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Within density functional theory, an efficient and accurate method for calculating and analyzing hyperfine
parameters has been developed. The so-called mixed-basis method expands the one-electron wave functions in
terms of both localized nucleus-centered functions and plane waves and thereby affords an accurate represen-
tation for the spin density both in the immediate vicinity of the nucleus and in the bonding regions. The current
method is compared with experiment and the best computational methods reported in the literature. The
mixed-basis approach is shown to yield highly accurate isotropic and anisotropic hyperfine parameters with
modest computational effort. The atom-centered radial representation of the potentials and spin densities allows
us to analyze, within the context of density functional theory, the effect of the exchange interaction on the
individual core levels in a physically transparent way.
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I. INTRODUCTION

Determination of the geometry of clusters and the identi-
fication of pointlike defects in crystals heavily rely on the
matching of hyperfine parameters �HFP’s� as determined
from experiment and as computed from atomic models.1–6

Simply put, atomic models that give rise to HFP’s that agree
well with experimental values are deemed to be realistic. The
accurate computation of HFP’s is therefore of considerable
utility and interest. The increasing efforts in the area of nano-
science and nanotechnology, such as for the development of
nanomagnets,7 quantum dots,8 and nanocrystals,9 further
contribute to the importance of hyperfine studies. Among the
challenges in performing such calculations within the context
of density functional theory one can mention �1� the accurate
representation of, the spin density at, and in the vicinity of,
the nucleus, �2� the proper treatment of relativistic effects,
�3� the proper treatment of the strong charge density gradi-
ents in the nucleus region, and �4� the self-interaction correc-
tion. Recently, there has been an emphasis on challenges
�2�,10–13 �3�,14,15 and �4�.16 However, as is known from other
studies, a good representation of the wave functions is often
paramount; e.g., consider the many studies of the weakly
bonded Be dimer.17,18

In this paper, we shall focus on the first challenge. The
importance of accurately representing the spin density near
the nucleus is apparent right away from the fact that �1� the
Fermi contact interaction �also referred to as an isotropic
HFP� is proportional to the spin density at the nucleus and
�2� that the nonisotropic part of the hyperfine interaction is
proportional to the volume integral over the spin density di-
vided by the distance to the nucleus to the third power.

Although pseudopotential treatments for the calculation of
the hyperfine tensor have been developed,19,20 here we adopt
an all-electron formalism because it treats the spin polariza-
tion of the core states implicitly. As we are interested in the
anisotropic part of the hyperfine tensor, we do not make
shape approximations to the charge density or to the poten-
tial. Among the so-called all-electron full-potential methods,
the mixed-basis �MB� method is conceptually if not compu-
tationally perhaps the most appealing.21 In the MB method,

the electronic eigenstates are expressed in terms of confined
atomic eigenfunctions �atomic orbitals from now on� supple-
mented with plane waves. The atomic orbitals provide a
good approximation for the core states, whereas the plane
waves are computationally expedient and are needed only to
describe the deviation of the actual eigenstates from those in
the atomic configuration. For that reason, elements in the
first row of the periodic table, as well as transition metals,
are rather well described with relatively few plane waves
only.22,23

It is important to point out that the radial part of an atomic
orbital is represented as a numerical function. Therefore at
the nucleus, unlike say, a Gaussian, there is no restraint on
the value of the first derivative and unlike other functional
forms there is no constraining relation between function
value and derivative. The atomic orbitals are confined within
nonoverlapping atomic spheres, avoiding time-consuming
overlap integrals between radial functions on adjacent nuclei
and greatly facilitating the accurate calculation of forces.
Furthermore, the matrix elements between plane waves,
which are the largest part in the Hamiltonian matrix, do not
need to be stored in computer memory just as in the case of
the standard plane-wave approaches. Hence, compared to
other full-potential all-electron methods the MB approach
can be expected to be conceptually and computationally ad-
vantageous. The calculation of forces is of importance be-
cause relaxation of atomic positions is known to be a signifi-
cant factor for the accurate calculation of HFP’s.24 Here, the
density functional theory is used in the local spin density
formalism only because a previous study has shown that im-
provements in the HFP’s resulting from including gradient
terms are very minor.14 The MB approach was originally
introduced within the pseudopotential formalism for the ac-
curate treatment of transition metals.22,23,25–27 Therefore, we
describe how we extended the MB approach to an all-
electron formalism. Next, the method is applied to some
small clusters for which experimental data are available and
for which other theoretical results have been reported and the
MB results are examined and compared.
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II. FORMULATION

The characteristic feature of the all-electron MB approach
is that the Kohn-Sham28 wave functions are expanded by a
MB, which consists of plane waves �PW’s� and a Bloch sum
of well-localized functions centered at atomic nuclei R j, the
so-called atomic orbitals �AO’s�,

���r� = �
G

cG
� eiG·r

��
+ �

j
�
nlm

cjnlm
� � jnlm�r − Rj�

= �
G

cG
� �G� + �

j
�
nlm

cjnlm
� �� jnlm� = �

�

c�
����� , �1�

where the superscript � is the index of a Kohn-Sham eigen-
state, the boldfaced r�G� indicates a vector in direct �recip-
rocal� space, � is the volume of the unit cell, c is the expan-
sion coefficient, and � denotes the AO. The subscripts n, l,
and m refer to the principal, angular momentum, and mag-
netic quantum numbers, respectively. In the second equality,
the basis functions ���r� refer to either PW or AO basis
functions and c�

� denotes the coefficient of the � basis func-
tion in the � Kohn-Sham eigenstate. Since the PW’s and
AO’s are not orthogonal to each other, the generalized eigen-
value equation ���H���c��

� =�����S���c��
� must be solved to

determine the Kohn-Sham energy eigenvalues ��, where
H���= ����H����� and S���= ��� ����� denote the Hamiltonian
and overlap matrix elements between basis functions � and
��. In matrix form, the generalized eigenvalue equation can
be written as H��=��S��, where �� is a column vector
whose elements are given by c	,�. This generalized eigen-
value problem can be transformed to a standard eigenvalue
problem by a conventional Cholesky decomposition.25

A. Basis functions

Each AO is confined within a nonoverlapping atomic
sphere of radius rc, referred to as the cutoff radius. The AO’s
are of the form

� jnlm�r j� = Rjnl��r j��Yl
m�
,�� , �2�

where Y refers to a spherical harmonic. Cartesian vectors,
here and below, are indicated in boldface. The positional
vector relative to the nucleus is given by r j =r−R j, and the
radial coordinate is rj = �r−R j�. The radial part of the AO,
Rjnl�rj�, is stored numerically on a logarithmic radial mesh rj

from the vicinity of the nucleus R j to the cutoff radius rc,j.
Similarly, all other spherically symmetric functions such as
the AO-related spherical electron density and the spherical
potential for AO’s �see below� are stored on the same loga-
rithmic mesh along the radial coordinate. Here and below,
wherever no confusion is possible, we omit the subscript j in
r j, rj, and rc,j for brevity. For properties X associated with
atomic spheres j the following notation has been adopted:

X�r� = �
j

X�R j + r j� , �3�

with

X�R j + r j� = Xj�r j� , �4�

where Xj is understood to be associated exclusively with
sphere j.

It should be noted that the PW’s are used globally unlike,
say, the full-potential linearized angmented plane-wave
�FLAPW� method29 where PW’s are used in the interstitial
regions only. This simplifies the MB formalism considerably
because there is no need for matching at the atomic sphere
boundary. Instead, we must assure that the wave functions
and charge densities are smooth at the edge of the atomic
spheres. Therefore, we require that the AO’s vanish and also
have a vanishing first derivative at the sphere edge. This
means that the radial part satisfies

Rjnl�rc� = 0, � �Rjnl�r�
�r

	
r=rc

= 0. �5�

To assure that core states are well represented the functions
Rjnl�r� are derived from an atomic calculation. Initially, a
Herman-Skillman-type calculation is performed for an iso-
lated atom which provides atomic radial wave functions
Pjnl�r�. For brevity and without loss of generality, we absorb
the rl term in Pjnl�r�. The functions P do not generally satisfy
Eq. �5�. Therefore, low-order polynomials of r, which do not
destroy the properties of the radial functions near r=0, are
subtracted from P such that Eq. �5� holds,

R̃jnl�r� = 

Pjnl�r� − a00 − a02r

2, l = 0,

Pjnl�r� − a11r − a12r
2, l = 1,

Pjnl�r� − a22r
2 − a23r

3, l = 2,

Pjnl�r� − a33r
3 − a34r

4, l = 3,
� �6�

with

a00 = Pjn0�rc� − a02rc
2, a02 = rc

−11

2

�Pjn0

�r
�rc� ,

a11 = rc
−1Pjn1�rc� − a12rc, a12 = rc

−2�rc
�Pjn1

�r
�rc� − Pjn1�rc�	 ,

a22 = rc
−2Pjn2�rc� − a23rc,

a23 = rc
−3�rc

�Pjn2

�r
�rc� − 2Pjn2�rc�	 ,

a33 = rc
−3Pjn3�rc� − a34rc,

a34 = rc
−4�rc

�Pjn3

�r
�rc� − 3Pjn3�rc�	 . �7�

This truncation procedure is illustrated in Fig. 1. A conse-
quence of truncating and subtracting polynomials from P is

that the functions R̃jnl and R̃jn�l are no longer orthogonal. The

functions R̃ are orthogonalized with
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Rjnl�r� = R̃jnl�r� − �
n��n

Rjn�l�r��
0

rc

dx4
r2R̃jnl�x�Rjn�l�x� .

�8�

Particularly in the case of outer valence states it sometimes

happens that the remaining charge in a radial function R thus
calculated is exceedingly small. Then, it does not much im-
prove the description of the wave functions and an alternate

method for obtaining R̃ from P is used. Instead of subtract-

ing a polynomial, we multiply by a function:30 R̃jnl�r�
= Pjnl�r�M�r�, where M�r� is defined as

M�r� = 

1, r � rc − �r ,

1 − 3� r + �r − rc

�r
	2

+ 2� r + �r − rc

�r
	3

, r � rc − �r ,

0, r � rc,

r � rc,� �9�

where �r is the width over which the radial wave function is
modified, typically set to about rc /2. In this scheme, more of
the original charge is retained so that the basis function
Rjnl�r� contributes more to an improved description of the
wave functions. However, if still too little charge remains,
the AO is removed from the basis set. After orthogonaliza-
tion, the Rjnl�r� are normalized to unity as a final step, so that

�� jnlm�� j�n�l�m�� = � j j��nn��ll��mm�. �10�

Now that the final form of the AO has been determined, there
is still an important issue that needs to be addressed: over-
completeness of the basis for the Kohn-Sham wave func-
tions. This is detailed in the section on the overlap matrix
below.

B. Overlap matrix

Since the PW’s form an orthonormal set and the AO’s
have been orthonormalized as described above, elements be-
tween PW’s and AO’s only are of interest. The �� jnlm �G�
elements are calculated in real space as set forth by Elsässer
et al.27 by locally expanding the plane waves,

eiG·r = eiG·rjeiG·Rj = eiG·Rj�
L=0

�

�
M=−L

+L

4
iLjL�Grj�YL
M�Ĝ�YL

M�r̂ j� ,

�11�

where jL is a spherical Bessel function of the first kind of

order L and the solid angles r̂ j =r j / �r j� and Ĝ=G / �G� are
indicated with a caret. Then, by substitution of Eqs. �2� and
�11�, the overlap can be written as

�� jnlm�G� = SjnlmG

=
il

��
eiG·RjYl

m�Ĝ��
0

rc

drj4
rj
2Rjnl�rj�jl�Grj� .

�12�

In order for the diagonalization of the Hamiltonian to be
numerically stable, the overlap matrix must be positive defi-

nite and not nearly singular. In the MB approach nearly sin-
gular overlap matrices can occur when an AO is well repre-
sented by a combination of PW’s. Then, the basis is said to
be “overcomplete.” Therefore, when for any AO the norm
after orthogonalization with respect to the PW’s according to

�� jnlm
orth:PW� = �� jnlm� − �

G
�G��G�� jnlm� �13�

is less than some small value, that AO is discarded from the
basis set. Naturally, whether a particular AO is discarded
depends on the cutoff energy for the PW’s. As the PW’s and
AO’s each form orthonormal sets by construction 
see Eq.
�10��, this simple procedure avoids numerical instability due
to overcompleteness in the wave-function basis.

C. Hamiltonian

According to density functional theory28,31,32 �DFT� in the
local density approximation �LDA�, one may derive the
Kohn-Sham Hamiltonian as

H = −
1

2
�2 + VH�r� + VN�r� + Vxc�r� , �14�

where the first term is the electron kinetic energy. VH, VN,
and Vxc�r� represent, respectively, the Hartree potential, the

FIG. 1. Construction of AO’s from atomic radial wave
functions.
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nucleus Coulomb potential, and the exchange-correlation po-
tential,

VH�r� =� dr�
��r��

�r − r��
, VN�r� = − �

j

Zj

�r − Rj�
,

Vxc�r� =
�Exc
��
���r�

, �15�

where Zj is the atomic number, ��r� is the electron density,
and Exc
�� is the exchange-correlation energy which is a
functional of ��r�. The local spin density approximation
�LSDA� of DFT is analogous. Likewise the generalized gra-
dient approximation �GGA� of the DFT affects the details
concerning the definition of Exc
�� only. Three types of
Hamiltonian matrix elements must be distinguished:
�G�H�G��, �G�H���, and ���H����. These elements are com-
puted while taking advantage of the global and radial repre-
sentations as will be detailed below.

D. Electron density

The electron density ��r� can be decomposed into plane-
wave and atomic orbital contributions as follows:

��r� = �PW PW�r� + �
j

� j
AO AO�r� + �

j

� j
PW AO�r� . �16�

These contributions are computed with

�PW PW�r� =
2

�
�
�

f��
G

�
G�

cG�
�* cG

� ei�G−G��·r, �17�

� j
PW AO�r� =

2
��

�
�

f��
G

�
nlm

cG
�*cjnlm

� e−iG·r� jnlm�r� + c.c.,

�18�

� j
AO AO�r� = 2�

�

f��
nlm

�
n�l�m�

cjn�l�m�
�* cjnlm

� � jn�l�m�
* �r�� jnlm�r� ,

�19�

where the prefactor of 2 accounts for spin duplicity. f� is the
occupancy of level �, computed with the Fermi-Dirac distri-
bution function through

f� = 
1 + e���−�F�/kBTe
�−1, �20�

where �� is the corresponding eigenvalue of the Hamiltonian,
�F is the Fermi energy, kB is the Boltzmann constant, and Te

denotes the electron temperature.
The PWPW contribution 
Eq. �17�� is computed quickly

in reciprocal space for small numbers of plane waves only.
When the number of plane waves is large a more efficient
real-space method is used:

�PW PW�r� = 2�
�

f�c�*�r�c��r� , �21�

where the coefficients c��r� are the Fourier transform of cG
� .

The AO-related contributions have nonzero values within the

atomic spheres only. The angular components of � j
PW AO and

� j
AO AO are conveniently computed through a projection onto

spherical harmonics,

� j,LM�rj� =� dr̂YL
M*�r̂ j�� j�r j� , �22�

which gives, after substitution with Eqs. �2� and �11�,

� j,LM
PW AO�rj�

=
16


��
Re��

G
�

nlm,l�m�

il�jl��Grj�Yl�
m�*�Ĝ�eiG·Rj

�Rjnl�rj�CLM,l�m�,lm�
�

f�cjnlm
�* cG

� � , �23�

� j,LM
AO AO�rj�

= 2 �
nlm,n�l�m�

Rjnl�rj�Rjn�l��rj�Cl�m�,LM,lm�
�

f�cjnlm
�* cjn�l�m�

� ,

�24�

where “Re” indicates the real part and Cl�m�,LM,lm is a Gaunt

coefficient defined as Cl�m�,LM,lm=�dr̂Yl�
m�*YL

MYl
m.33,34 The

Gaunt coefficients are real and vanish unless the triangle
condition is satisfied: m�=M −m and �l��� �L− l�.35 The
spherical averages are then trivially computed through the
L=0 components, using Clm,00,l−m=1/�4
,

� j,L=0
PW AO�rj�

= 8�


�
Re��

G
�
nlm

iljl�Grj�Yl
m�Ĝ�eiG·Rj

�Rjnl�rj��
�

f�cjnlm
�* cG

� � , �25�

� j,L=0
AO AO�rj� =

1
�


�
nlm,n�

Rjn�l�rj�Rjnl�rj��
�

f�cjn�lm
�* cjnlm

� .

�26�

The spherically averaged charge density centered at atom j,

� j
radial�rj� = 
� j,L=0

PW AO�rj� + � j,L=0
AO AO�rj��Y0

0�r̂ j�

=
1

�4


� j,L=0

PW AO�rj� + � j,L=0
AO AO�rj�� , �27�

combined with the PW-PW contribution on the global mesh
gives in many cases an adequate description of the charge
density. However, when there is significant covalent bonding
the nonspherical part of the PW-AO and AO-AO charge den-
sity may be important. These L�1 terms in Eqs. �23� and
�24� can be easily computed and are added to the charge
density on the global mesh:
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�global�r� = �PW PW�r� + �
L�1,M

�
j

YL
M�r̂ j�

�
� j,LM
AO AO�rj� + � j,LM

PW AO�rj�� . �28�

The charge density thus is divided into a global and a radial
part:

��r� = �global�r� + �
j

� j
radial�r j� . �29�

An alternate method of computing � j
PW AO directly on the

global mesh through projecting the AO’s onto PW’s with

�PW AO�G − G�� = 2 �
jnlm

�
G�

Re��G�� jnlm��
�

f�cG�
� *cjnlm

� �
�30�

does not strictly satisfy the condition that �PW AO be zero
outside the atomic spheres and is generally insufficiently ac-
curate.

The total charge density can be represented on either the
global mesh or, within the atomic spheres on the radial mesh,
with

�tot
global�G� = �global�G� + �radial�G� , �31�

with the spherically Fourier-transformed radial charge den-
sity,

�radial�G� = �
j

eiG·Rj�
0

rc

drj4
rj
2j0�Grj�� j

radial�rj� , �32�

�tot
radial�rj� = � j

radial�rj� +
1

2
Gmax

��
0

Gmax

dGG2j0�Gr� � dĜe−iG·Rj�global�G� .

�33�

Of course, the radial representation of �tot is spherically av-
eraged and therefore approximate. The global representation
in reciprocal space requires a very high cutoff energy for the
Fourier transform of the radial part due to the highly local-
ized core states. Therefore, in the calculation of the ex-
change-correlation potential a direct-space method is used
where the radial charge density is sampled at points rj which
correspond to the global mesh points r with

�tot
global�r� = �global�r� + �

j

� j
radial�rj� . �34�

This gives “exact” values for �tot
global on the mesh points r.

E. Potential

In the MB the potential is expressed as the sum of two
parts, a global part and a radial part within each of the atomic
spheres. The exchange-correlation potential Vxc is a function
of the total charge density and as such requires a careful
summation of global and spherical charge densities as in Eqs.
�34� and �33�. Moreover, we seek to express Vxc as the sum

of a spherically averaged potential Vxc
radial��r j�� inside atomic

spheres and a global term Vxc
global�r� as in Eq. �29�. The

spherically averaged potential is indispensable because the
global term cannot represent accurately the rapid variation
near the atomic cores.

Implementing the generalized gradient approximation in
the MB method is more complicated than in pseudopotential
methods because in the former the total charge density must
be considered which nearly diverges in the vicinity of the
nuclei. In the GGA the Laplacian must be evaluated which is
even more nearly divergent than the total charge density
itself,36 while there is a nonanalyticity at the nucleus which
can be remedied with, e.g., a finite nucleus model.14 Fortu-
nately, on the global mesh the evaluation of the Laplacian
can be circumvented through the method of White and
Bird.37 On the radial mesh, however, the near divergence of
the Laplacian remains. The solution to this problem imple-
mented within the MB is to represent the total charge density
of the global mesh, using a very high cutoff for the G vec-
tors, and employing the White- Bird method. Then, the radial
components of the exchange-correlation potential and energy
density are extracted by means of a radial Fourier transform.
Within the context of hyperfine calculations, the work by
Battocletti et al.14 indicates that the “finite-nucleus model
+GGA” does not produce significant improvement over the
L�S�DA, however. Therefore, it maybe most practical to op-
timize the atomic positions with a pseudopotential or PAW
method while performing the hyperfine calculations with an
all-electron LSDA method such as the MB method presented
here.

In the case of the LDA a more accurate method can be
adapted as follows. First, the total charge density is calcu-
lated in real space on the global mesh with Eq. �34�, which
gives Vxc,tot

global�r� by applying an appropriate functional.38

Next, the spherically averaged total charge density is com-
puted within each of the atomic spheres 
Eq. �33�� which
provides Vxc,tot

radial�rj�. The latter is discontinuous at rj =rc be-
cause the total charge density does not vanish near the edge
of the sphere. This is remedied by subtracting a parabola, in
the same manner as the s-like atomic radial wave functions
were made to vanish smoothly at r=rc,

Vxc
radial�rj� = Vxc,tot

radial�rj� − Vxc,tot
radial�rc� +

rc
2 − r2

2rc
� �Vxc,tot

radial

�r
	

r=rc

.

�35�

Finally, a smoothly varying global part of the exchange-
correlation potential is obtained with

Vxc
global�r� = Vxc,tot

global�r� − �
j

Vxc
radial�rj� . �36�

As in the case of the charge density 
see Eq. �29�� and
exchange-correlation potential, the Hartree potential is repre-
sented as the sum of a global part and radial parts. The global
part VH

global�r� is computed through
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VH
global�G� = 4
�global�G�/G2 �37�

or, in case the Coulomb potentials are truncated �see below�,
through

VH
global�G� = 4
�global�G�
1 − cos�Grt��/G2, �38�

where rt is the truncation radius. When the Hartree potential
is not truncated the G=0 term is divergent. However, for
charge-neutral systems it cancels with the corresponding
nucleus potential term as will be discussed below 
see Eqs.
�48� and �49��.

The Hartree potential that derives from the radial charge
density is obtained in a general form using the multipole
expansion,

VH,jlm
AO �rj� =

4


�2l + 1�rj
l+1�

0

rj

� jlm
AO�r�rl+2dr

+
4
rj

l

2l + 1
�

rj

� jlm
AO�r�r1−ldr , �39�

where � jlm
AO =� jlm

PW AO+� jlm
AO AO, which are given by Eqs. �23�

and �24�. Retaining the l=0 contribution only and dividing in
a short-ranged part VH,j

radial�rj� within the atomic sphere and a
long-ranged part VH-long,j

radial �rj� that extends beyond the atomic
sphere gives

VH,j
radial�rj� =

4


rj
�

0

rj

� j
radial�r�r2dr + 4
�

rj

rc

� j
radial�r�rdr

for rj � rc, �40�

VH-long,j
radial �rj� =

4


rj
�

0

rc

� j
radial�r�r2dr for rj � rc. �41�

VH,j
radial is solved with a numerical integration on the radial

mesh using Simpson’s method while VH-long,j
radial is integrated

analytically, leading to

VH-long,j
radial �rj� =

Qj

rj
with Qj = �

0

rc

4
r2� j
radial�r�dr , �42�

where Qj is the electronic charge on the radial mesh inside
the atomic sphere centered on atom j. Note that VH,j

radial is
defined only within atomic sphere j, whereas VH-long,j

radial is de-
fined only outside sphere j. VH-long,j

radial is never explicitly cal-
culated; rather, it is absorbed in the long-ranged nucleus po-
tential 
see Eq. �44��.

The nucleus potential, also, is written as the sum of two
parts, a smooth long-ranged potential VN,j

global�r� on the global
mesh and a highly localized potential within the atomic
spheres VN,j

radial�rj� where

VN�r� = − �
j

Zj

�r − Rj�
= VN-bare

global �r� + �
j

VN,j
radial�rj� . �43�

The long-ranged bare nucleus potential has the same form as
the long-ranged radial Hartree potential, so that they can be
combined to give the long-ranged screened nucleus potential

VN
global�r� = VN-bare

global �r� + �
j

VH-long,j
radial �rj� = − �

j

Zj − Qj

�r − Rj�

= − �
j

Zj
s

�r − Rj�
for rj � rc, �44�

where Zj
s=Zj −Qj is the screened nuclear charge. The long

tail of the nucleus potential can optionally be truncated in
real space to eliminate interactions with neighboring clusters
�unit cells� with

VN,j
global�r j� = 0 for rj � rt, �45�

where rt is typically set to a quarter of the edge of the �cubic�
unit cell. From now on, references to the global nucleus po-
tential shall refer to the screened nucleus unless explicitly
stated otherwise. So far, the global nucleus potential has not
been defined within the atomic sphere from which it origi-
nates. For this part we are at liberty to select any radial
function, provided that it is subtracted from the radial part of
the nucleus potential so that within the spheres the global
and radial parts add up to Zj /rj 
see also Eq. �43��. Naturally,
a smooth radial function is selected that can be well repre-
sented with a small number of plane waves only. Therefore,
continuity of the potential and its derivative are imposed at
the sphere boundary using a low-order polynomial

VN,j
global�rj� = −

Zj
s

2
�3rc

−1 − rc
−3rj

2� for rj � rc. �46�

This is schematically illustrated in Fig. 2. The analytical
form 
Eqs. �46� and �44�� of the global nucleus potential
makes it possible to use an analytic Fourier transform,

VN
global�G�

= − �
j

4
Zj
se−iGRj

��G2 �3 cos Grc

�Grc�2 −
3 sin Grc

�Grc�3 − cos Grt	
= − �

j

4
Zj
se−iGRj

��
� j0�Grc� + j2�Grc� − cos Grt

G2 	 . �47�

When the long-ranged screened nucleus potential is trun-
cated the G=0 term is given by

FIG. 2. Definition of screened global nucleus potential.
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VN
global�0� = − �

j

4
Zj
s�5rt

2 − rc
2�/�10��� . �48�

Without truncation the G=0 term diverges. The sum of the
divergent terms is finite, however,

VN
global�0� + VH

global�0� = �
j

4
Zj
src

2/�10��� . �49�

Therefore, without Coulomb truncation we arbitrarily set
VH

global�0�=0 and VN
global�0�=� j4
Zj

src
2 / �10���. The radial

part of the nucleus potential, defined within the atomic
spheres only, is given by

VN
radial�rj� = −

Zj

rj
+

Zj
s

2
�3rc

−1 − rc
−3rj

2� for rj � rc. �50�

The total potential V is represented as the sum of a global
part Vglobal and a radial part also,

Vglobal�G� = VN
global�G� + VH

global�G� + Vxc
global�G� ,

Vradial�rj� = VN
radial�rj� + VH

radial�rj� + Vxc
radial�rj� for rj � rc.

�51�

It should be noted that VN
global is radially symmetric. Vradial�rj�

can be Fourier transformed through

Vradial�G� = �
j

eiG·Rj�
0

rc

drj4
rj
2j0�Grj�Vradial�rj� , �52�

where G vectors with high cutoff energy are required. Typi-
cal values are 1–2 keV, about an order of magnitude higher
than what is required for the plane-wave expansion of the
wave functions. The higher value is required for hydrogen as
was observed also in FLAPW force calculations.39 As in the
case of the charge density, the total potential can be repre-
sented on the global and radial meshes with

Vtot
global�G� = Vglobal�G�

+ �
j

eiG·Rj�
0

rc

drj4
rj
2j0�Grj�Vradial�rj� ,

�53�

Vtot
radial�rj� = Vradial�rj� +

1

2
Gmax

��
0

Gmax

dGG2j0�Grj� � dĜe−iG·RjVglobal�G� .

�54�

The ��i�V���j� matrix elements between AO’s centered on
sites i and j are given by

��i�V�� j�� = �ij� �
G,G�

��i�G��G�Vglobal�G���G��� j��

+ ��i�Vradial��i��� , �55�

but in practice taking the spherical average of the global

potential gives accurate results much faster with a one-
dimensional integration,

��inlm�V�� jn�l�m�
� �

� ��inlm�Vtot
radial�� jn�l�m�

� �

� �ij�ll��mm��
0

rc

drjrj
2Rnl�rj�Vtot

radial�rj�Rn�l�rj� . �56�

It should be noted that because Vtot
radial�rj� has angular mo-

mentum l=0, the matrix elements are diagonal in l and m.
Likewise, the �G�V�� jnlm� matrix elements can be computed
conveniently and accurately using the total radial potential
centered on site j with

�� jnlm�V�G�

=
il

��
eiG·RjYl

m�Ĝ��
0

rc

drj4
rj
2Rl�rj�Vtot

radial�rj�jl�Grj� .

�57�

The �G�V�G�� matrix elements can be obtained using Eq.
�53�.

F. Kinetic energy

The PW-PW matrix elements of the electronic kinetic en-
ergy are given simply by −�G2 /2��G,G�. The �G�−�2 /2���
elements are calculated by projecting the AO’s onto plane
waves using the overlap matrix elements,

�G�−
�2

2
��� = −

G2

2
�G��� . �58�

The ����−�2 /2��� elements are computed in real space us-
ing

�2�RY� = 
Rrr + 2r−1Rr − l�l + 1�r−2R�Y , �59�

where Rr is shorthand for �Rjnl /�r. The AO-AO matrix ele-
ments of the kinetic energy operator are diagonal in the site j
due to the nonoverlapping atomic spheres, and they are di-
agonal in l and m because of the orthogonality of the spheri-
cal harmonics. Simplifying the integrals,

�
0

rc

drr2RRrr =� dSr2RRr − �
0

rc

drr2Rr
2 + 2rRRr, �60�

and using the definition of R 
see Eq. �5�� to show that sur-
face integrals such �dSr2RRr and �dSrR2 vanish, one obtains

− �� jn�lm��2�� jnlm� = �
0

rc

dr
�rRjn�l

�r

�rRjnl

�r
+ l�l + 1�Rjn�lRjnl,

�61�

which is easily evaluated using a one-dimensional integra-
tion. It should be noted that the �� jn�lm��2�� jnlm� elements
are not diagonal in the principal quantum number n, in con-
trast to the AO’s themselves. Thus the kinetic energy K is
given by
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K = − �
�

f���
G

G2cG
�*cG

� + 2�
G

�
jnlm

G2 Re
�G�� jnlm�cG
�*cjnlm

� �

+ �
jnn�lm

�� jnlm��2�� jn�lm�cjnlm
�* cjn�lm

� � . �62�

G. Total energy and free energy

The total energy is most conveniently computed using the
Kohn-Sham eigenvalues,

Etot = 2�
�

f��� −
1

2
� ��r�VH�r�dr −� ��r�Vxc�r�dr

+ Exc + Eii, �63�

where Exc=���r��xc�r�dr is the exchange-correlation energy
and Eii represents the Coulomb energy between nuclei, the
so-called Madelung energy. In the MB formalism the total
energy is evaluated by expanding in global and radial terms,

Etot = 2�
�

f��� −
1

2
� �global�G�VH

global�− G�dG

−� �radial�G�VH
global�− G�dG

− 2
� r2�radial�r�VH
radial�r�dr +� �global�r��xc

global�r�dr

+� �global�G��xc
radial�− G�dG

+� �radial�G��xc
global�− G�dG

+ 4
� r2�radial�r��xc
radial�r�dr + Eii + Ecc, �64�

where �xc=�xc−Vxc. The long-ranged part of the radial Har-
tree potential gives rise to a core-core Coulomb term Ecc,
which is of the same form as the ion-ion term if it is assumed
that the radial charge density within an atomic sphere is well
represented by a point charge,

Eii =
1

2 �
k�j

ZjZk

�R j − Rk�
, Ecc = −

1

2 �
k�j

QjQk

�R j − Rk�
, �65�

where Qj is the radial electronic charge within the atomic
sphere j given by Eq. �42� and j and k refer to atoms inside
and outside the unit cell. Usually these sums are evaluated
with the Ewald method, but when the Coulomb potential is
truncated the sums are limited to ions k and j within the unit
cell only so that a simple summation suffices.

If there is a small or vanishing gap, it frequently happens
that states near the Fermi level switch between occupied and
unoccupied from one self-consistency iteration to the next. In
such a case it is advantageous to use broadening by consid-
ering nonzero electron temperatures. In metals and at finite
temperatures partial occupancies occur so that the contribu-
tion of the electronic entropy Se must be taken into account,

Se = − 2kB�
�


f� ln�f�� + �1 − f��ln�1 − f��� . �66�

The total energy is the proper thermodynamic potential only
when Te=0; at nonzero temperature, the free energy should
be used,40,41

� = Etot − TeSe. �67�

Expression �64� is not expedient for the derivation of the
forces. Then, it is better to use

Etot = K + W + Eii, �68�

where K and W represent the kinetic and potential energy,
respectively, of the electrons. The potential energy W is
given by

W =� dr��r��VN�r� +
1

2
VH�r� + �xc� . �69�

As in Eq. �64� this expression can be decomposed in contri-
butions on the radial and global meshes.

H. Force calculation

The force calculation follows the earlier work for the
pseudopotential MB method by Ho et al.26 but has been ad-
justed for the present all-electron formalism. The current
derivation is similar also to the force calculation in the
LAPW method by Yu et al.42 except that the muffin-tin sur-
face contribution 
Eq. �20b� in Ref. 42� can be made to van-
ish trivially in the MB method by imposing boundary condi-
tions on the radial part of the atomic orbitals 
see Eq. �5��.
The force F on atom j can be expressed in terms of partial
derivatives as follows:

F j = −
d�

dR j
= − � ��

�R j
	

c,f
− � ��

�c
	

R,f
� �c

�R j
	

f

− � ��

�f
	

R,c
� �f

�R j
	

c
, �70�

where the notation for partial derivatives as is customary in
thermodynamics is employed.43 The first term on the right-
hand side �RHS� corresponds to the usual Hellmann-Feyn-
man force, and the second term gives rise to the so-called
incomplete basis set force,44–47 while the third term vanishes
because the electronic free energy is minimal with respect to
the occupation numbers; see also Ref. 41.

As was shown by Weinert and Davenport41 there is no
contribution from the electronic entropy term −TS to the
force so that the Hellmann-Feynman force can be divided
into three parts, a contribution �1� from the kinetic energy,
�2� from the product of total potential and electronic charge
density, and �3� from the ionion energy. The kinetic energy
contribution is calculated easily using Eqs. �58� and �61�,
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� �K

�R j
	

c,f

= −
1

2
� �

�R j
	

c,f
�
�

f�� �
pnlm,n�

cpnlm
�* cpn�lm

� ��pnlm��2��pn�lm�

+ �
pnlm,G

cpnlm
�* cG

� G2��pnlm�G�

+ cG
�*cpnlm

� G2�G��pnlm� + �
G

cG
�*cG

� G2� . �71�

Clearly, the only R j dependence derives from the overlap
elements �G ��pnlm� and its complex conjugate. Equation
�12� shows that

� ��G��pnlm�
�R j

	
c,f

= iG�G�� jnlm� , �72�

so that

� �K

�R j
	

c,f
= �

�

f� �
nlm,G

GG2 Im
cG
�*cjnlm

� �G�� jnlm�� , �73�

where “Im” indicates the imaginary part.
The force contribution of the potential energy W arises

from two sources: �i� the phase factors in the integrals over
products of radial and global properties and �ii� the explicit
R j dependence in the PW-AO contribution to the radial
charge density as evidenced in Eq. �25�. First, the contribu-
tion from the phase factors is examined,

� �W

�R j
	

c,f
= � �

�R j
	

c,f
� dGVN�− G���G� +

1

2
VH�− G���G�

+ �xc�− G���G� . �74�

The nuclear part contributes only when the global charge
density is involved,

� �

�R j
	

c,f
� dGVN�− G���G�

= − 4
� �

�R j
	

c,f
�

k
� dG

Zk

G2e−iG·Rk�global�G�

= − 4
� dG − iG
Zj

G2e−iG·Rj�global�G�

= −� dGGZj Im
eiG·RjVH
global�− G�� . �75�

The Hartree part can be analyzed along similar lines,

� �

�R j
	

c,f
� dG

1

2
VH�− G���G�

= 2
� �

�R j
	

c,f
�

k
� dG��k

radial�− G�
G2 e−iG·Rk�global�G�

+
�global�− G�

G2 eiG·Rk�k
radial�G��

=� dGG� j
radial�G�Im
VH

global�− G�eiG·Rj� . �76�

The exchange correlation part is most apparent by first dif-
ferentiating with respect to the charge density,

� �

�R j
	

c,f
� dr�xc�r���r�

=� dr
d�xc�r���r�

d��r� � ���r�
�R j

	
c,f

=� drVxc�r�� ���r�
�R j

	
c,f

=� dGVxc�− G�� ���G�
�R j

	
c,f

=� dGG� j
radial�G�Im
Vxc

global�− G�eiG·Rj� . �77�

The contribution from the explicit R j dependence in the
PW-AO part of the radial charge density is determined as
follows:

� dr
d�
VN�r� + 1

2VH�r� + �xc�r����r��
d�

� ���r�
�R j

	
c,f

=� dr
VN�r� + VH�r� + Vxc�r��� ���r�
�R j

	
c,f

=� drVtotal�r�� ���r�
�R j

	
c,f

=� drVtotal�r��
k
� ��k

PW AO�r�
�R j

	
c,f

=
4

��
�
G

G�
nlm

Im�ilYl
m�Ĝ�eiG·Rj�

�

f�cG
� cjnlm

�* �
�� drjjl�Grj�Vtotal

radial�rj�Rjnl�rj� . �78�

The force from the electronic potential energy can hence be
written as

� �W

�R j
	

c,f
=� dGG�� j

radial�G� − Zj�Im
VH
global�− G�eiG·Rj�

+� dGG� j
radial�G�Im
Vxc

global�− G�eiG·Rj�

+
4

��
�
G

G�
nlm

Im�ilYl
m�Ĝ�eiG·Rj�

�

f�cG
� cjnlm

�* �
�� drjjl�Grj�Vtotal

radial�rj�Rjnl�rj� . �79�

The Madelung contribution to the Hellmann-Feynman
force is obtained by differentiating the Ewald summation,
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� �

�R j
	

c,f

1

2�
p,q

Zp
sZq

s�
T

�1 − �T,0�p,q�
�Rp − Rq + T�

= − �
q

Zj
sZq

s��
T

�1 − �T,0� j,q�
�R j − Rq + T�
�R j − Rq + T�2

�� 2�

�

exp�− �2�R j − Rq + T�2�

+
erfc���R j − Rq + T��

�R j − Rq +T� 	
+

4


�
�

G�0

G

�G�2
exp�− �G�2�−2/4�sin
�R j − Rq� · G�� ,

�80�

or, in case the Coulomb potential is truncated, by differenti-
ating the direct sum,

� �

�R j
	

c,f

1

2�
p,q

Zp
sZq

s

�Rp − Rq�
= − �

q

Zj
sZq

s

�R j − Rq�2
R j − Rq

�R j − Rq�
,

�81�

where the screened nuclear charge is used because the long-
ranged radial Hartree potential is combined with the nuclear
potential as set forth in Eq. �42�.

Aside from the usual Hellmann-Feynman force, the in-
complete basis set force must be considered,

�
�,	

� ��

�c	
�	

R,f

�c	
�

�R j
+ c.c. = �

�

f��
�,	

c�
�*H�	

�c	
�

�R j
+ c.c.

= �
�

f����
�,	

c�
�*S�	

�c	
�

�R j
+ c.c.

= − �
�

f����
�,	

c�
�*�S�	

�R j
c	

�, �82�

where the orthonormalization condition ��,	c�
�*S�	c	

�=1 has
been used. The overlap matrix element is a function of R j
only if it is between a plane wave and an atomic orbital on
site j as is apparent from Eq. �72� which gives

�
�,	

� ��

�c	
�	

R,f

�c	
�

�R j
+ c.c.

= − �
�

f��� �
G,nlm

cG
�*iGSGjnlmcjnlm

� + c.c.

= − 2�
�

f��� �
G,nlm

G Im
cG
�*SGjnlmcjnlm

� � . �83�

Comparison with Eq. �73� shows that the kinetic energy
contribution to the Hellmann-Feynman force has a very simi-
lar form as the incomplete basis set force. The atomic forces
are now computed by evaluating Eqs. �73�, �83�, �79�, and
�80� or �81�.

I. Hyperfine tensor

One of the advantages of all-electron methods is that
properties associated with core levels are readily computed.

Here, the computation of the hyperfine tensor will be written
out in some detail. The hyperfine tensor A can be divided
into the Fermi contact interaction a and the dipole interaction
b,

A�� = a��� + b��, �84�

where the subscripts � , � refer to Cartesian coordinates x, y,
and z. The Fermi contact interaction is proportional to the
spin density �s�R j�=�↑�R j�−�↓�R j� at the nucleus R j,

aj =
2

3
�0ge�egj� j�s�R j� , �85�

where �0 is the permeability of vacuum �4
�10−7

T2 m3 J−1�, ge is the electron g factor, �e is the Bohr magne-
ton, and gj and � j are the gyromagnetic ratio and the mag-
netic moment of the nucleus j. Throughout this work, gj and
� j values are taken from Ref. 48. The spin density at the
nucleus is trivially computed from the charge densities as
given by Eqs. �21�, �25�, and �26�. The dipole part is a func-
tion of the spin density also,

bj,�� =
1

4

�0ge�egj� j� dr j

�s,j�r j�
rj

3 T��

with T�� =
3x�x� − rj

2���

rj
2 . �86�

The tensor T can be easily expressed in terms of real spheri-

cal harmonics Ỹ,

T =�12


5 �Ỹ2
2 − �1/3Ỹ2

0 − Ỹ2
−2 − Ỹ2

1

− Ỹ2
−2 − Ỹ2

2 − �1/3Ỹ2
0 − Ỹ2

−1

− Ỹ2
1 − Ỹ2

−1 �4/3Ỹ2
0
� ,

�87�

so that the dipole interaction can be computed conveniently
with

bj,�� =
1

4

�0ge�egj� j� drj �

M=−2

2
�s,jLM�rj�

rj
� dr̂jYL

M*�r̂ j�T��

with L = 2. �88�

Note that the integral over r̂ j is trivial because spherical har-
monics are orthonormal. Hence, a one-dimensional integral
remains. The LM-decomposed AO-AO and PW-AO charge
densities have been derived already 
see Eqs. �23� and �24��,
and the PWPW part is derived as.

�
lm

� jlm
PW PW�rj�Yl

m�r̂ j� =� dGe−iG·Rje−iG·rj�PW PW�G� ,

�89�

where r j is understood to go beyond the sphere j because a
significant part of the spin density may be outside �between�
the atomic spheres. After multiplying with Yl

m*�r̂ j� and inte-
grating over r̂ j, while substituting Eq. �11�, this becomes
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� jlm
PW PW�rj� = 4
� dGe−iG·Rji−l jl�Grj�Yl

m�Ĝ��PW PW�G� .

�90�

Alternately, the PW-PW contribution to b can be computed
directly by evaluating Eq. �86� directly in real space.

Since the hyperfine tensor A is symmetric, one can diag-
onalize it in terms of two perpendicular A� and one parallel
A� components. Then, the anisotropic HFP Aaniso is expressed
as Aaniso=A� −A�.

Although relativistic corrections have not been considered
in this work, we explicitly mention that there is an elegant
formalism for including scalar relativistic effects.49 Blügel et
al.49 have shown that to first order scalar relativistic correc-
tions to the Fermi-contact hyperfine field can be obtained by
replacing the spin density at the nucleus position �s�R j� in
Eq. �85� with an average �s�R j� computed over a small
sphere centered on that nucleus with a radius of the order of
the Thomson radius, rT=Zje

2 /mc2, where m and c are the
electron mass and speed of light in vacuum, respectively,
according to

�s�R j� =� dr�s�R j + r���r� , �91�

where ��r� is a smeared-out delta function, as

��r� =
1

4
r2

rT/2

�r + rT/2�2 . �92�

The implementation of the second and higher order relativ-
istic corrections such as the spin-orbit interaction requires
much more sophisticated methods—e.g., transformed Hamil-
tonian methods. Such methods have their own difficulties
accurately representing the spin density in the vicinity of
nucleus.50

J. Spin-polarization mechanism of core levels

It is well known that in some cases the effective magnetic
field at the nucleus is opposite to the spin polarization.51 This
somewhat counterintuitive finding has been explained in de-
tail for ferromagnetic iron in terms of spin-dependent defor-
mation of core-level s orbitals as a result of interaction with
spin-polarized valence states.52

Here we analyze the spin-polarization mechanism of core
s levels within the DFT formalism. In order to give a quali-
tative picture of the driving force of this mechanism and
clarify how each core s level contributes to the spin density
at the nucleus, we use first-order perturbation theory to con-

struct the spin-polarized wave function �̃�
� from a linear

combination of non-spin-polarized eigenstates ��. Through-
out this paper � indicates the spin sign: it takes the value +1
�−1� for majority spin up �minority spin down�, and it is
labeled with an upward �downward� arrow subscript.

As a starting point, we consider that the spin polarization
induces a perturbing potential �V�, so that the first-order

perturbation of energy, ��̃�
�, and wave function �̃�

� are given
as

��̃�
� = �����V����� , �93�

��̃�
�� = ���� + � �

���

C������ , �94�

where we have used the fact that the perturbing potential
�V� differs just in sign for the spin-up and spin-down chan-
nels 
see Eq. �103�� so that

C�� = �
�����V�����

�� − �� �95�

does not depend on �. Equations �94� and �95� suggest that
only levels � need to be taken into account which are ener-
getically close to the given level � and for which
�����V����� is considerable. Additionally, Eq. �95� implies
that C�� should have real values for given s orbitals � and �
and that C��=−C��.

The spin density at the nucleus derived from a certain
s-type core level can be related to the perturbed wave func-
tions and the C coefficients with

�s
��r� = �↑

��r� − �↓
��r� = 4���r� �

���

C�����r� . �96�

As we shall consider only s-type core levels, which have
positive radial wave functions at the nucleus, it follows that
if the C coefficients are positive, the spin density at the
nucleus is of the same sign as the overall spin polarization
and vice versa. To determine whether a given level � has a
positive or negative contribution to the isotropic HFP comes
down to determining the sign and magnitude of the C�� co-
efficients. When Eq. �96� is summed over all levels � and
considering that C�� changes sign under reversal of the su-
perscripts, it is apparent that Eq. �96� gives a vanishing net
spin polarization at the nucleus. In other words, while our
simple first-order perturbation gives insight into the contri-
butions from individual levels to the spin density at the
nucleus, it is too crude to formulate the effect of the total
core polarization.

Equation �95� shows that C�� depends on �V�. Here, we
use DFT to define �V� in terms of the total charge density
and the spin density. Our argument is based on the fact that
the spin polarization of the Kohn-Sham levels originates
from the spin-dependent effective potential Vef f,��r�. The ef-
fective potential Vef f,��r�, in the absence of external fields, is
defined analogously to Eq. �14� as

Vef f,��r� = VN�r� + VH�r� + Vxc,��r� . �97�

Equation �97� reveals that the exchange-correlation potential
Vxc,��r� is the only term which is spin dependent. This term
can be separated into exchange and correlation contributions,
Vxc,��r�=Vx,��r�+Vc,��r�. As there is no transparent way to
define a spin-decomposed form of the correlation potential
Vc,��r�, we retain only the exchange potential Vx,��r�. In any
case the contribution of Vc,��r� to the effective potential dif-
ference �Vef f is expected to be negligible.53

Following the LSDA method,54 the exchange potential is
expressed as55
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Vx,��r� =
�Ex
�↑,�↓�

����r�
, �98�

where

Ex
�↑,�↓� = −
9

4
�� 3

4

	1/3� 
��↑�4/3 + ��↓�4/3�dr , �99�

where � has the units �energy length� / charge4/3, for the ho-
mogeneous free electron gas �=2/3 in atomic units.56 As is
common in the literature, below we will assume atomic units
and fold �=2/3 into the numerical factor, which gives

Vx� � − 21/3� 3



	��

1/3. �100�

Defining the spin-polarization parameter � as

� =
�↑ − �↓

�↑ + �↓
=

�↑ − �↓

�
, �101�

Eq. �100� becomes

Vx� � −
3



�1 + ���1/3�1/3 �102�

and the change due to the spin polarization is given by the
first-order term of a Taylor series in �:

�Vx� � −
�



�1/3� + O��2� . �103�

It is to be noted that the perturbing potential differs only in
sign for the two spin channels, as mentioned above Eq. �95�.
As Eq. �103� is the first-order term, it is valid for small
values of � only. Near the nucleus this should be a good
approximation, but far from the nucleus, where � takes large
values, Eq. �103� should be less accurate. The effective po-
tential difference

�Vef f = �Vx↑ − �Vx↓ � −
2



�1/3� �104�

is given in terms of the spin-polarization parameter � and the
total density �. Recalling our convention that the majority
spin is defined as spin up and indicating the singly occupied
valence levels as “SOVO,” Eq. �104� can be written as

�Vef f � −
2




��↑ − �↓�
�2/3 � −

2




�SOVO

�2/3 . �105�

Equation �105� states that �Vef f�r� depends sensitively on
the type of SOVO. Figure 3 illustrates the radial l=0 com-
ponent of �Vef f�r� obtained directly from a Kohn-Sham DFT
calculation and as obtained from Eq. �105� for Ca+ with a
4s-type SOVO and for Mn with a 3d-type SOVO. It shows
that the approximate expression is of adequate accuracy to
serve for purposes of qualitative analysis, and it shows that
�Vef f�r� of Mn is far more localized than �Vef f�r� of Ca+.
Clearly, strong spin polarization of core levels is expected for
systems such as Mn with a 3d-type SOVO while for cases
such as Ca+ the spin polarization of core levels is weak.
Quite generally, the SOVO for which the difference of the

principal and angular momentum quantum numbers is unity
should be close to the nucleus and causing the strongest core
spin polarization.

As the perturbing potential for spin majority �↑� and spin
minority �↓� are just different in sign, one can analyze the
effect of �Vef f by considering the effect of the perturbing
term �V↑ on the spin-majority states only. Examination of
the value of C�� shows that the denominator in Eq. �95� is
negative �positive� when level � lies lower �higher� than
level �, while for the numerator a more detailed analysis is
called for. The l=0 radial integrand in the numerator of Eq.
�95� can be written as

�V↑
���r� = ���r��V↑�r����r�r2 = �V↑�r�F���r� ,

�106�

where the radial overlap function is given as

F���r� = ���r����r�r2. �107�

We use the word “overlap” somewhat freely to indicate that
radial functions take large values at the same distance from
the nucleus. It is important to emphasize that the angular
momentum character does not enter in this discussion be-
cause a SOVO with l�0 contributes to a perturbing potential
with l=0, so that all radial functions involved pertain to l
=0. Orthogonality of eigenstates, and the fact that we will
look at l=0 core levels only, makes the radial integration
over the radial overlap function vanish for ���. As �V↑ is
negative, the radial integrand of Eq. �106� is negative when
�V↑�r� has a large magnitude for r where the radial overlap
function is positive. In contrast, the integrand is positive
when �V↑�r� is more localized at r values where the radial
overlap function is negative. The radial overlap function can
be understood on the basis of atomic calculations, while the
perturbing potential is related to the SOVO through Eq.
�105� so that now we can qualitatively analyze the sign con-

tribution of each ���r� to the �̃�↑�r� in Eq. �94�. Below, we
apply this analysis of systems with 3d-type and 4s-type
SOVO.

FIG. 3. Comparison of �Vef f�r� obtained directly with Vef f↑
−Vef f↓ from a Kohn-Sham DFT calculation �marked with “KS”�
and as computed with Eq. �105� �marked with “analytical”� for Ca+

and Mn.
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The derivation of the effective perturbing potential also
makes it straightforward to analyze the difference between
eigenvalues of spin-majority and spin-minority core levels
by inserting Eqs. �105� and �103� into Eq. �93�:

��̃�
� � − ����

�




�SOVO

�2/3 ���� � − �� 4r2dr���r�
�SOVO�r�
�2/3�r�

.

�108�

It is apparent that spin-majority core levels move towards
lower energies while spin-minority core levels become less
strongly bound.

III. COMPUTATIONAL METHOD

In this work the DFT calculations have been carried out
within the LSDA.38 In the MB formalism there are a number
of parameters which must be selected with care. Some pa-
rameters, such as the cutoff energy of the PW expansion of
the potential, are important for accurately computing the
forces and thus affect the final geometry, but turn out to be
rather unimportant for the HFP’s when the correct geometry
is used. Accurate forces were obtained with a potential cutoff
energy of about 1000 eV for all elements considered with a
single exception. For hydrogen a higher value of
1500–2000 eV is required, as was observed within the full-
potential linearized augmented plane-wave method also.39

Among the HFP’s, it turns out that the Fermi contact inter-
action is far more sensitive to the choice of parameters than
the anisotropic HFP’s. Therefore, below we shall focus on
the effect of computational parameters on the Fermi contact
interaction. The AO’s used for expanding the one-electron
Kohn-Sham wave functions are obtained from non-spin-
polarized atomic calculations. Generally, we select the
ground-state electronic occupation numbers for the atomic
calculation. However, for ions we have found that more rap-
idly converging results are obtained if the AO’s are derived
from an atomic calculation with electronic occupation num-
bers that mimic the ion. Thus, for 1+ ions belonging to group
II of the periodic table we selected a non-ground-state elec-
tronic configuration with one outer s electron and one outer p
�25Mg+� or d �43Ca+� electron. The outer p or d atomic orbital
can be retained in the MB expansion for the wave functions
but this has little effect on the computed HFP’s. For the
single-atom and single-ion calculations we selected a rather
large atomic sphere size with a radius of �3 Å. Using this
rather large size allowed optimal use of the AO’s for the
more extended outer s-like states which benefits the accurate
computation of the Fermi contact interaction. Other impor-
tant parameters are supercell size and PW cutoff energy for
the expansion of the wave functions.

Figure 4 indicates the convergence of the calculated
Fermi contact interaction of the 7Li atom with respect to
supercell size. The cutoff energy for the PW expansion of the
wave functions is 200 eV. A supercell size of 12 Å gives
converged results that are in excellent agreement with
experiment.57 The supercell size plays an important role for
atomic 7Li because of the spatial range of the 2s wave func-
tion. For small supercells, the tails of the 2s wave functions

overlap with neighboring cells, which in turn affects the 1s
wave function. For other atomic calculations the 12 Å size
has appeared sufficiently large also to assure convergence of
the Fermi contact interaction. Spatially extended clusters re-
quire larger supercell sizes, and a 12-Å separation distance is
a guideline.

Figure 5 shows the dependence of the Fermi contact in-
teraction of 7Li sample on the cutoff energy of the PW ex-
pansion of the wave functions. Clearly, the PW cutoff energy
plays a minor role when compared to the supercell size. It
appears that at a cutoff energy of 200 eV the wave functions
are described with sufficient accuracy provided that the su-
percell is at least 12 Å. For large-scale calculations, where
resources must be used most efficiently, it is likely that an
even lower PW cutoff energy suffices.

Figure 6 shows the radial representation of the spin den-
sity in real space in the vicinity of the nucleus for different
supercell sizes. The PW cutoff energy for the wave functions
is 200 eV. The analytical data for atomic 7Li were calculated
using the ATOMDEF Package58 with gradient-corrected
exchange36 and Vosko-Wilk-Nusair correlation59 functionals.
As could be expected from Fig. 4 the spin density near the
nucleus is rather sensitive to the supercell size. The outer
s-like wave function which is essential to properly describe

FIG. 4. Computed Fermi contact interaction for atomic 7Li as a
function of supercell size. The experimental value is from Ref. 57.

FIG. 5. Computed Fermi contact interaction for atomic 7Li as a
function of the cutoff energy of the wave-function plane-wave ex-
pansion, at supercell sizes of 6, 8, 10, and 12 Å �diamonds, squares,
circles, and triangles�. Lines are guides to the eye only. The experi-
mental value �solid line� is from Ref. 57.
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the Fermi contact interaction is spatially very extended.
Therefore, in reciprocal space there must be a dense grid
around the  point. However, in these calculations on finite
systems we do not perform k-point sampling � point only�.
Thus, such a dense grid can be obtained only if the real-space
periodicity is sufficiently large. This also clarifies why the
cutoff energy of the PW’s for the wave-function expansion is
not so important, because this does not refine the grid. Rather
as this energy is increased, more distant points are added to
the grid.

Below, we compare our results with other methods, some
of which include relativistic effects. Relativistic effects can
be separated into scalar relativistic �SR� and spin-orbit �SO�
effects. It must be emphasized that in order to treat systems
with heavier elements relativistic effects must be included in
the calculations. A number of practical routes for relativistic
calculations are available. Methods considered are either
based on �1� approximate numerical solutions of the Dirac
equation60,61 or based on �2� different types of transformed-
Hamiltonian methods such as zeroth-order-regular-approx-
imation �ZORA�,62–64 infinite-order-regular-approximation
with modified metric 
IORA�mm��,57 and Douglas-Kroll-
Hess �DKH� methods.13,65–69 Other computational details of
comparative methods are as follows: in Refs. 63, 64, and 70,
DFT calculations employed Becke exchange71 and Perdew
correlation72 functionals �BP86�. In other cases we have
compared with results we obtained with the GAUSSIAN 98
package.73

IV. RESULTS AND DISCUSSION

A. Calculation results

As a first step to evaluate the efficiency of the MB method
in comparison with other methods, the isotropic HFP’s for
group-II atomic ions 25Mg+, 43Ca+, and 87Sr+ are examined.
Table I summarizes isotropic HFP’s from our MB method,
the DKH method, and the four-component coupled-cluster
�CC� method, as well as results from DFT GAUSSIAN 98
�Ref. 74� and experimental data. Reassuringly, the computa-
tionally most demanding CC results overall are closest to the
experimental measurements. The table indicates that the MB
results for 25Mg+ and 43Ca+ are in good agreement with ex-
perimental data, better than the DFT GAUSSIAN 98 �Ref. 74�
results and the DK2+DK1 results, and about as good as the
DK2+DK2 numbers. For 87Sr+ our MB results are not as
good as could be anticipated from our neglect of relativistic
effects. The importance of relativistic effects is apparent
from the large difference between the two implementations
of the DKH, the DK2+DK1, and the DK2+DK2 methods.

The success of the MB method for 25Mg+ and 43Ca+ origi-
nates from the numerical AO’s in the basis which are ideally
suited to represent the s wave functions which are known to
have a nonvanishing radial derivative at the nucleus. There-
fore, generally, we may expect the MB method to be better
suited than Gaussian basis functions for the calculation of
isotropic HFP’s.

In order to further test the MB method, it has been applied
to three alkali-metal atoms �7Li, 23Na, and 39K� and two
transition-metal atoms �63Cu and 107Ag�. Table II shows iso-
tropic HFP’s using the MB method and various other meth-
ods and as determined experimentally.

Table II shows that for all elements, except 107Ag, the MB
results agree well with experimental data. For 63Cu the de-
viation from experiment is noticeable for methods which
treat relativistic effects approximately, such as DKH, ZORA,
and IORA�mm�. As the DKH and ZORA methods should, in
principle at least, be superior to the MB method, it suggests
that the basis sets used in the former two methods cannot
produce accurate enough wave functions for the s orbitals.
Probably, one of the major challenges for the implementation
of such transformed-Hamiltonian methods is that the opera-
tor responsible for the magnetic interaction should be trans-
formed in the same way as that for the unperturbed Hamil-
tonian and for the wave function. The situation for 107Ag is
completely different; here, nonrelativistic results fail to reach

FIG. 6. Computed radial spin density of atomic 7Li for various
supercell sizes compared with analytic result �see text�.

TABLE I. Comparison of isotropic HFP’s �in MHz� for group-II cations.

Atom MBa DK2+DK1b DK2+DK2b GAUSSIAN 98a CCb Expt.b

25Mg+ −600.2 −560 −601 −598.5c −593.7 ±596.2
43Ca+ −812.8 −723 −813 −789.8c −792.8 ±806.4
87Sr+ −912.7 −883 −1061 −877.9d −1000 990–1000.5

aPresent work.
bComputed and experimental data from Ref. 70.
cDFT-B3LYP with 6-311+G�d� basis set.
dDFT-B3LYP with universal Gaussian basis set �UGBS� �Ref. 75�.
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reasonable agreement with experimental data as is to be ex-
pected on the basis of its atomic number.

As shown in Tables I and II, the MB values for 87Sr+ and
Ag are smaller than experiment. Additionally, comparing
the MB results with the DKH2+DKH2, ZORA, and
IORA�mm�, we see that relativistic effects enhance HFP’s
appreciably for these two cases. This is due to the large rela-
tivistic contraction of the atomic s-electron density from
which the isotropic HFP’s are obtained. Thus, for a proper
accounting of the relativistic effect for heavy atoms such as
87Sr and 107Ag, the basis set must be able to reproduce ac-
curately the spin-dependent contraction of the s orbitals. Go-
ing beyond the point distribution of nuclear charge and
nuclear dipole moment is another approach which has been
argued to improve the agreement between calculated and
measured isotropic HFP’s. However, it appears mostly used
to overcome singularities at the nucleus in the GGA.14,15

On the basis of Tables I and II it appears that for atomic
numbers Z up to the low 30’s the MB method can give good
results for the isotropic HFP’s.

The hyperfine properties of small molecules and clusters
provide a more practically relevant test than atomic calcula-
tions. The results of zinc complexes 67ZnX are indicated in
Table III in order of increasing electronegativity of X:
107Ag� 1H� 13CN� 19F. 107Ag has about the same elec-
tronegativity as 67Zn. In the ZnX complexes a fully occupied
bonding � hybrid and a single occupied antibonding � hy-
brid exist between the � AO �or MO� of the X complex and
the 67Zn 4s AO.64 Therefore, it is to be expected that with
increasing electronegativity of X the bonding orbital be-
comes more like the � AO �or MO� of X while the SOVO
becomes more like the 67Zn 4s state. In other words, the spin
becomes more localized on zinc and the 67Zn isotropic hy-
perfine interaction Aiso should increase. This trend, as shown
by our method and relativistic methods, is similarly followed
by the experimental values. In the view of very polar bond-
ing in ZnF, it is likely that the matrix environment of the

TABLE II. Comparison of isotropic HFP’s �in MHz� for alkali-metal atoms �7Li, 23Na, and 39K� and
transition-metal atoms �63Cu and 107Ag�.

Atom MBa DK2+DK1b DK2+DK2b ZORAc IORA�mm�d GAUSSIAN 98a Expt.e

7Li 401.6 — — — 401.6 373.3f 401.7
23Na 891.2 — — — 866.9 630.3f 885.8
39K 232.4 — — — 226.1 152.8f 230.9

63Cu 5935.1 5786 6726 6598 5411 −5646.5f 5867
107Ag −1411.3 −1613 −1965 −1862 −1698 −1253.4g −1713

aPresent work.
bDKH results from Ref. 70.
cZORA results from Ref. 63.
dIORA�mm� results from Ref. 57.
eExperimental data of alkali-metal atoms �7Li, 23Na, and 39K�, 63Cu, and 107Ag from Refs. 76–78 respec-
tively.
fDFT-B3LYP using 6-311G�d� basis set.
gDFT-B3PW91 using UGBS �Ref. 75�.

TABLE III. HFP parameters �in MHz� for zinc complexes.

Complex �ZnX� Method

Zn part X part

Aiso Aaniso Aiso Aaniso

67Zn107Ag MBa 333.2 26.5 −1051.4 −0.1

DK2+DK1b 320 22 −1140 1

DK2+DK2b 373 23 −1401 0

ZORAc 357 21 −1297 −1

GAUSSIAN 98e 225.3 22.7 −962.2 1.6

Expt.c — — −1324 0
67Zn1H MBa 549.2 74.1 468.5 −1.3

DK2+DK1b 512 66 511 −1

DK2+DK2b 597 65 512 −1

ZORAc 561 63 543 0

GAUSSIAN 98d 419.6 52.2 457.8 −2.94

Expt.c — — 486 −2
67Zn13CN MBa 980.1 64.4 258.4 23.1

DK2+DK1b 948 55 348 38

DK2+DK2b 1106 55 255 37

ZORAc 1044 53 253 38

GAUSSIAN 98e 997.6 49.4 261.2 27.8

Expt.c — — — —
67Zn19F MBa 1151.6 60.5 196.2 822.6

DK2+DK1b 1109 41 228 862

DK2+DK2b 1294 41 241 861

ZORAc 1223 40 235 866

GAUSSIAN 98e 1151.1 34.5 244.5 677.21

Expt.c — — 129 816

aPresent work.
bDKH results from Ref. 70.
cZORA results and experimental data from Ref. 63.
dDFT-B3LYP using 6-311+G�d� basis set.
eDFT-B3PW91 using UGBS �Ref. 75�.
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complexes significantly affects the experimental determina-
tions. Nevertheless, the overall agreement with experiment
and other computations is reasonable, with the exception of
107Ag as discussed previously on the basis of relativistic ef-
fects.

Finally, to test the accuracy of our method for clusters, the
results for the 63Cu7 cluster have been summarized in Table
IV and contrasted with results in the literature. The point-
group symmetry of 63Cu7 was found to be D5h, a pentagonal
bipyramid as illustrated in Fig. 7. The five copper atoms on
the pentagonal ring are referred to as 63Cu�5�, and the two
axial copper atoms are labeled 63Cu�2�.

MB computations indicate that the spin density is mostly
on the 63Cu�2� atoms with only minor contributions at the
63Cu�5� atoms as is evident from Fig. 8. Accordingly, the
HFP’s on the 63Cu�2� sites are dominant. Anisotropy is ab-
sent on the 63Cu�5� sites which is in accordance with an
assumption made in experimental work, A��5�=A��5�
=Aiso�5�.80 The anisotropy on the 63Cu�2� sites is measured
to be weak.80 The 63Cu�5� sites have negative HFP’s. Since
the gj value for 63Cu is positive,81,82 this negative sign con-
tribution, as shown in Table IV, indicates that the spin den-

sity near the 63Cu�5� nuclei is of opposite sign as the spin
polarization of the 63Cu7 cluster. Relativistic effects are not
significant as is clear from comparing nonrelativistic and
relativistic results. Agreement with experiment is good and,
in fact, a little better than obtained with other methods.

B. Spin polarization of core shells

As derived in Sec. II J the spin polarization of the core
levels comes about through the exchange interaction with the
SOVO. It is this relation between SOVO type and spin po-
larization near the nucleus that makes hyperfine measure-
ments so useful for analysis of bonding around a defect cen-
ter. Figures 9 and 10 show radial distribution functions
pertaining to the wave functions of the core s orbitals and the
SOVO. It is important to point out that SOVO with l�0
nevertheless strongly contribute to the perturbing potential
with l=0, so that in the following we will use the word
“overlap” freely and speak of overlap between an l�0
SOVO and s core levels. For the Ca+ ions there is little
overlap between the 4s-like SOVO and core 1s, 2s, and 3s
states while the Mn 3d-like SOVO strongly overlaps with the

TABLE IV. HFP parameters �in MHz� for the 63Cu7 cluster.

Parameter Method 63Cu�2� 63Cu�5�

Aiso MBa 1750 −51

Arratia-Perezb 1787 −53

SR-ZORAc — —

Empiricald 1747 54

A� MBa 1781 −51

Arratia-Pereze 1839 40

SR-ZORAc 1683 —

Expt.d 1794 54

A� MBa 1688 −51

Arratia-Pereze 1783 40

SR-ZORAc 1714 —

Expt.d 1654 54

aPresent work.
bReference 79, with DFT-IV basis set.
cReference 63, unrestricted SR-ZORA results.
dReference 80, empirical and experimental results.
eReference 79, with DSW-NR-I basis set.

FIG. 7. �Color online� Bipyramid Cu7 cluster.

FIG. 8. �Color� Cu7 spin density, isosurface coloration: white
�s=0.01 e/Å3, green �s=0.005 e/Å3, and red �s=0.001 e/Å3.

FIG. 9. Radial distribution functions 
Rnl�r��2r2 for Ca+.
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core 2s and 3s states. For systems with little overlap between
SOVO and core levels �see Fig. 9�, as discussed, little spin
polarization of core levels is to be expected. As illustrated in
Table V, for atoms and cations with s-like SOVO, the con-
tribution of core shells to the total spin density at the metal
nucleus is small, less than 1.7% of the total spin density. In
contrast, for systems with large overlap between SOVO and
core levels �see Fig. 10�, spin polarization of core levels
plays a role. Table V shows that for transition metals with
mostly d-like SOVO, such as Cr+, Mn2+, and Fe3+, core con-
tributions to the nucleus spin density are dominant. The se-
quence Mn, Mn+, and Mn2+ illustrates the effect of the 4s
states near the nucleus: in Mn �atomic case� there are two 4s
electrons so that the contribution to the spin density at the
nucleus derives from the deformation of the 4s↑ and 4s↓
states; in Mn+, only the majority 4s↑ state is occupied, mak-
ing for a huge spin density, while in Mn2+ the 4s states are
unoccupied.

Energetically, the splitting of core levels caused by the
exchange interaction with the SOVO was found to be negli-
gible �K and Ca+� or small �Cu� for metals with 4s-type
SOVO. It becomes significant for transition metals with
d-like SOVO. Table VI shows the multiplet splitting between
ns↑ and ns↓ states, as obtained from Eq. �108� and as ob-
tained directly from the Kohn-Sham �KS� DFT calculations.
The good agreement between ��̃↑

�−��̃↓
� from Eq. �108� and

from direct KS calculations implies that the first-order per-
turbation treatment is adequate for the analysis of core spin
polarization. In all cases, the 1s shift seems to be negligible,
confirming that the exchange interaction between SOVO and
1s is small. A similarly weak splitting occurs for the 2s levels
in the 4s-type SOVO atoms. In contrast, the splitting of 2s
and 3s levels is significant for transition metals with 3d-like
SOVO. Figure 11 shows that the perturbing effective poten-
tial is proportional to the charge state �and the local moment�
for ions with a charge 2+ or higher. For Mn and Mn+ 4s
electrons come into play also. This proportionality is easily
recognized for the 3s levels in Table VI. It is apparent that
the local magnetic moment of the 3d-type ion plays a larger
role than the specific element as the differences between say
Mn6+ and Fe7+ are small as has been found in experiment
also; see, e.g., Fig. 8 in Ref. 86. The computed multiplet
splittings generally appear to agree with experimental re-
sults, �for Mn and Mn2+, see Fig. 10 of Ref. 87; for Fe, see
Refs. 86 and 88–90�. The general agreement with experiment
might make Eq. �108� of utility for the analysis of non-s-like
semicore levels as well.91–93 Of course, the actual compli-
cated peak shapes require a more sophisticated treatment.90

1. Analysis of core-level spin polarization for 3d-type
SOVO

Mn is used as an example of the group of transition met-
als characterized by unpaired electrons in the 3d shell. To

FIG. 10. Radial distribution functions 
Rnl�r��2r2 for atomic
Mn.

TABLE V. Spin densities at the metal nuclei �s�R� �in e /Å3� for 4s-type SOVO, K, Ca+, and Cu, and
3d-type SOVO, Cr+, Mn, Mn+, Mn2+, and Fe3+. The experimental values of 39K, 43Ca+, and 63Cu were taken
from their corresponding isotropic HFP’s using Eq. �85� with g and � values from Ref. 48. VS refers to
valence shells other than the SOVO.

Atom

Core shells Valence shells

Total Expt.1s 2s 3s VS SOVO

K 0.02 −0.03 −0.08 0.00 7.40 7.31 7.46a

Ca+ 0.06 −0.07 −0.16 0.00 18.38 18.23 18.16b

Cu 0.05 −0.15 −0.35 0.00 34.04 33.59 33.58c

Cr+ −0.01 −7.80 2.08 0.00 0.00 −5.73 —

Mn −0.01 −8.42 4.34 2.14 0.00 −1.95 −2.02d

Mn+ 0.09 −9.62 3.60 0.00 29.32 23.39 23.82e

Mn2+ −0.01 −10.02 3.95 0.00 0.00 −6.08 −6.19e

Fe3+ −0.01 −12.95 6.98 0.00 0.00 −5.98 −4.68¯−6.07f

aFrom Ref. 76.
bFrom Ref. 63.
cFrom Ref. 77.
dFrom Ref. 83.
eFrom Ref. 84.
fFrom Ref. 85.
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illustrate our discussion we show, in Fig. 12�a�, �V↑�r� along
with a few selected F�� which contribute significantly to the
C��, while in Fig. 12�b� their product �V↑

�� 
Eq. �106�� is
shown. �V↑�r� is localized near the core region, as is to be
expected on the basis of Eq. �105�, so that the core levels
overlap with it.

As the 1s level is so strongly localized near the nucleus,
only F1s2s overlaps with �V↑�r�. �V↑

1s2s shows a positive
peak so that, according to Eq. �95� C1s2s is negative, but of
small magnitude. Therefore �1s is weakly spin polarized
with opposite sign as the global spin polarization.

For �=2s, in addition to F1s2s which was considered
above, the negative parts of F2s3s and to a lesser extent F2s4s

overlap with �V↑�r�. The radial integral over �V↑
2s3s and

�V↑
2s4s is positive, so that C2s3s and C2s4s are negative. Thus,

the spin-polarized �̃↑
2s can be expressed as

�̃↑
2s � �C2s1s��1s + �2s − �C2s3s��3s − �C2s4s��4s,

�109�

where

�C2s1s� � �C2s4s� � �C2s3s� . �110�

It follows that the 2s core level is significantly spin polarized
with opposite sign as the global spin polarization. For �
=3s, F2s3s and F3s4s have dominant overlap with �V↑�r�.
However, the radial integrand of �V↑

3s4s, albeit positive, al-
most vanishes. Thus,

�̃↑
3s � �C3s2s��2s + �3s − �C3s4s��4s, �111�

where

TABLE VI. Multiplet splitting �in eV� of s-type �semi�core lev-
els, as calculated from Eq. �108� and as obtained directly from
Kohn-Sham DFT calculations �KS� for 4s-type SOVO, K, Ca+, and
Cu and 3d-type SOVO, Mn ions, and Fe ions, and magnetic mo-
ment �m� in Bohr magnetons.

Atom m��B�

Eq. �108� KS

1s 2s 3s 1s 2s 3s

K 1 −0.01 −0.01 −0.03 −0.01 −0.02 −0.03

Ca+ 1 −0.03 −0.03 −0.07 −0.03 −0.03 −0.06

Cu 1 −0.02 −0.20 −0.48 −0.02 −0.23 −0.42

Mn 5 −0.04 −2.30 −4.82 −0.05 −2.26 −4.20

Mn+ 6 −0.07 −2.29 −5.28 −0.09 −2.30 −4.91

Mn2+ 5 −0.04 −2.30 −5.30 −0.04 −2.32 −4.93

Mn3+ 4 −0.03 −2.10 −4.61 −0.04 −2.12 −4.38

Mn4+ 3 −0.03 −1.80 −3.84 −0.04 −1.81 −3.60

Mn5+ 2 −0.02 −1.31 −2.77 −0.03 −1.37 −2.62

Mn6+ 1 −0.01 −0.62 −1.49 −0.02 −0.67 −1.43

Fe 4 −0.04 −2.52 −4.07 −0.05 −2.52 −3.97

Fe+ 5 −0.05 −2.82 −5.94 −0.06 −2.85 −5.59

Fe2+ 6 −0.10 −2.82 −5.96 −0.13 −2.86 −5.61

Fe3+ 5 −0.05 −2.82 −5.93 −0.06 −2.86 −5.59

Fe4+ 4 −0.04 −2.53 −5.15 −0.06 −2.57 −4.86

Fe5+ 3 −0.03 −2.12 −4.16 −0.05 −2.15 −3.95

Fe6+ 2 −0.02 −1.57 −2.98 −0.04 −1.60 −2.85

Fe7+ 1 −0.01 −0.78 −1.59 −0.02 −0.81 −1.55

FIG. 11. �Vef f�r� for atomic
Mn and its ions as obtained from
�a� Eq. �105� and as obtained di-
rectly from �b� Kohn-Sham DFT
calculations �KS�.

FIG. 12. Contributions to C��: �a� �V↑�r� and F�� and in �b�
their product �V↑

�� for Mn.
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�C3s4s� � �C3s2s� �112�

and the 3s core level is oppositely spin polarized as the 2s
core level—i.e., with the same sign as the global spin polar-
ization.

The results of our MB calculations show a similar pattern
of core spin polarization among other ionic and atomic tran-
sition metal systems. According to Table V the 2s-level con-
tribution to the spin density at the nucleus point is negative
while that of the 3s level is positive. In Table V one outlier is
seen: for Mn+ the 4s level contributes to the SOVO which
completely dominates the spin density at the nucleus.

2. Analysis of core-level spin polarization for 3d–type SOVO

The Ca+ ion has one unpaired electron in its 4s level. A
characteristic of the 4s-type SOVO is that it is much outward
expanded and the exchange interaction with core shells is
very weak. This is readily apparent from Eq. �105� and Fig.
3. Moreover, as �SOVO does not vanish at the nucleus, �V↑ is
non-vanishing near the nucleus.

�V↑�r� along with significant F�� are displayed in Fig.
13�a� and their product �V↑

�� in Fig. 12�b�.
For the highly localized �=1s level, since �V↑�r� does

not vanish at the nucleus, the positive part of F1s2s overlaps
with �V↑�r� most, so that �V↑

1s2s becomes negative 
Fig.
13�b�� and C1s2s takes a positive value. The spin-polarized 1s
level contributes positively to the spin density at the nucleus.
For �=2s, F2s3s also has significant overlap with �V↑ leading
to a positive �V↑

2s3s, giving a negative C2s3s. As C2s3s and

C2s1s are both negative, the 2s level contributes negatively to
the spin density at the nucleus. In the case of �=3s the
negative part of F3s4s occurs towards the negative peak of
�V↑�r�. Therefore, as illustrated in Fig. 13�b�, �V↑

3s4s is
strongly positive so that C3s4s is negative. C3s2s is positive,
but of much smaller magnitude than C3s4s and therefore the
3s level contributes negatively to the spin density at the
nucleus. Similar patterns of core spin polarization have been
found for K and Cu; see Table V. For K, Ca+, and Cu the 3s
orbital gives the largest spin density at the nucleus, but in all
cases opposing the global spin polarization.

V. CONCLUSIONS

An all-electron full-potential density functional electronic
structure method, the so-called mixed-basis method, has
been presented which allows hyperfine parameters to be cal-
culated for ions, atoms, molecular complexes, and clusters.
While earlier work showed the method to give geometries in
agreement with other highly accurate all-electron methods,
here we show that the method is especially well suited for
the calculation of hyperfine parameters. The fact that the
one-electron wave functions are expanded in terms of plane
waves and localized atomic orbitals is very advantageous for
an accurate representation of the spin density near the atomic
nuclei. As a consequence, the mixed-basis method typically
achieves better agreement on the hyperfine parameters than
other density functional methods with less optimal expan-
sions for the one-electron wave functions. The radial repre-
sentation of effective potentials and charge densities makes it
a convenient method to analyze the various contributions to
the spin polarization in the neighborhood of the nucleus. Our
neglect of relativistic effects currently limits us to the lighter
elements, typically for atomic numbers up to the low 30’s.
Through a LSDA-based derivation of the exchange-induced
perturbing potential, the core-level contribution to the spin
polarization near the nucleus and the contribution to the iso-
tropic hyperfine parameters was analyzed in detail.
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