periodic
orbits are no longer isolated but form continuous manifolds
that dominate the classical phase space and, in turn, the den-
sity of states (DOS).!°?! The BS approach!>1¢22 to the DOS
of an Andreev billiard relies on three assumptions: exact re-
tracing of electron-hole trajectories (referred to as assump-
tion Al in the following), the absence of any (quasi-)periodic
orbits other than the ones caused by Andreev reflection (as-
sumption A2), and the applicability of semiclassical approxi-
mations (assumption A3), i.e., \p,<< VA, where A\, is the de
Broglie wavelength and A is the area of the N billiard.

The BS approximation has been found to be surprisingly
accurate,'>?? even in the presence of a magnetic field'® or a
soft wall potential.>”> However, some difficulties have
emerged: for example, the excitation gap in the DOS for
billiards with a chaotic N cavity cannot be properly ac-
counted for.?426 A direct inspection of the electron- and
hole-components of the wave functions?>>»?” revealed mark-
edly different patterns, clearly signaling a breakdown of the
retracing approximation.

In the present communication, we investigate the role of
non-retracing orbits in Andreev billiards. Non-retracing
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electron-hole orbits leave their mark on the Andreev wave
functions which we determine by solving the Bogoliubov-de
Gennes equation with the help of the modular recursive
Green'’s function method (MRGM).?82° We find that Andreev
states which correspond to non-retracing orbits break the
close correspondence between the electron and hole wave
function patterns. The analysis of the eigenstates allows us to
check the merits and limitations of the BS approximation
against the exact quantum mechanical approach. We identify
different sources for the breakdown and explore separately
each of the assumptions Al to A3 listed above.

This paper is organized as follows. In Sec. II the method
for solving the quantum mechanical eigenvalue problem as
well as the Bohr-Sommerfeld approach to Andreev billiards
is briefly reviewed. In Sec. III we identify different mecha-
nisms leading to non-retracing orbits in Andreev billiards.
The paper concludes with a short summary in Sec. IV.

II. MODEL SYSTEM

We consider as a model system a rectangular normal-
conducting cavity of width D, length L, and area A=LD,
which is attached to a half-infinite lead of width W [see Fig.
1(a)]. For technical reasons we focus on an N cavity that
features classically regular motion. Since within the frame-
work of perfect Andreev reflections combined SN-Andreev
systems become regular and, in fact, periodic irrespective of
the underlying regular or chaotic dynamics of the N cavity,
we expect many of our results to be valid for arbitrary N
cavities. As we consider only one superconducting lead, we
choose the gap parameter A to be real. The superconducting
coherence length (§) is assumed to be small compared to the
linear dimension of the rectangular cavity (~A). Under that
assumption we may use a step function model” at the SN
interface, A=|Ay|O(xys—x). This SN interface, which is lo-
cated at xyg=0, is assumed to be ideal, meaning that there is
no tunnel barrier and no mismatch between Fermi energies
and effective masses in the N and S regions. An exact treat-
ment of the Bogoliubov-de Gennes equation reveals that this
results in a probability for Andreev reflection close to unity
(up to corrections of the order A%/ E%) in the energy range we
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FIG. 1. (a) Andreev billiard with a rectangular normal-
conducting (N) region. The superconducting (S) lead is assumed to
be half-infinite (shaded area). The dashed and dotted lines depict an
“almost retracing” electron-hole orbit created by Andreev reflection
at the SN interface. For better visibility the starting point of the
orbit is marked by a dot. (b) Perfect Andreev reflection, i.e., 6,
=6, (c) Imperfect Andreev reflection, 6, # 6, k;:kg.

consider, 0<e&<A=0.02Eg.""!3 Furthermore, the phase co-
herence length of the scattering process is assumed to be
infinitely long, resulting in fully ballistic dynamics.

A. Quantum mechanical solution

We describe the S-N hybrid system by the Bogoliubov-de
Gennes (BdG) equation®®

(3 b))

X * =¢ . (1)
A" —-Hy/\v(x) v(x)
Hy=p*/ (2meg) +V(r)—Ep is the single-particle Hamiltonian.
The electron (hole) quasi-particle wave functions are denoted
by u (v); & is the excitation energy of the electron (hole)
above (below) the Fermi energy Ep. Throughout this publi-
cation we consider only bound Andreev states for which the
solutions of (1) in the superconducting region are exponen-
tially decaying. To identify the bound Andreev states, we use
a wave function matching technique'’ in combination with
the modular recursive Green’s function method?®? as out-
lined in Ref. 23.

Note that the above procedure is exact in the sense that it
does not rely on the usual Andreev appoximation, namely
A<Ep, and the assumption of approximately perpendicular
angles of incidence on the SN interface.'®!# This feature will
be important when we consider the effect of imperfect An-
dreev reflections on the quantum and semiclassical spectra.

B. Semiclassical analysis

The intuitive picture of ideal Andreev reflections [Fig.
1(b)] lends itself to a semiclassical description and, more
specifically, to a periodic-orbit quantization. An electron ap-
proaches the SN interface with wave number

ke=\2(Ep+e) (2)

and angle 6, relative to the interface normal. The hole leaves
the interface with wave number
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ky=\2(Ep-¢) 3)

and a corresponding angle 6,,. Since the component along the
interface is exactly conserved because of translational invari-
ance, k, ,=k, (or v, ,=-v,,), the components normal to the
interface will be, in general, different, k,, #k,, ,, leading to
imperfect retracing [Fig. 1(c)]. Only in the limit € —0 (or
€/Er—0) does perfect Andreev reflection k, =k, (or v,
=-v),,) ensue. The retracing approximation consists now of
the assumption A1 of perfect reflection, v, ,=-v,,,, for all &
in the interval 0<e<A. The validity and breakdown of this
assumption will be explored in the following.

Under assumption Al all trajectories emanating from the
SN interface are strictly periodic. For N cavities featuring
hard chaos, every trajectory will eventually hit the SN inter-
face, thus yielding a globally periodic system. For N cavities
with mixed or regular dynamics, certain regions of the phase
space may remain decoupled from the interface and thus may
feature both continuous manifolds of strictly periodic orbits
and islands with quasi-periodic motion. Neglecting the latter
contribution to the DOS implies assumption A2.

The BS quantization of the continuum of perfectly peri-
odic orbits visiting the SN interface yields for the action S of
periodic orbits created by pairs of electron-hole trajectories
(with wavenumbers k,, k),

S=1(k,—kp) =2mn + 2 arccos(e/A). (4)

The variable / stands for the length of an arbitrary path con-
necting one point at the SN interface with another. The quan-
tum number n=0,1,2,... accounts for the quantized differ-
ence in action between the electron and the hole part of the
periodic orbit. The second term on the right-hand side of Eq.
(4), arccos(e/A), is the Maslov index>' for one reflection at
the SN interface. Including this energy-dependent phase shift
at the point of Andreev reflection extends'” the accuracy of
the BS description to energy ranges 0 <<e<A. An even more
accurate semiclassical description of the Andreev reflection
process will be discussed in a subsequent publication.’?

The semiclassical BS approximation for the state counting
function can then be written as'®

o e}

Npg=M, P(l)dl, (5)
n=0 v [,(g)
where [,(e) is defined by
k
I(e)= |:I’l’7T+ arccos(i)]—l:. (6)
AJle

The geometry of the cavity enters via the classical path
length distribution P(l). The quantity P(I)dl is the classical
probability that an electron entering the N region at the SN
interface returns to the interface after a path length in the
interval [/,[+dI].

In the special case that the Andreev system becomes sepa-
rable, in particular for the geometry W=D [see the inset in
Fig. 2(a), and Fig. 4(a)], an alternative semiclassical approxi-
mation, the Einstein-Brillouin-Keller (EBK) quantization,
becomes applicable. This alternative is of particular interest
as it only relies on assumption A3, but does not involve the
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FIG. 2. (Color online) The quantum mechanical state counting
function Nqy(e) (solid red staircase) and its semiclassical BS esti-
mate Ngg(e) (dashed green line) for two quadratic cavities with
different lead widths as shown in the insets [kp=20.57/W, W
=L(a), 0.8L(b)]. The top left insets show the classical path length
distribution in units of the cavity length L. Solid triangles mark
pronounced cusps in N(g) and their classical origin. The quantum
number 1 [Eq. (4)] increases from 0 to 1 at the cusp marked /. Open
triangles mark the energy positions of states whose wave functions
are displayed in Fig. 3. Shading marks the regions where the BS
approximation begins to deviate from quantum results.

additional assumptions Al and A2, thus allowing to disen-
tangle the validity of the semiclassical approximation from
that of the retracing approximation. For an EBK quantization
of the cavity with W=D the separability yields two quanti-
zation conditions, the first one of which pertains to the mo-
tion in x direction [compare with Eq. (4)],

€
§ ki,’hdx: 2L(k§—kf;) = 2[n7r+ arccos(K)} (7)
CX
The second quantization condition in y direction reads

§ ky,dy =2k,D =2mr. (8)
C

y

The contour C, (C,) stands for a path along a horizontal
(vertical) line in the normal conducting billiard. Introducing
the short hand notation k7'(+¢)=k;, with

2
k, = \/Z(EF18)+<%T> , 9)

the quantization condition for x [Eq. (7)] reads

{nﬂ'+ arccos(i)] =Lk -k,). (10)

This is a transcendental equation in &(n,m), which allows us
to calculate individual energy levels in a cavity with W=D
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semiclassically. Note that in contrast to this EBK result, the
BS approach yields only an approximation to the smoothed
state counting function N(g). We therefore transform the
EBK results for &(n,m) into a state counting function

NEBK:fads'E ole’ —e(n,m)] (11)
0 m,n

and compare both semiclassical approximations with the
quantum results. EBK quantization of Andreev billiards can
be viewed as the analog to the adiabatic quantization of
smooth soft-wall chaotic billiards, for completely integrable
systems.>>3 As the EBK quantization invokes quasi-periodic
rather than periodic motion no assumption of retracing is
involved.

III. VALIDITY OF THE RETRACING APPROXIMATION

We will now explore the validity and breakdown of the
retracing approximation and the resulting BS quantization by
considering rectangular cavities (Fig. 4) with different ratios
D/W and D/L. With this parameter space at our disposal we
can probe and disentangle the validity of assumptions Al to
A3.

A. Quadratic N cavity

We consider first the quadratic cavity with D=L. Here
two cases arise: for D/W=1, the Andreev billiard becomes
separable while for D/W>1 the Andreev system is nonsepa-
rable even though the N cavity itself is separable. In the latter
case the SN boundary condition breaks the separability. The
location of the placement of the SN interface for D/W>1
provides an additional degree of freedom for our investiga-
tion to be exploited below. A comparison between the BS
approximation and the exact quantum mechanical calculation
for the counting function N(g) is shown in Fig. 2. Overall,
for D/W=1 (a) and D/W=1.25 (b), the BS approximation
performs quite well. In particular, it reproduces and intu-
itively explains the cusps seen in N(g). They are due to the
sharp peaks in the pathlength spectrum (see inset). The po-
sition of the cusps is predicted very accurately by the BS
approximation with an error well below the mean level spac-
ing of 0.09A.

Assuming the validity of the retracing approximation, the
semiclassical quantization condition [Eq. (6)] allows us to
map every excitation energy e onto a path length [, of a
periodic Andreev orbit. Consider, e.g., the energy at the cusp
marked I in Fig. 2(b) that corresponds to a path length [,
=2L, which is the length of the shortest classical Andreev-
reflected orbit of the system [see P(I) in the inset of Fig.
2(b)]: The electron leaves perpendicular to the SN interface,
is reflected at the opposing wall, and returns to the SN inter-
face. Quantum mechanical wave functions evaluated at the
cusp energy indeed feature a pronounced enhancement along
the orbit “bundle”> with length /=2L [see Fig. 3(b)]. Wave
functions with neighboring energy values below the cusp
feature additional nodes in transverse direction [see Fig.
3(a)]. Note that also eigenstates near the cusp marked II in
Figs. 3(c) and 3(d) correspond very nicely to the path
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FIG. 3. (Color online) (a)—(d) show the electron and hole wave
functions |u(x)|> and |v(x)|? at values of & indicated by open tri-
angles in Fig. 2(b): e/A is (a) 0.565, (b) 0.566, (c) 0.33, and (d)
0.355. The corresponding classical orbits are indicated on the right.

bundles of the expected length. Consistent with the good
agreement of the BS quantization with the quantum calcula-
tions, the electron and hole wave function densities agree
very well with each other. To the extent that bundles of clas-
sical trajectories cause the density enhancement in the wave
function, and bundles of hole- and particle-orbits agree with
each other, this is to be expected. Conversely, a hallmark of
the breakdown of retracing are distinct density ditributions in
the particle (u) and hole (v) wave functions, as has been
recently observed.”>?” Looking more closely, we find dis-
crepancies between the exact quantum mechanical calcula-
tions for Ngy(e) and its semiclassical counterpart Npg(e),
which are indicated by the shaded areas in Figs. 2(a) and
2(b). For the two systems considered in Fig. 2 we note that
the mismatch between the quantum and the semiclassical
results is located at rather well-defined values of the excita-
tion energy &. The mismatch tends to occur at values of &
just above a cusp.

Since pathlength and energy at fixed quantum number n
are inversely proportional to each other [Eq. (6)] the energies
above the cusp which is associated with quantum number n
[e.g., the one marked I in Fig. 2(b)] correspond to the longest
orbits associated with quantum number n+ 1. The deficien-
cies of the BS approximation are evidently caused by contri-
butions from long orbits. This observation is in line with the
well-known failure of the BS approximation to yield the en-
ergy gap for chaotic N billiards,?*-2¢ also caused by long
orbits. We also see a discrepancy above the cusp marked I/ in
Fig. 2(b) which turns out to be due to a different source of
diffractive scattering at the corner. We will discuss diffrac-
tive effects in more detail below when we explore different
mechanisms for the failure of the BS approximation by
changing the geometry.

B. Stretched separable billiard

We consider now the separable case W=D but stretch the
billiard to D/L <1 [see Fig. 4(a)] without, however, chang-
ing the Fermi energy E of the system. The distance [ trav-
elled between two encounters with the SN interface is, for
the shortest orbits, at least 2L. The effect of imperfect retrac-
ing, originating from the difference in angles between 6, and
), is a divergence between electron and hole trajectories
(ec), which is amplified by large L. We introduce as a mea-
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FIG. 4. Geometries with tunable boundaries. (a) Stretched N
cavities with L> D but with D equal to the width of the SN inter-
face W=D. (b) Stretched N cavities with D> L but constant length
L (lower boundary of S and N aligned). (c) As in (b) but SN inter-
face at arbitrary position on the entrance side.

sure for the imperfect retracing the lateral displacement Sy
on the interface between the hole and the particle trajectory
after one loop (see Fig. 5),

gsin 0
Ef

dy =I|sin(8,) — sin(6,)| =1 +0(g?), (12)
where 6= 0, ,|.-o. For the particular geometry considered
[Fig. 4(a)], &y increases linearly with both the trajectory
length [ and the excitation energy ¢. Note that the ratio €/Eg
is, in general, much smaller than one, i.e., e<A<Ep.

This classical scale for the mismatch between the particle
and hole orbits should be related to the quantum scale, i.e.,
the linear dimension of the wave packet estimated by the de
Broglie wavelength \;. We thus introduce r=|8y|/\ as the
order parameter for the error of retracing. For r<<1 the wave
packet cannot resolve the mismatch and the BS approxima-
tion should work well. Conversely, as r reaches the order of
unity, quantization based on the existence of a continuum of
periodic orbits should fail.

To probe the breakdown of the retracing approximation
quantitatively, we compare the semiclassical with the quan-
tum density of states (DOS), which are obtained from the
state counting function N(g) as

INgs.om(€) , (13)

g)=
PBS,QM( ) e

since the DOS 1is more sensitive to errors than the
(smoothed) spectral staircase. Results for two cavities with
different values of L are shown in Figs. 6(a) and 6(b). This
example illustrates that the degree of agreement between
pom and pgg is indeed controlled by r. The following trends
can be observed: (i) Due to the comparatively shorter length
[ of orbits in (a), the overall agreement there is better in
(a) than in (b). (i) The agreement in (b) deteriorates for

FIG. 5. Imperfect Andreev reflection in the fundamental and
extended zone scheme. The returning hole hits the SN interface a
distance dy apart from the starting point of the particle.
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FIG. 6. (Color online) The DOS calculated quantum mechani-
cally (red solid curve) and by the BS approximation (green dashed
curve) for two different geometries with ratios of (a) L/D=1 and
(b) L/D=6 (see insets) in units of the Weyl approximation of the
DOS per unit area, py=mey/ (h*m). (c) Error of the semiclassical
prediction dp [Eq. (15)] as a function of an energy-averaged 7 [Eq.
(14)] for 300 different ratios of L/De [1,20]. The solid blue line
shows a smoothed average (30 adjacent points) of the recorded
data.

larger values of &/A, since the mismatch in retracing in-
creases with &.

As a measure for the average mismatch between pgy and
pgs in an Andreev billiard of the given geometry we use the
quantity &y, which is 8y averaged over all € and all angles,

o 1 /2 A LA
Sy=——o dOcos 0| dedy=—-, (14)
mAJ o 0 TER

since for this particular geometry /=2L/cos 6. The error in
the DOS is quantified in terms of the root mean square (rms)
deviation dp between pgg and po,

A
op = \/Kf de|poum — pes|*- (15)
0

As expected, as long as 7=9y/A\g<<1, the retracing approxi-
mation is sufficiently accurate to reproduce the DOS on the
scale of the mean level spacing [see Fig. 6(c)]. Note that
resolution of individual levels is beyond the scope of the BS
approximation. As discussed below, an EBK quantization is
needed for an accurate quantization of individual levels. As 7
approaches unity the oscillations in the quantum DOS cannot
be resolved any longer. The error dp(Jy) appears to saturate,
in agreement with the observation that in this regime the
main peaks in Fig. 6(b) [corresponding to the main cusps in
N(e)] remain well described by the retracing approximation.
Identifying the latter with the shortest Andreev-reflected or-
bits of length ~2L allows a simple explanation as to why
even a drastic elongation of the cavity leaves these cusps
well described by the retracing approximation: orbits of
length ~2L correspond to strictly horizontally injected tra-
jectories (with #=0). They do not accumulate any lateral
displacement dy irrespective of the length of the orbit and e.
While the average value Sy is increasing with growing cavity
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FIG. 7. (Color online) Comparison of the exact quantum me-
chanical state counting function Nqy (red staircase) with the semi-
classical BS (green dashed line) and EBK (blue squares) approxi-
mations for a highly elongated cavity (L/D=10), as shown in the
lower inset. Quantum mechanical and EBK solutions are nearly
indistinguishable. The upper inset shows a magnification. The en-
ergy for which 6y=DMAp is marked.

elongation (due to orbits with ##0), the horizontal orbits
limit the increase dp(Jy), leading to the observed saturation
in Fig. 6(c) for 8y > Ap.

Additional evidence that the discrepancy between the
quantum DOS and the BS spectrum is due to the retracing
assumption (A1) and not due to the failure of semiclassics
itself (A3) can be gained from an EBK quantization. Note
that the Andreev system [Fig. 4(a)] is separable. Moreover,
regions in phase space that will not make contact with the
SN interface are in this geometry of measure zero, i.e., as-
sumption A2 is valid. In sharp contrast to the discrepancy
between Ny and Ngg, we observe that Ngy and Nggk agree
almost perfectly in the whole energy interval 0<g <A (see
Fig. 7) even for very elongated cavities where most orbits are
non-retracing (J8y > \p). The criterion dy =~ A\ is found to be
a good estimate where the BS quantization deviates from
both the EBK quantization and the exact quantum spectrum.
The case of the elongated N billiard clearly demonstrates that
the failure of the BS quantization in this case is due to the
retracing assumption (A1), but not due to the failure of semi-
classics (A3) itself.

C. Stretched nonseparable billiard

We focus now on billiards stretched in the direction of the
SN interface with D/W>1 and D/L>1 [Figs. 4(b) and
4(c)]. For D/W>1 the Andreev billiard becomes nonsepa-
rable and an EBK quantization is no longer rigorously justi-
fied. However, as we will show below, the predictions by the
BS quantization can still be compared with an approximate
EBK quantization. As the wave functions (Fig. 8) clearly
indicate, the retracing approximation breaks down with large
discrepancies between the particle (Ju|*) and hole ([v]?) den-
sities occurring. For this system, one obvious culprit is as-
sumption A2. An extended region of classical phase space
(Fig. 9) remains decoupled from the SN interface. Conse-
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FIG. 8. (Color online) Selected Andreev eigenstates of nonsepa-
rable Andreev billiards stretched parallel to the SN interface dis-
playing a large discrepancy between electron and hole wave func-
tion patterns. (a) L/D=10, £=0.760A; (b) L/D=10, £=0.766A,
kp=21.5m/W; and (c) L/D=2, £=0.040A, kp=20.57/W,

quently, the quantum DOS is associated, in part, with decou-
pled regions which are not represented at all by the BS ap-
proximation. It has previously been pointed out for other
geometries (whispering gallery trajectories in circular bil-
liards) that Andreev billiards indeed feature quantum states
that are not associated with periodic electron-hole orbits.!>

A more detailed inspection reveals that a certain class of
wave functions has the following features: (1) The probabil-
ity density at the SN interface is typically low—
corresponding to decoupling from the superconductor. This
suggests that the SN interface effectively acts like a hard-
wall boundary. (2) Integrating the probability density in the
electron- and hole-part of the N region typically shows a
strong asymmetry. For the case depicted in Fig. 8(c) we cal-
culate a probability of 98.3% for the hole component and
only 1.3% for the particle component. The coupling with the
superconductor is very weak, resulting in a probability of
0.4% of finding the particle in the superconducting lead.
These observations suggest that the particles in such non-
retracing states are quasibound in either the electron- or the
hole-space with only infrequent and short excursions to their
respective mirror space. As a consequence we may employ
again an EBK quantization scheme to estimate the corre-
sponding energy level of the Andreev state, however now in
the space of the quasi-bound particle or hole. Exploiting the
assumption of weak coupling to the SN interface, we replace
the SN interface by a hard-wall (box) boundary. Applying
this approach, e.g., to the state depicted in Fig. 8(a), the EBK
quantization
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FIG. 9. (Color online) (a) Poincaré surface of section of a
stretched nonseparable Andreev billiard, taken at the right vertical
side, opposing the SN interface: W/ D=5, W=L. The light gray area
marks regions of classical phase space coupled directly to the en-
trance lead, with one single reflection at the right wall. Dark red
areas show regions of classical phase space decoupled from the
superconducting lead. Classical trajectories corresponding to se-
lected areas of phase space are marked by crosses in (a) and shown
in (b)—(d).

1 nm\> 1{mm\?
Enm:_ — |t —— (16)
’ L 2\ D

implies for the density of the “isolated” electron state n=6
maxima in the x direction and m=205 maxima in the y di-
rection. Inserting these quantum numbers yields an excita-
tion energy of &,,,=0.753A, which is very close to the exact
eigenenergy of the Andreev eigenstate of eqy=0.760A.
Analogously, the state depicted in Fig. 8(c) has quantum
numbers n=1, m=41, corresponding to a hole excitation of
€pox=0.038A, which compares well to the eigenenergy of the
Andreev eigenstate of £qy=0.040A. While the position of
these Andreev states can thus be explained fairly accurately
by a box (or EBK) quantization, they are obviously not in-
cluded in a standard BS approximation which considers only
retracing electron-hole orbits. This illustrates the failure of
assumption A2, while semiclassics still remains applicable.

D. Diffractive effects

For the present hard-wall N cavities, introducing nonsepa-
rability implies simultaneously the introduction of diffractive
edges and corners (see Fig. 4).% In the preceding example,
diffractive effects were present but for the special group of
states considered of minor importance. The latter was con-
firmed not only by the density distributions in the Andreev
states (Fig. 8) but also by the accuracy of the EBK predic-
tion. We can now enhance diffractive effects by considering
only moderately stretched cavities D/W>1 with arbitrary
position of the SN interface. As shown in Fig. 10, we can
thus realize Andreev billiards with zero corners (D/W=1),
one corner (D/W> 1, lower boundary of S and N aligned),
and two corners (D/W> 1, arbitrary position of the SN in-
terface). Diffractive effects originate from potential varia-
tions on a length scale smaller than the de Broglie wave-
length. In a semiclassical picture, diffractive scattering gives
rise to a nondeterministic, stochastic angular distribution. It
certainly prevents the deterministic perfect retracing of or-
bits.

Diffractive scattering can be directly visualized in the
wave function [Figs. 10(b) and 10(c)]. The density enhance-
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electron hole
SIN

(a) sIN

.....

FIG. 10. (Color online) Selected Andreev eigenstates of systems
with (a) no diffractive corners (L/D=1.6, W=D, kg=20.57/W,
e/A=0.48); (b) one diffractive corner (D/L=1.7, W=L, kg
=21.57/W, £/A=0.72); and (c) two diffractive corners (D/L=1.7,
W=L, kg=20.57/W, £¢/A=0.82).

ment representing a scar of a classical trajectory hits the
corner of the SN interface. As a result the trajectory “splits”
into a bouncing-ball orbit and a broad angular distribution.
Significant differences between the particle (Ju|*) and hole
(Jv|?) density in the retracing orbit are clearly visible.

For a more quantitative assessment we compare again the
quantum and the BS results for the DOS [see Figs. 11(a) and
11(b)] and find, similarly to the case of the separable geom-
etry, that for larger D the mismatch Jp in the DOS increases.
If we compare, however, how the error dp scales with the
geometric retracing mismatch 8y [Fig. 11(c)], we find that in
the Andreev billiard with a diffractive corner the average
mismatch is considerably larger than for the geometry with-
out a sharp corner. The difference in dp at fixed Sy can be
thus attributed to diffraction. Note that diffractive scattering

0 05 €8 1 ¢ 05 €/A 1

— T

4_

1_
&
W

L | L
0 i

FIG. 11. (Color online) The DOS calculated quantum mechani-
cally (red solid curve) and by the BS approximation (green dashed
curve) for two different geometries with ratios of (a) L/D=1 and
(b) 1/8 (see insets), in units of the Weyl approximation of the DOS
per unit area, py=me/ (A2m). (c) Error of the retracing approxima-
tion 8p [Eq. (15)] for transversely elongated cavities (red circles) as
a function of 7. The solid blue (dashed red) line shows the average
error for longitudinally (transversely) elongated cavities (see also
Fig. 6).
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FIG. 12. (Color online) Error of the retracing approximation &p
as a function of D/W for geometries with no (blue square, dashed
line), one (red circle, solid line), and two (green cross, dashed line)
diffractive corners. Different orientations of the cross refer to dif-
ferent positions of the superconducting lead. The lines show a linear
root mean square fit to the data.

is an additional mechanism for the failure of the retracing
approximation, which is independent of the failure induced
by long electron-hole orbits.

Additional evidence along these lines is presented in Fig.
12 where the mismatch dp between the BS approximation
and the quantum results as a function of the geometrical
aspect ratio of the normal-conducting region is compared for
three geometries with either (a) zero, (b) one, or (¢) two
diffractive corners at the SN interface. As expected, the mis-
match increases (1) for larger aspect ratios and (2) at fixed
aspect ratio for an increasing number of diffractive corners.
Further support comes from the observation that the mis-
match dp for the cavity with two diffractive corners is, to a
large degree, independent of the position of the lead, as
shown in Fig. 12.

Unlike other sources for the failure of the retracing ap-
proximation discussed above, diffraction limits the validity
of standard semiclassical approximations itself, i.e., the va-
lidity of assumption A3. Methods for describing diffractive
effects semiclassically by including pseudopaths®’3# and
nondeterministic scattering® have been explored for scatter-
ing at open N cavities. They play a crucial role in determin-
ing the S matrix for such devices. The present results dem-
onstrate that diffractive corrections come into play also for
Andreev systems.

IV. CONCLUSION

We study Andreev billiards of rectangular shape and com-
pare the quantum solutions of the Bogoliubov-de Gennes
equation with a semiclassical Bohr-Sommerfeld approxima-
tion that assumes retracing electron-hole orbits as a result of
perfect Andreev reflection. Investigating the validity of this
widely used semiclassical approach, we identify three inde-
pendent mechanisms which influence the density of bound
Andreev states beyond the simple BS quantization: (i) long
trajectories in the billiard typically magnify deviations be-
tween the electron and the hole part of orbits and cause a
failure of the retracing approximation. This is of importance
for the understanding of the failure of the BS approximation
to reproduce the hard gap for chaotic N cavities. The latter is
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controlled by the behavior of long paths for which, as we
show, the retracing approximation breaks down. (i) BS
quantization fails when a subspace of the phase space is de-
coupled from the SN interface and thus is inaccessible to
retracing orbits. (iii) Diffractive effects limit the validity of
the semiclassical quantization. In the latter case the failure is
not just due to the assumption of retracing, but due to the
failure of standard semiclassics itself. In this case, also alter-
native methods such as EBK quantization of separable or
adiabatic quantization®*3* of (smooth) chaotic systems will

PHYSICAL REVIEW B 73, 045324 (2006)

fail. Corrections beyond standard semiclassics, e.g., inclu-
sion of pseudo-paths’7-38 of diffracted orbits, will be needed.
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