
Phase diagram for Anderson disorder: Beyond single-parameter scaling

Nigel Goldenfeld
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA

and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road,
Cambridge CB3 0WA, United Kingdom

Roger Haydock
Department of Physics and Materials Science Institute, 1274 University of Oregon, Eugene, Oregon 97403-1274, USA

�Received 18 September 2005; revised manuscript received 30 November 2005; published 20 January 2006�

The Anderson model for independent electrons in a disordered potential is transformed analytically and
exactly to a basis of random extended states leading to a variant of augmented space. In addition to the widely
accepted phase diagrams in all physical dimensions, a plethora of additional, weaker Anderson transitions are
found, characterized by the long-distance behavior of states. Critical disorders are found for Anderson transi-
tions at which the asymptotically dominant sector of augmented space changes for all states at the same
disorder. At fixed disorder, critical energies are also found at which the localization properties of states are
singular. Under the approximation of single-parameter scaling, this phase diagram reduces to the widely
accepted one in one, two, and three dimensions. In two dimensions, in addition to the Anderson transition at
infinitesimal disorder, there is a transition between two localized states, characterized by a change in the nature
of wave function decay.
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I. THE ANDERSON MODEL

One of the fundamental questions about the electronic
structure of a material is whether it is metallic or insulating,
a distinction which reduces to whether the electronic states
carry currents �time-reversal doublets�, or whether they can-
not carry currents �time-reversal singlets�. The nature of
electronic states depends on interactions between electrons
and ions, the structure of the material, as well as on the
interactions between electrons and other excitations. While
the states of independent electrons in crystalline structures
are well understood, the effects of structural disorder and
interactions between electrons continue to be studied. Of
these two, structural disorder seems the simpler, although
many aspects of noninteracting electronic states in two- and
three-dimensional disordered systems remain controversial.
This paper addresses the breakdown, with increasing struc-
tural disorder, of the metallic state in which the quasielec-
trons near the Fermi level move independently.

The Anderson model1 is a minimal Hamiltonian for inde-
pendent electrons in a disordered potential. The hopping part
of the model is periodic with a single tight-binding orbital on
each site of a lattice, which is taken here to be hypercubic of
dimension D �a chain, square, or cubic lattice in D=1, 2, or
3, respectively�, and with the same hopping matrix element
between each pair of nearest-neighbor orbitals. The disor-
dered structure produces a disordered electronic potential
which is included in the model as disorder in the energies of
the orbitals; they are taken independently from some distri-
bution, usually a top hat. The Anderson model neglects in-
teractions between electrons, so it only applies to the
quasielectrons close to the Fermi level in a metal, where
interactions become arbitrarily small. Hence, this model de-
scribes the breakdown of a metallic state with increasing
disorder. In terms of operators ���� which annihilate elec-

trons in the orbitals located on the lattice of sites �R��, the
Anderson Hamiltonian is

H = �
�

����
+�� + h �

���

��
+��, �1�

where �� is the energy of the orbital at R�, taken indepen-
dently for each orbital from the distribution ���� , h is the
hopping matrix element, and the sums are over sites � and
sites � which are nearest neighbors of �.

Despite its simplicity, it is difficult to say much about the
stationary states of the Anderson Hamiltonian, other than in
the small- or large-disorder limits where the width W of the
distribution of site energies is, respectively, much smaller or
much larger than h. The problem is that the random energies
make the orbitals inequivalent, and there are an infinite num-
ber of them differing by arbitrarily small energies. The con-
sequence of this infinite quasidegeneracy is that perturbation
methods do not converge because energy denominators are
too small. Moreover, the stationary states of finite sub-
systems do not converge with increasing size, because each
state in a finite subsystem hybridizes strongly with the infi-
nite number of states outside the subsystem which are arbi-
trarily close in energy.

For intermediate disorders, only quantities such as densi-
ties of states and related Green’s functions can be calculated
and this must be done nonperturbatively. Scaling2 is widely
used to interpolate between the small- and large-disorder
limits; and numerical approaches range from numerical
scaling3,4 to sampling the densities of states in various ways
such as level distributions.5 Numerical results are typically
noisy due to slow convergence with the number of samples
of orbital energies, but despite the noise there seem to be
significant disagreements between numerical methods, espe-
cially in two dimensions.6–13 It is difficult to see how these
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issues can be resolved by advances in computers or compu-
tational methods, so analytic results are needed. In addition
to single-parameter scaling2 and apart from the work pre-
sented in this paper, there are two other analytical ap-
proaches to this problem: the first is the construction of ef-
fective field theories14 leading to the nonlinear � model, and
the second is infinite-order perturbation theory15 leading to
diffusion poles in the electronic Green’s function.

In parallel with the efforts described above, there has been
rigorous mathematical work16–23 to establish the basic prop-
erties of the Anderson model. While the extended properties
of states in ordered systems are well understood, one of the
challenges to the rigorous approach has been to show that
sufficient disorder makes all states exponentially localized.16

One of the surprising properties of the Anderson model is
that there is no feature in the density of states24 �averaged
density of states, but not projected densities of states� at en-
ergies separating extended from localized states. This has
been shown rigorously for a number of examples.17,18 Al-
though the work described in this paper characterizes the
metallic phase as having broken time-reversal symmetry, the
mathematical approach emphasizes the classification of spec-
tra into point, absolutely continuous, and singular contin-
uous.17,19

The purpose of this article is to present an analytic ap-
proach to the Anderson Hamiltonian that does not depend on
any scaling hypothesis,2 is nonperturbative,15 and does not
proceed from the direct assumption of a Gaussian distribu-
tion of disorder potentials,14 and the concomitant reliance on
field-theoretic methods. The problem with a scaling hypoth-
esis is just that it is a hypothesis, and the problems with
perturbation theory are mentioned above. Our concern with
the Gaussian distribution is that the spectral properties of
bounded operators can differ qualitatively from the spectral
properties of unbounded operators. The Anderson Hamil-
tonian has the former quality, and this should be taken into
account in calculating its properties. The field-theoretic ap-
proach works directly from a Gaussian distribution of disor-
der potentials,14 unbounded and not obviously valid for this
system. Our approach shares something in common with the
conventional field-theoretic approach, namely, the strategy of
removing the disorder so as to leave a pure, effective Hamil-
tonian in which the electronic degrees of freedom are no
longer independent but experience an interaction from inte-
grating out the disorder. However, since we purposefully re-
ject the Gaussian distribution at the outset, our analysis uses
a different methodology. In particular, it avoids the replica
limit and the introduction of supersymmetry.

The first analytic method used in this work is projection, a
transformation of the model in which only those states which
couple to some particular state are retained. As is shown
below, the Anderson model can be projected exactly and ana-
lytically onto extended states, with the weak law of large
numbers eliminating disorder from the matrix-elements of
the transformed model, because each one depends on an in-
finite number of infinitesimal contributions from independent
orbital energies with well-behaved distributions. Disorder re-
mains in the transformed model, but is represented in the
basis set of extended states by expansion coefficients for the
various site orbitals which depend on the random site ener-

gies. This transformed model is a variant of the augmented
space representation25,26 for the average electronic structure
of random alloys; however, the augmented space generated
here is based on extended states rather than localized orbitals
as in its application to random alloys. Recently, calculations
using averaged quantities27 in the spirit of the original deri-
vation of augmented space26 have produced phase diagrams
intermediate between the results presented here and those of
scaling theory.

For a physical picture of the Anderson model in aug-
mented space, think of the extended states in the projection
as sites on a new lattice. Taking this approach, the action of
the hopping term in the Hamiltonian, the second term in Eq.
�1�, can be expressed as the sum of translations of the ex-
tended states by each of the nearest-neighbor displacements,
hopping on the new lattice. The random potential, the first
term in Eq. �1�, multiplies the component of the extended
state on each site by the value of the random potential at that
site, producing a new extended state which is unrelated to
any translation of the old one. In contrast to hopping, think
of this new extended state as an internal change in the site on
the new lattice, a kind of “spin” on the new lattice. The
resulting picture of augmented space is an electron hopping
on a lattice of spins with an interaction between the electron
and the spin on the site it occupies. The mathematical for-
mulation of this transformation is presented in the next sec-
tion.

One important difference between the Anderson model in
augmented space and position space is that while the number
of sites in the Anderson model is countable, the number of
extended states is uncountable. As a consequence of the un-
countable dimension of this state space, the evolution of the
system is nonergodic in the sense that, starting from a single
extended state, the system can never explore more than an
infinitesimal fraction of the extended states. As parameters in
the model change, the system’s evolution can shift from one
subspace of extended states to another, producing one of the
two kinds of phase transition in the model. Lest the reader be
concerned that somehow the Anderson model has grown dur-
ing projection, it is important to point out that the extended
states are limits of combinations of site orbitals, so the pro-
jected model is no larger than the original model including
the limiting states. Indeed, it is just the limiting properties of
states which determine whether they are metallic or insulat-
ing, and these limiting properties are explicit in projection.

In previous work,13 augmented space was used to obtain a
variational expression for the edges of the band of states
which are exponentially localized in augmented space. These
band edges agree with perturbative results for the mobility
edges at small disorder in three dimensions10 and with local-
ization edges in one and two dimensions;10 and at interme-
diate disorder these band edges agree with numerical results
obtained from the recursion method.4,12,13

The second analytic method used here is path counting in
order to determine which parts of augmented space dominate
the system’s evolution. One of the puzzles of previous
results13 is that the width of the band of states, localized in
augmented space, increases monotonically with disorder,
even at disorders much larger than needed to localize all
states in position space. In the previous paper it was argued
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that in low dimension or at large disorders where all states
are localized in position space, these band edges are singu-
larities in the localization length of exponentially localized
states, and do not separate extended states from localized
states.

Numerical results from the recursion method13 suggested
what is shown in this work, that there are in fact two distinct
kinds of phase boundary in the Anderson model, both con-
tinuous in the sense that the energy of states �free energy at
zero temperature� varies continuously with W and h. The first
kind of transition is characterized by a singular change in the
sector of augmented space which dominates the asymptotics
of the states as W changes for fixed h. It includes the Ander-
son transitions at zero disorder in one and two dimensions as
well as well as the Anderson transition at nonzero disorder in
three dimensions, where the entire band of states changes its
localization properties at a critical value of disorder. These
transitions of the Anderson kind also include transitions from
power law to exponential, from extended to power law, and
possibly many other subtler transitions. It is the characteriza-
tion of this first kind of transition which is the main result of
this work. The second kind of transition is characterized as a
singular change in localization properties as the energy var-
ies for fixed disorder. It includes the mobility edges in three
dimensions, but also includes localization transitions from
power law to exponentially localized states in two and three
dimensions, as well as singular changes in the exponential
localization length.

The paper is organized into seven further sections. In Sec.
II a derivation of the transformation of the Anderson model
to augmented space is presented. In the next section
asymptotic properties of the states in augmented space are
related to the different phases of the Anderson model. The
asymmetric Cayley tree is solved in Sec. IV as a simplified
version of the Anderson model in augmented space and this
leads to an approximate phase diagram for the Anderson
model. In Sec. V, analytic expressions are obtained for criti-
cal disorders of the full Anderson model transformed into
augmented space. The approximation of single-parameter
scaling is applied to the phase diagram resulting from this
work, and it is shown that this reproduces the usual scaling
phase diagram in Sec. VI. In Sec. VII, the results of this
work are compared with field-theoretic and perturbative ap-
proaches, and in the final section, the conclusions of this
work are summarized.

II. THE ANDERSON MODEL IN AUGMENTED SPACE

There are few analytic results for the Anderson model,
especially away from the limits where the width of the dis-
tribution of site energies is either very large or very small
compared to h. The transformation to augmented space is
analytic and exact, and applies for all disorders and all dis-
tributions of site energies which are well behaved, in the
sense that their moments determine the distribution. The idea
behind this transformation is projection of the model onto a
basis ��s� of distorted waves which are taken to be either
states, or the operators that annihilate those states, depending
on what is convenient in the context of the discussion. The

distorted waves are constructed from polynomials �pn����
which are orthonormal28 with respect to the distribution ����
of the site energies in the sense that �pn���pm�������d� is
	n,m. The transformation begins with �0, an extended state
which has coefficient 1 for every site orbital in the Anderson
model. The general element of the new basis is

�s = �
�
��

�

ps������+��	��, �2�

where s is a vector whose components �s���� are the degrees
of orthogonal polynomials �ps�������, one for each site �, and
��+� is the energy of the orbital at R�+R�. These states are
extended over the entire system, but the coefficients of indi-
vidual site orbitals in these states depend on the disordered
potential.

The most important property of the ��s� is that they are
orthonormal to one another, as is shown by the following
argument. For extended states such as the ��s�, the inner
product must be renormalized from the sum of products of
corresponding components, to the average over all sites of
the products of corresponding components,

��s,�s�� = 
�
�

ps������+��ps�������+���
�

. �3�

In the above product, the distribution over � of
ps������+��ps�������+�� is independent for each choice of �

because the energies of different sites are independent of one
another. As a result, the average of this product over � is the
product for different � of the averages over � giving

��s,�s�� = 
�
�

ps������+��ps�������+���
�

= �
�

�ps������+��ps�������+��
�. �4�

From the weak law of large numbers, the averages
�ps������+��ps�������+��
� over an infinite number of sites are
simply the orthonormality relations for the polynomials
��s ,�s�� is just 	s,s�, that is, zero unless s and s� are identical
component by component.

The second important property of the ��s� is that as a
basis for the Anderson Hamiltonian, they produce a matrix
which is sparse in the sense that each of the ��s� has nonzero
matrix elements with only a few others, as can be seen from
the following argument. In additional to being orthonormal,
the polynomials �pn���� satisfy a three-term recurrence
relation,28 �pn���=bn+1pn+1���+anpn���+bnpn−1���, where
the parameters �an� and �bn� depend on the particular choice
of distribution for the site energies. So, when the first term of
the Hamiltonian in Eq. �1� is applied to one of the ��s� from
Eq. �2�, it multiplies each component for each site by the site
energy, and the recurrence for the polynomials relates this
product to a sum of polynomials. As a result, the disordered
potential changes the first component of the spin vector s as
can be seen in the first three terms of the transformed Hamil-
tonian in Eq. �5�. The second term of the Anderson Hamil-
tonian translates components of the ��s� to each of their
nearest-neighbor site, which is the same as translating the
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components of the spin vector s to their nearest neighbors,
giving the fourth term in the transformed Hamiltonian,

H = �
s
�bn+1�s+1

+ �s + an�s
+�s + bn�s−1

+ �s + h�
	

�s�
+

�s	 ,

�5�

where 	 is a nearest-neighbor displacement, s���+	�=s���,
�an� and �bn� are the coefficients in the recurrence for the
orthogonal polynomials, and 1 is the vector with unit com-
ponent for the site at the origin and zero for all other com-
ponents.

The localization of states is determined by their
asymptotic properties in augmented space. For example,
states whose contributions from the ��s� decrease exponen-
tially with the number of hops from �0 to �s are dominated
by just a few of the �s near �0 so, like these �s, they are
extended in position space. At the opposite extreme, states
whose contributions from the ��s� are independent of the
number of hops from ��s� are superpositions of many of the
��s�, and so cancel at most sites, because their components
are random and independent, producing states which are lo-
calized in position space.

In this asymptotic region, the hopping matrix elements of
H are still h because the lattice is periodic, and from the
theory of orthogonal polynomials,28 the asymptotic matrix
elements for the potential are determined by the edges of the
distribution of site energies �assumed continuous�, which
may be taken to be ±W /2 without loss of generality. From
this, the asymptotic value of the �bn� is W /4, and the
asymptotic value of the �an� is zero; whereas the �bn� diverge
for a Gaussian distribution, indicating the important differ-
ence between bounded and unbounded distributions. Con-
sider one of the basis states �s in this asymptotic region of
H, where almost all the sites near the origin have nonzero
spins. First, �s is coupled by h to 2D �a hypercubic lattice in
D dimensions� states where the spins have been shifted by a
nearest-neighbor translation. Second, �s is coupled by W /4
to two states for which the spin at the origin differs by ±1.
This finite coordination of all states is one of the properties
which make the Anderson model simple in augmented space.

The next important property of H is the structure of closed
paths, sequences of matrix elements which form loops. First
there are the shortest closed paths, from �s to one of its
2�D+1� neighbors and back, which do not even count as
loops because there are no intermediate hops. The smallest
loops are those associated with the original lattice, four h
hops around a square in two and higher dimensions, and the
various larger loops for hypercubic lattices with D
1. The
smallest loops which include both h hops and W /4 hops are
of length eight, alternating four h hops and four W /4 hops.
These loops begin with a change of the spin on 0, a nearest-
neighbor translation of all spins, another change of the spin
on 0, the inverse of the nearest-neighbor translation, the in-
verse of the first spin change, the first nearest-neighbor trans-
lation, the inverse of the second spin change, and finally the
inverse of the nearest-neighbor translation. A schematic of
this structure is shown in Fig. 1. These and larger loops may
be understood in terms of changing the configuration of spins

by changing individual spins in different orders. Starting
with one configuration we can change one of the spins by
translating that spin to the origin, and then change another
spin in the configuration by translating that one to the origin,
and so on, until the desired final configuration is reached.
Each pair of paths from the initial to final spin configurations
makes up a loop, provided there is not some intermediate
configuration in common.

III. PHASE TRANSITIONS IN AUGMENTED SPACE

An Anderson model is defined by its lattice, which is
taken here to be hypercubic in D dimensions, and one dimen-
sionless parameter W /h, the ratio of the width W of the dis-
tribution of orbital energies to the nearest-neighbor hopping
matrix element h. Models with the same lattice and W /h
have similar states. Hopping to more distant neighbors can
be added, but there is no evidence this changes the model
qualitatively unless the hopping is of infinite range. The
states of the Anderson model have another dimensionless
parameter E /h, the ratio of the energy of the state to h. A pair
of states from different Anderson models with the same lat-
tice and W /h are almost certain to be similar if they have the
same E /h.

In order for the model to exhibit different phases for dif-
ferent values of E /h and W /h, it must have states which
differ qualitatively from one another. Finite combinations of
site orbitals are qualitatively the same, so the presence of
multiple phases requires infinite numbers of site orbitals, and
it is the asymptotic behavior of states, i.e., their localization
properties, which distinguishes the phases in this model. One
goal of work on the Anderson model is to calculate the phase
diagrams for different lattices in terms of W /h and E /h. This
has proved difficult for reasons discussed above, and because
it is always difficult to determine asymptotic properties of
discrete equations such as the Schrödinger equation for the
Anderson model.

Since the Anderson model in augmented space is a pro-
jection of the original model, the asymptotic properties of
states in augmented space are related to those in position
space. The trend in this relationship is clear from the local-

FIG. 1. Part of the local structure of the Anderson model in
augmented space.
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ization properties of combinations of the distorted waves
which are the basis in augmented space, introduced in Sec.
II. These localization properties, localized to extended, invert
in going from augmented space to position space, but the
boundaries between different phases occur at the same values
of disorder and energy.

Analyzing the Anderson model in augmented space
makes it possible to separate the properties of states which
depend on W from those which depend on E, as is explained
in what follows. In position space, the site-orbitals are count-
able, but in augmented space, the spin configurations ��s�
are not countable, as can be seen by interpreting each spin as
a digit in a real number. The importance of this larger basis is
that the evolution of a single state, say exp�−iHt��0, is a
superposition of the powers of H on �0, a space of countable
dimension, and therefore an infinitesimal fraction of aug-
mented space which has uncountable dimension. As a result,
it is possible for �0 to evolve onto different subspaces of
countable dimension depending only on W through H, and
this makes possible phase transitions which depend only on
W, not on E, the Anderson transitions. Within subspaces of
countable dimension which support the evolution of �0,
there can still be states with different localization properties,
so there is a second qualitative distinction between states and
hence a second kind of phase transition, the mobility transi-
tions, of this model.

IV. EXACTLY SOLVABLE MODELS

As an example of a model in augmented space with phase
transitions similar to the Anderson model, consider a Cayley
tree with coordination four—each vertex on the tree is con-
nected by edges to four other vertexes, and there are no loops
in the graph. Take the vertices of the tree to represent basis
states in augmented space, and take the edges of the tree to
represent nonzero matrix elements of the Anderson Hamil-
tonian in augmented space. From each vertex, take two of
the edges to have hopping matrix elements h, assumed posi-
tive, and take two edges to have matrix elements of the po-
tential W /4. This is illustrated in Fig. 2. The asymmetric
Cayley tree differs from the symmetric Cayley tree in having
more than one kind of edge.

Locally �out to fourth neighbors�, the asymmetric Cayley
tree is identical to the Anderson model in augmented space

far from �0 for an infinite chain of equally spaced sites, D
=1, with a semielliptical distribution of orbital energies of
width W �an=0,bn=W /4�. At fourth neighbors, changing
spins in different orders leads to the same state for the Ander-
son model, but different states for the Cayley tree. Another
difference between the two models is that all vertexes of the
Cayley tree are equivalent, but for the Anderson model �0 is
special.

When h exceeds W /4, it is clear that the system evolves
preferentially along h hops so that the asymptotics of states
are dominated by h hops, one phase of the system. When
W /4 exceeds h , W /4 hopping is preferred, and the asymp-
totics of states are dominated by W /4 hops, the second phase
of the system. When h=W /4, the tree is symmetric as is the
propagation of the system, and the asymptotics of the states
is critical. For the asymmetric Cayley tree all the states
change character as the disorder W moves through its critical
value of 4h, so this is an example of the Anderson type of
phase transition in augmented space.

A mobility transition occurs as E varies for fixed W. The
simplest example of this kind of transition occurs at the criti-
cal value of disorder Wc, where both kinds of edges have the
same matrix elements and the Cayley tree is symmetric. The
energies of stationary states coupled to a particular basis
state are those which contribute to the projected density of
states for a single vertex of the tree. The simplest way to
calculate this is with a hierarchy of equations for the pro-
jected resolvent �or Greenian�,

R�E� = ��0�E − HC�−1�0
+
 , �6�

where HC is the Hamiltonian for the Cayley tree, �0 annihi-
lates the state represented by one of the vertices on the tree,
and the angular brackets mean the vacuum expectation value.

The projected resolved R�E� can be calculated by relating
it to other projected resolvents, noting that site �0 is coupled
to four neighboring vertexes by the matrix element h �spin
hops and lattice hops have the same matrix elements in the
symmetric case�. Define a second projected resolvent,

G�E� = ��1�E − HC0�−1�1
+
 , �7�

for any of these neighboring vertices �they are equivalent�
with the Hamiltonian HC0, which is HC with �0 removed.
Some matrix algebra gives the first of the hierarchical equa-
tions,

R�E�−1 = E − 4 h2G�E� . �8�

The second equation comes from noting that �1 is coupled
by h to three vertices other than �0, and the projected resol-
vents for these vertices �excluding �1 from the Hamiltonian�
are also G�E� because the Cayley tree is infinite with equiva-
lent vertices, leading to

G�E�−1 = E − 3 h2G�E� . �9�

Equation �9� is quadratic in G�E�, so it can be solved and
the result substituted into Eq. �8� to give R�E�. For real E, the
imaginary part of R�E� is � times the projected density of
states, which comes out to be

FIG. 2. Part of the local structure of an asymmetric Cayley tree,
approximating the Anderson model in augmented space.
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n�E� = �� 2

�
	��12h2 − E2�

�16h2 − E2�
, for − 2�3h 
 E 
 2�3h ,

0, otherwise.
�

�10�

Note that the model has states with energies between −4h
and +4h, the extremal states are marked by the zeros of the
denominator in Eq. �10�, but only those between −2�3h and
+2�3h couple to single basis states. The states in the range
±2�3h decrease exponentially with distance �number of
edges� steeply enough to have significant weight on the
original vertex, while the states outside this range do not
decrease with distance steeply enough for there to be any
density of states on the original vertex. For example, the
state at E=4h is 1 on every vertex of the tree, while the state
at 2�3h has amplitude 1

2 on each of the nearest neighbors of
the original vertex, 1 / �2�3� on each of the next neighbors,
1 /6 on each third neighbor, and so forth, decreasing by a
factor of 1 /�3 on each succeeding shell after the first. As a
result, there are two critical energies Ec= ±2�3h where the
projected density of states, and hence the localization prop-
erties of states, are singular for this model; and there are the
two extremal energies of the model EL= ±4h, the Lifshitz
edges, at which the properties of states are also singular.

Away from the critical disorder, there are similar critical
energies, but the algebra gets more complicated. As before,
the simplest approach is to set up hierarchical equations for
projected resolvents. Take R�E� to be the projected resolvent
for one vertex of the tree. It is coupled by lattice hops to two
vertexes whose projected resolvents are taken to be G�E�,
defined with a Hamiltonian excluding the original vertex
making G�E� different from R�E�. The original vertex is also
coupled by spin hops to two vertices whose projected resol-
vents are taken to be S�E�, again defined by a Hamiltonian
excluding the original vertex so S�E� is different from R�E�
and G�E�. In terms of G�E� and S�E�,

R�E�−1 = E − 2h2G�E� − W2S�E�/8. �11�

Similar arguments lead to equations for G�E� and S�E�,

G�E�−1 = E − h2G�E� − W2S�E�/8, �12�

S�E�−1 = E − 2h2G�E� − W2S�E�/16. �13�

Equations �11�–�13� combine to give a quartic equation
for R�E�, which is where the algebra becomes complicated.
Just as for the symmetric case there are two critical energies,
which are the edges of the band of states sufficiently local-
ized to contribute to the projected density of states on a
single vertex. In addition there are two Lifshitz edges at EL
= ± �2h+W /2� which are the energies of the state taking
value one on each vertex and the state alternating plus and
minus one on neighboring vertexes. Figure 3 shows the
phase diagram for the asymmetric Cayley tree in augmented
space including both the Anderson transition for all energies
at the critical disorder, and the mobility transitions at critical
energies for various disorders. Since the states of the Ander-
son model in augmented space form a continuum in the
energy-disorder plane of Fig. 3, the transitions between dif-
ferent phases are continuous.

V. CRITICAL DISORDERS AND ENERGIES FOR THE
ANDERSON MODEL

For the Anderson model in augmented space, loops in the
graph make the phase diagram much more difficult to calcu-
late and much more complicated than the phase diagram for
the asymmetric Cayley tree, which has no loops. One source
of loops in the Anderson model is that spins can be changed
in different orders to produce the same state, and another is
that for D greater than 1, the lattices also contain loops. In
contrast, the asymmetric Cayley tree has no loops in the
lattice, because it is one dimensional, and changing the spins
in different orders leads to different vertices on the tree.
When loops are present, determining asymptotics of states is
more complicated than the comparison of products of matrix
elements which works for a tree.

In common with the asymmetric Cayley tree, the Ander-
son model in augmented space has two different kinds of
matrix elements: those for spin hops and those for lattice

FIG. 3. �Color online� The phase diagram in
energy and disorder for the asymmetric Cayley
tree, approximating the Anderson model.
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hops. This, together with the uncountable basis, makes pos-
sible multiple phases depending upon which directions in
augmented space dominate the evolution of the system. At
time t, the coefficient of �s in a state which started as �0 at
t=0, is

�s�t� = �2�i�−1� ��0��E − H�−1��s
e−iEtdE , �14�

where the integral is around a contour that encloses the en-
ergies of all states. The leading term in the time dependence
of �s�t� is �s�−it)N /N!, where N is the smallest power of H
having a non zero matrix element �s between �0 and �s. In
terms of the matrix elements of H , ��0�HN��s
 is the sum of
products of matrix elements of H along all the paths with the
minimum number of hops N from �0 and �s, the direct
paths. Consequently, as s goes to infinity, N goes to infinity,
and the leading contribution of �s to the state is proportional
to �s. Hence, the phase of the system is determined by the
distant �s with the largest �s; that is, the distant vertices
whose direct paths dominate, consistent with the result for
the asymmetric Cayley tree.

In the case of the asymmetric Cayley tree, the asymptotic
behavior of states is easy to determine from the above argu-
ments, and it is shown here that they lead to a critical disor-
der Wc=4h, which was derived in Sec. IV by a different
argument. Note that on a Cayley tree there is a unique direct
path of N hops from the origin to a given vertex. The mo-
ment �s is the product of matrix elements, either h or W /4,
along the direct path. Hence the asymptotics of states on the
asymmetric Cayley tree are dominated by the vertices whose
direct paths consist entirely of either h hops or W /4 hops,
whichever is larger, leading to an Anderson transition when
they are equal.

Turning now to the Anderson model in augmented space,
for W=0, �0 and other Bloch states are stationary solutions
of the Hamiltonian, so there are no asymptotic tails in aug-
mented space. However, for W infinitesimally greater than
zero, the states acquire asymptotic tails, so there is a quali-
tative change in the states and hence a critical disorder W0
=0.

For W greater than zero, but still small compared to h,
lattice hops must dominate the asymptotics of the states. The
range of W for which this dominance persists can be calcu-
lated using the arguments above. For hypercubic lattices in D
dimensions, the sites with the largest weight from direct
paths of length Dn are located at �±n , ±n ,… , ±n� because
this gives the maximum number of permutations of the lat-
tice hops in different directions. The contribution from these
direct paths is hDn�Dn� ! / �n ! �D. Using Stirling’s approxima-
tion for the factorial, this becomes �Dh�Dn, for n large, and is
precisely the value that gives the exact width of the band of
electronic states for the ordered lattice. Since the matrix el-
ement for spin hops is W /4, there is a transition at the critical
disorder W1 which leaves the contribution from direct paths
unchanged when a lattice hop is replaced by a spin hop:
W1=4Dh.

It might seem that for W greater than W1, paths consisting
only of spin hops should dominate, but this is not the case,

because of loops due to the equivalence of changing spins in
different orders. Direct paths are generated by hops away
from the origin, and those that alternate spin hops with lattice
hops are especially numerous, because after each outward
spin hop, there are not just D, but 2D, outward lattice hops.
As a result, paths which contain mixtures of lattice hops and
spin hops can outweigh the paths that are pure spin hops up
to the limit where W /4=2Dh. This then corresponds to a
second critical disorder W2=8Dh. Counting the number of
direct paths of various lengths from �0 to �s is a difficult
combinatorial problem, so it is not possible to say where in
the interval between W1 and W2 there are additional critical
disorders. However, we can estimate bounds on critical dis-
orders: �s can be reached by direct paths which are mixtures
of spin and lattice hops, and which dominate the purely spin-
hopping paths, for disorders less than 4�2Dh�5.657Dh� or
even 4�31/3�Dh�5.769Dh�.

There are possibilities of additional phases in the Ander-
son model. For example, in the case of the top-hat distribu-
tion of site energies, the matrix element between �0 and �1
is �W /4� / ��3/2� which is greater than W /4, enhancing con-
tributions from paths which include spin hops as well as
lattice hops. As a result, in this case there should be a tran-
sition at W=4Dh�3/2, but presumably this is very weak, and
has not yet been detected numerically. Since other matrix
elements for the spin hops can be greater than their
asymptotic value, additional transitions are possible corre-
sponding to different patterns of spin and lattice hopping.

In addition to this plethora of critical values of the disor-
der, the Anderson model has critical energies where the den-
sity of states is singular. These include van Hove singulari-
ties for ordered systems, but extend to singularities in
localization lengths, in power laws, and in other localization
properties for disordered systems. The exact trajectories for
mobility edges of the asymmetric Cayley tree in Sec. IV can
be used to approximate the mobility edges of hypercubic
lattices in the Anderson model by equating ordered band-
widths: h is replaced by Dh in Eqs. �11�–�13�. This is not a
variational bound as was used in previous work,13 but could
be further improved by taking into account variations in the
number of paths to different sites on the hypercubic lattices.
These critical energies together with the critical disorders are
included in the phase diagram for the Anderson model in Fig.
4. Again, the states fill the energy-disorder plane and so the
transitions are continuous.

It is useful to relate different phases in augmented space
to their localization properties in position space. This can be
done for the states at W=0 which are Bloch states and clearly
extended in position space. The states of models with W

W2 consist of superpositions of random extended states in
position space. The random extended states cancel on almost
all sites, so in the extreme case these states are localized on
a single site, where the random extended states happen to
interfere constructively, with energy close to the random en-
ergy of that single site. The large-disorder limit of the Ander-
son model in position space gives this same result.29 For D
=1, i.e., one dimension, and W greater than zero, all states
are exponentially localized, so as disorder increases, the ex-
ponential localization becomes stronger and the various
phase boundaries correspond to singularities in the depen-
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dence of the localization length on disorder or energy. Ana-
lytic results for small but nonzero disorders show that in D
=2 the states are power-law localized, and in D=3 the states
are extended.10 Beyond these results, all that can be shown
analytically is that states become more localized with in-
creasing disorder and that the nature of the localization de-
pends on the dimension of the system.

VI. THE SINGLE-PARAMETER SCALING
APPROXIMATION

Numerical approaches to Anderson localization always re-
quire extrapolation from some finite system to an infinite
limit. One well-established method for doing this is finite-
size scaling, which was applied by Pichard and Sarma30–32 to
the dependence of localization lengths on the width of long
strips for two dimensions, and to the dependence of localiza-
tion lengths on the side of long bars for three dimensions.
This work showed that two dimensions is marginal for the
existence of extended states, and that power-law localization
is present for weak disorder in two dimensions, but the con-
clusion of this work in Ref. 32 is that exponential localiza-
tion takes over at the longest length scales.

Single-parameter scaling makes the phenomenological as-
sumption that the metallic or insulating nature of a material
is determined by the variation of just a single parameter, the
conductance g across a hypercube �wire, square, or cube�
with sides of length L. This approximation may be under-
stood as building the wave functions of large hypercubes out
of those of small hypercubes by matching only their ampli-
tudes at the boundaries and neglecting the phase. In Ref. 2,
the authors go on to suppose that a smooth, nondecreasing,
scaling function �(g�L�)=d ln g�L� /d ln L interpolates be-
tween the limits of large g in which �(g�L�) is Ohmic taking
the value D−2 �where D is the dimension of the system� and
small g in which �(g�L�) is insulating and goes to ln g�L�. If
�(g�L�) is positive, the system scales to the metallic limit,
and if �(g�L�) is negative, it scales to the insulating limit.
For the critical value of the conductance separating metallic
from insulating, �(g�L�) is zero.

The scaling function �(g�L�) can be calculated for differ-
ent parts of the phase diagram in Fig. 4 using previous re-
sults from analytic and numerical recursion.10,12,13 These re-
sults give the quantum-mechanical transmittance for an
electron starting on a single site to propagate either to infin-
ity �analytic� or to a large distance, of order a thousand lat-
tice constants, �numerical�. The work of Landauer and
Büttiker33 relates this transmittance to a conductance from
which Ohm’s law gives a conductivity, taking into account
the geometry of the numerical recursion, which is conduction
from the boundary of a single site to the boundary of a large
or infinite realization the model. This is simply the conduc-
tion from a small circle to a large concentric circle in two
dimensions, or from a small sphere to a large concentric
sphere in three dimensions. The conductance of the hyper-
cube is independent of its size in two dimensions, but in-
creases as the length L of the edge in three dimensions.

For the one-dimensional Anderson model, recursion is
trivial and nonzero disorder leads to a negative value of the
scaling function producing the insulating limit, consistent
with the scaling phase diagram in which there is an Anderson
transition at zero disorder. For arbitrarily small disorder in
two dimensions, both analytic and numerical recursion
calculations10,12,13 show that the transmittance away from a
single site decreases as a negative power of the distance lead-
ing to �(g�L�)�0. For the scaling function to take its critical
value zero, the transmittance would have to decrease as
1/ ln L, slower than any power law. For the two-dimensional
Anderson model, this approximation makes all states insulat-
ing except those within the band at zero disorder, again con-
sistent with the scaling phase diagram in which there is just
an Anderson transition at zero disorder.

For three dimensions, a similar calculation shows that the
scaling function takes its critical value zero for a transmit-
tance which decreases as 1/L with distance L from a single
site—a critical power law. Analytic recursion10 for three di-
mensions shows that for small disorder the transmittance
away from a single site goes to a nonzero constant for large
L, scaling to metallic. The asymptotics of states in aug-
mented space shows that there is an Anderson transition in

FIG. 4. �Color online� The main phase bound-
aries for the hypercubic Anderson model in D
dimensions, with a thicker line for the phase
boundary for changes in time-reversal symmetry
in D=3, and a thinner line for the contour of 1 /L
power-law states in D=3.
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three dimensions at W=12h, and numerical recursion12,13

shows that this transition is to a power-law dependence of
the transmittance on L. From Ref. 12 the trajectory of this
critical power law can be roughly estimated, and is sketched
as a thin line in Fig. 4. There is qualitative agreement be-
tween this trajectory and the most detailed phase diagram
obtained from numerical scaling, Fig. 1 from Ref. 7. We now
attempt a comparison between these numerical results and
the present analytic results.

There is quantitative agreement between the present work
and numerical scaling on the critical disorder for the Ander-
son transition in the following sense: In Fig. 4 of the present
paper, the Anderson transition at W=12h , D=3, marks the
disorder at which the slope of the scaling phase boundary is
a minimum for positive energies; at larger disorders this
phase boundary curves back to lower energies. In Fig. 1 of
Ref. 7, this same minimum in the slope of the phase bound-
ary also occurs at 12h to within the accuracy it can be esti-
mated from that figure. There is also quantitative agreement
between the disorder at which the phase boundary in Fig. 1
of Ref. 7 crosses zero energy, and the disorder at which the
transmittance calculated in Ref. 12 decreases as 1/L. How-
ever, this is not a stringent test, because the resolution in
disorder of the calculations in Ref. 12 is only ±2.

On the other hand, there is quantitative disagreement be-
tween this work and Ref. 7 in the placement of the mobility
edges for W=12h, at 10.2h and about 7.9h, respectively. The
energy resolution of the calculations in Refs. 12 and 13 is
much better than the disorder resolution, and from Ref. 13
this critical energy lies between 8.5h and 9.5h, which is in-
consistent with the calculations presented here for the asym-
metric Cayley tree, where we obtained the estimate of 10.2h.
In Ref. 7, the estimate obtained also lies outside the range
from Ref. 13. For disorders less than 12h, our calculation of
the phase boundary from the asymmetric Cayley tree is con-
sistent with the lower and numerical bounds in Ref. 13; how-
ever, the calculation of Ref. 7 is not consistent with either of
those of Ref. 13. Specifically, the phase boundaries of these
various approaches are nested: the phase boundary in Ref. 7
lies inside the lower bound from Ref. 13 �a violation of the
bound�, which lies inside the numerical phase boundary from
Ref. 13 �consistent with the bound�, which lies inside the
analytic phase boundary calculated from the asymmetric
Cayley tree in Sec. IV �also consistent with the bound�.

In evaluating the above comparisons, it is important to
keep in mind the inconsistency between the symmetry-
breaking and scaling definitions of “metallic” states. States
with small power-law localization belong to time-reversal
singlets and so are insulating by symmetry; however, their
conductivity according to Ref. 33 and Ohm’s law scales to
infinity on infinite length scales. The reason for this incon-
sistency is that the metallic scaling limit depends on Ohm’s
law for which inelastic processes are implicit; however, the
Anderson model has no interactions and hence no inelastic
processes.

The main difference between the results of this work and
those of scaling is that the projection onto augmented space
reveals a much wider range of qualitative behaviors for the
asymptotics of states. Of particular importance is the time-
reversal symmetry of states which is not addressed by scal-

ing theories. States belonging to time-reversal doublets are
clearly metallic because they can carry currents, but scaling
includes as metallic some states which are time-reversal sin-
glets, namely, those which are weakly power-law localized.
While the asymptotics of some insulating states fall into
simple classes such as exponential localization or power-law
localization, augmented space reveals additional, more
subtle, distinctions which have not yet been characterized.
Compounding the complexity of the model are the singulari-
ties in the energy dependence of states for a fixed disorder;
sometimes qualitative changes such as between time-reversal
singlets and doublets, and sometimes just singularities in a
quantity such as the exponential localization length.

VII. COMPARISON WITH OTHER APPROACHES

This work cannot be compared directly with field-
theoretic approaches14 because the field theories are defined
on a continuum rather than a lattice. However, it is clear
when the bounded top-hat distribution of site energies is re-
placed by the unbounded Gaussian distribution in the trans-
formation to augmented space, the matrix elements for spin
hops diverge according to the recurrence relation for Hermite
polynomials,28 which are orthogonal with respect to the
Gaussian distribution. As a result, at sufficiently long times,
spin hops always dominate the evolution of states, and the
model has only a single, strongly insulating phase for non-
zero disorder. However, comparing with the usual interpreta-
tion of the field-theoretic results, there is qualitative agree-
ment with the work in this paper for three dimensions, but
qualitative disagreement with this work in two dimensions
where the transition to exponential localization of all states
occurs when W=8h.

Application of infinite-order perturbation theory to the
Anderson model produces diffusion poles.15 While electronic
transport must certainly be diffusive if the electrons in the
Anderson model are coupled to a heat bath, uncoupled, the
states of the model have infinite lifetimes. In the metallic
phase where the states belong to current-carrying, time-
reversal doublets, these currents also have infinite lifetimes,
which seems inconsistent with diffusion.

The results presented above agree with the basic require-
ments of the rigorous mathematical approach:16–23 States are
extended at zero or low disorder and exponentially localized
at sufficiently strong disorder. The average density of states
is smooth across mobility transitions, although this is not
explicitly proved here. Turning to the spectral classification
of states, it is clear that states belonging to time-reversal
doublets have normalizations proportional to the volume of
the system, and so are part of the absolutely continuous spec-
trum of the model. States belonging to the point spectrum
have normalizations independent of the volume of the sys-
tem, normalizable, and this spectrum is indeed dense. In ad-
dition, this work produces states whose normalizations are
proportional to a power of the volume of the system greater
than zero and less than 1, so they belong to the singular-
continuous spectrum whose existence has been hypothesized
in the mathematical approach, but not demonstrated.
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VIII. CONCLUSIONS

In this paper the critical assumptions of several ap-
proaches to Anderson localization have been tested by the
transformation to augmented space which leads to exact val-
ues for the critical disorders of some Anderson transitions.
These results agree with single-parameter scaling in that the
Anderson transitions to nonconductive states occur at infini-
tesimal disorder in one and two dimensions, but not in three
dimensions. The results disagree with single-parameter scal-
ing in two dimensions in that there is an additional Anderson
transition at nonzero disorder in two dimensions, between
two nonconductive states which differ in the way that they
decay at large distances. Furthermore, the phase diagram re-
sulting from this work reduces to that of numerical scaling
when the assumption of numerical scaling is combined with
results from numerical recursion. What this work adds to the
results of numerical scaling is the distinction between Ander-
son and mobility transitions, exact values for some of the
Anderson transitions, and the existence of more Anderson
transitions than was previously suspected.

In comparing this work with the results of field-theoretic
methods, the general pictures agree: Anderson transitions be-
tween current-carrying and non-current-carrying states occur
at zero disorder in one and two dimensions, but not in three
dimensions. As in the case of scaling theory, the differences
are in the additional Anderson transitions. One of the pur-
poses of this work is to test the hypothetical equivalence of
the bounded potential distributions in the Anderson model
with the unbounded Gaussian distributions in the field

theory. Transformation to augmented space of an unbounded
distribution of potentials leads to domination of the disorder,
making it very difficult to see how the states of the Anderson
model can be other than exponentially localized for a Gauss-
ian potential distribution. Because of this, the general agree-
ment between this work and field-theoretic approaches is
surprising—it may be that other approximations in the field-
theoretic approach effectively cut off the tails of the Gauss-
ians.

The representation of the Anderson model in augmented
space incorporates both the states of the model and their
limiting states which determine the phases of the model. Path
counting and calculation of projected densities of states al-
low the phase boundaries to be located. That such a simple
model as the Anderson model for quantum states in the pres-
ence of disorder can produce such a complicated phase dia-
gram continues to surprise and delight.
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