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Quantum Monte Carlo and density-matrix renormalization group methods are used to study the coupled
spin-pseudospin Hamiltonian in one-dimension �1D� that models the charge-ordering instability of the aniso-
tropic Hubbard ladder at quarter filling. We calculate the temperature dependence of the uniform spin suscep-
tibility and specific heat as well as the spin and charge excitation spectra of the system. We thereby show that
there is a parameter and temperature region where the spin degrees of freedom are separated from the charge
degrees of freedom and behave like a 1D antiferromagnetic Heisenberg model, and that, outside this parameter
region and above a crossover temperature, the spin excitations are largely affected by the charge fluctuations.
We argue that observed anomalous spin dynamics in the disorder phase of a typical charge-ordered material
��-NaV2O5 may possibly be a consequence of this type of spin-charge coupling.
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I. INTRODUCTION

Charge-ordering �CO� instability has recently been one of
the major topics in the field of strongly correlated electron
systems. Here, elucidation of the observed anomalous behav-
iors of electrons associated with the CO phase transition has
been the central issue. The issue includes questions on the
slow charge dynamics above the transition temperature TCO
as well as on the CO spatial patterns realized below TCO. A
well-known example is the vanadate bronze ��-NaV2O5,
where the system may be modeled as a lattice of coupled
ladders �or a trellis lattice� at quarter filling.1–5 Strong inter-
site Coulomb interactions between electrons are believed to
be the origin of the CO instability.2,3 In this material, the CO
with a zigzag ordering pattern is observed below TCO
=34 K,6–10 and associated with this, a number of anomalous
behaviors, which can be related to the slow dynamics of
charge carriers �or charge fluctuations�, have been observed
above TCO.10–17 Anomalous response of the spin degrees of
freedom has also been noticed.9,18–21 It seems therefore natu-
ral to wonder how, in such systems, the spin degrees of free-
dom behave near the CO phase transition when they are on
the slowly fluctuating charge carriers. In this paper, we con-
sider this issue; i.e., what are the consequences of the slow
charge fluctuation at T�TCO to the behavior of the spin de-
grees of freedom of the system?

One of the simplest models that allow for such a situation
is the anisotropic Hubbard ladders at quarter filling with the
strong intersite Coulomb repulsions. We here use an effective
Hamiltonian written in terms of the spin and pseudospin
operators5,17,22,23 �where the latter represents the charge de-
grees of freedom�. This Hamiltonian is derived from the
Hubbard ladder model by the perturbation theory,5,22,23

where the hopping parameter between the rungs of the ladder
is assumed to be small compared with the onsite and intersite
Coulomb repulsions as well as the hopping parameter of the
rung �i.e., the anisotropic ladder�.3 Although the long-range
CO is not realized in this model at T�0 �since it is the 1D

quantum-spin model�, we can simulate anomalous behaviors
of the spin degrees of freedom under the influence of strong
charge fluctuations. We will apply the quantum Monte Carlo
�QMC� method to this model to calculate the temperature
dependence of the uniform spin susceptibility and the spin
and charge excitation spectra, thereby clarifying conse-
quences of the interplay between its spin and charge degrees
of freedom. The density-matrix renormalization group
�DMRG� method with the finite-temperature algorithm will
also be used to calculate the temperature dependence of the
specific heat of the model.

In this paper, we will first confirm that, in this coupled
spin-pseudospin model, the spin exchange interaction is nec-
essarily associated with the charge excitation; i.e., the spin
excitations cannot occur without making the exchange of the
pseudospins. We will then show that, nevertheless, there is a
parameter and temperature region where the spin degrees of
freedom behave like a 1D antiferromagnetic Heisenberg
model; i.e., the spin degrees of freedom are “separated” from
the charge degrees of freedom in this region. We will more-
over show that the spin system behaves in a different manner
depending on whether the temperature T is below or above a
crossover temperature T* that is related to the pseudospin
excitations; at T�T*, it behaves like a 1D antiferromagnetic
Heisenberg model with a T-independent effective exchange
coupling constant Jeff with the large renormalization,
whereas at T�T*, Jeff decreases rapidly with increasing T,
where the effective Heisenberg model description ceases to
be valid. Because the parameter values for ��-NaV2O5 are
outside the region where the spin-charge separation is com-
plete, we will argue that some experimental data may possi-
bly be interpreted as consequences of this type of spin-
charge coupling.

This paper is organized as follows. In Sec. II, we define
the coupled spin-pseudospin model that describes the spin
and charge degrees of freedom of the anisotropic Hubbard
ladder at quarter filling. Some details of the method of cal-
culation are also given. In Sec. III, we present results of the
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calculation, including the staggered susceptibility for pseu-
dospins, the spin and pseudospin excitation spectra, and the
temperature dependence of the uniform spin susceptibility
and specific heat. Discussion on the experimental relevance
to ��-NaV2O5 and a summary of the paper will be given in
Sec. IV.

II. MODEL AND METHOD

Our effective spin-pseudospin Hamiltonian for the aniso-
tropic Hubbard ladder at quarter filling may be written as a
sum

H = H0 + HST �1�

of the quantum Ising Hamiltonian for pseudospins

H0 = J1�−
g

2�
i=1

L

Ti
x + �

i=1

L

Ti
zTi+1

z � �2�

and the spin-pseudospin coupling term

HST = J2�
i=1

L �Si · Si+1 −
1

4
��Ti

+Ti+1
− + H.c.� . �3�

The standard notation is used here. Si and Ti are, respec-
tively, the spin and pseudospin operators of spin-1 /2 at site i,
where Ti

z=−1/2 �+1/2� means the electron is on the left
�right� site on the rung of the ladder. L is the system size and
periodic boundary condition is assumed. J1 is the energy
scale of the pseudospin system and J2 is the coupling
strength between the spin and pseudospin systems.

The effective Hamiltonian Eq. �1� may be obtained from
the second-order perturbation theory;5,22,23 we have the rela-
tions J1=2V� and J2=4t�

2 /V�, where t� and V� �t� and V��
are the nearest-neighbor hopping parameter and Coulomb
repulsion of the leg �rung� of the ladder, respectively. We
should then have J1�J2, which we assume throughout the
present work. We also assume the onsite Coulomb repulsion
to be U→�. Relative strength of the transverse field applied
to the pseudospins is measured by g=4t� /J1=2t� /V�. Note
that g in the quantum Ising model represents the relative
strength of the fluctuation of a charge in the rung; if we
assume one electron in a rung, we have the prefactor gJ1 /2
in the first term of Eq. �2�, which is the difference between
the energies of the bonding and antibonding levels of the
rung, 2t�. Thus, if g �or t�� is large, the electron is stable in
the bonding level of the rung, but if g �or t�� is small the
effect of V� easily leads the system to CO.

We use the conventional world line QMC method for the
analysis of the model. We use a 32-site cluster �where a site
contains a spin and a pseudospin� with a periodic boundary
condition; the cluster-size dependence of the calculated re-
sults are examined by using clusters of up to 96 sites but we
find no significant size dependence in the results. Because
the model does not conserve the total pseudospin, we have
examined a number of ways of the spin flips and confirmed
that available analytical results are reproduced correctly.24

The maximum-entropy method is used to calculate the dy-
namical quantities like the spin and pseudospin excitation

spectra. The DMRG method with finite-temperature algo-
rithm25,26 is also used for the calculation of the temperature
dependence of the specific heat of our model; the method
enables us access to sufficiently low temperatures.

III. CALCULATED RESULTS

A. Staggered susceptibility for pseudospins

We first consider the nonlocal spin susceptibility defined
as

�ij = �
0

�

d	„�Sj
z�− i	�Si

z	 − �Sj
z	�Si

z	… , �4�

where Sj
z�−i	� is the Heisenberg representation of Sj

z and �¯	
is the canonical average. �ij is Fourier transformed to the
q-dependent susceptibility ��q�, which we calculate by the
QMC method; the q→0 limit gives the uniform spin suscep-
tibility ��T� and the staggered spin susceptibility is defined
as ��q� at q=
. In the following, we calculate the suscepti-
bilities for spins and pseudospins, whereby we use the sub-
scripts S and T as in �S�q� and �T�q�, which stand for the
susceptibilities of the spin and pseudospin degrees of free-
dom, respectively.

The phase diagram of the quantum Ising model H0 �H at
J2=0� is well known;27 at T=0 there is a long-range order for
g�1 �g=1 is a quantum critical point�, which corresponds to
the zigzag �or “antiferromagnetic”� CO. The calculated stag-
gered susceptibility for pseudospins is shown in Fig. 1,
where we find that it shows divergent behavior at T→0 for
g�1. The dispersion relation of the pseudospin excitation

FIG. 1. Temperature dependence of the staggered susceptibility
for pseudospins �T�
� calculated for the coupled spin-pseudospin
Hamiltonian.
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observed in the calculated dynamical structure factor �shown
in Fig. 2, see below� agrees well with the exact result27

�q =
J1

2

1 + g2 + 2g cos q . �5�

We find in Fig. 1 that the inclusion of the coupling term HST,
which introduces the quantum fluctuation via the factor
T i

+T j
−, suppresses the divergence. Thus, the inclusion of the

spin degrees of freedom via HST tends to suppress the insta-
bility to the long-range order of pseudospins.

B. Spin and pseudospin excitation spectra

The dynamical pseudospin structure factor ST�q ,�� is de-
fined as

ST�q,� =
1

N
�
ij

e−iq�rj−ri��T ri

z ��T rj

z �0�	 , �6�

ST�q,� =
1



�

0

�

d�ST�q,��K��,� , �7�

K��,� = e−� + e−���−�, �8�

where ST�q ,� is the Fourier transform of the imaginary-time
correlation function. We use the maximum entropy method
for the inverse Laplace transformation �or analytical continu-
ation� to obtain ST�q ,�� from ST�q ,�. The dynamical spin
structure factor SS�q ,�� is similarly defined by replacing the
pseudospin operator Tr

z with the spin operator Sr
z.

The calculated results for the pseudospin excitation spec-
tra at low temperature �kBT=0.1J2� are shown in Fig. 2,

where we find that the spectra are under the strong influence
of the spin-pseudospin coupling term J2. With increasing the
coupling strength J2 /J1, the peak of the pseudospin spectra
shifts to higher energies and simultaneously the spectra are
broadened. Thus, the lower-energy edge of the peak is not
affected strongly by the coupling strength J2, at least when g
is large. We suppose that the scattering of the pseudospin
excitations due to spin excitations causes the broadening of
the spectra.

The calculated results for the spin excitation spectra at
low temperature are shown in Fig. 3, where we find that, in
contrast to the pseudospin spectra, the spin excitation spectra
change very little; i.e., the peak position, width, as well as
the shape of the spectra are not affected by the parameter J1
when g�1. When g is small, however, the peak position is
slightly shifted to lower energies with increasing the value of
J1 �see Fig. 3�a��.

The dispersion relation of the spin and pseudospin exci-
tations calculated at low temperature are summarized in Fig.
4, which are obtained as the momentum dependence of the
peak position of the spectra. For comparison, we show the
dispersion of the quantum Ising model in Figs. 4�a� and 4�c�;
the gap opens when g�1, which is closed at q=
 when g
→1, leading to the antiferromagnetic long-range order �or
zigzag CO�.16,27 We note that the gap remains open irrespec-
tive of the value of g when we include the coupling term J2.
In the left and right panels of Fig. 4, we present the same
dispersion relations �q, but in a different energy scales, i.e.,
�q /J1 and �q /J2. We find that, unless g is small, the spin
excitation spectra are always inside the charge gap, i.e., in-
side the gap of the pseudospin excitation spectrum. Thus,
when the charge gap is large, the energy scale of the spin
excitations is separated from the high-energy charge excita-

FIG. 2. Dynamical pseudospin structure factor ST�q ,�� for the coupled spin-pseudospin model calculated at kBT=0.1J2. The results at
J2 /J1=0 are for the quantum Ising model. The peak at �=0 for J2 /J1�0 in the uppermost panel of �a� and �b� is spurious, which is due to
the error of the maximum entropy method.
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tions. With decreasing g, however, the energy of the charge
excitation decreases at the momentum q=
 to couple with
the spin excitations.

In Figs. 4�b� and 4�d�, we find that, for g�1, the disper-
sion of the spin excitation spectra scales very well with J2;
i.e., it does not depend on the value of J1. More quantita-
tively, the dispersion of the calculated spin excitation spectra
is fitted well with the dispersion of the 1D antiferromagnetic
Heisenberg model

�q/J2 = 0.6 �



2
sin q �9�

if we include the factor 0.6 as in Eq. �9�. The factor is inde-
pendent of J1 for g�1 and at low T.

These results suggest that at low temperatures there is a
parameter region, where the spin degrees of freedom behaves
independently from the pseudospin degrees of freedom; it is
when g�1 and the gap of the pseudospin excitation spectra
is large, inside of which there is a spin excitation spectra.
Thus, we suggest the validity of the decoupling of the cou-
pling term of the Hamiltonian as

HST ⇒ J2�
i=1

L

�T i
+T i+1

− + H.c.	�Si · Si+1 −
1

4
� �10�

with

�T i
+T i+1

− + H.c.	  0.6 �11�

which leads to the effective Heisenberg-model description of
the spin degrees of freedom of our model. Here, it should be
noted that in general the factor �T i

+T i+1
− +H.c.	 at zero tem-

perature takes the value 1 when g→0 and 1/2 when g→�;
thus the above value 0.6 reflects the effect of quantum fluc-

tuations of pseudospins, which is strong already at g�1. It
should also be noted that with increasing temperature the
value of the factor decreases to 0 �due to thermal fluctua-
tions�, either very rapidly when g is small or rather slowly
when g is large. We find that the essential features of
�T i

+T i+1
− +H.c.	 are contained already in a two-site �or dimer�

model of Eq. �1�, a minimum model reflecting the spin-
pseudospin coupling. This is evident in Fig. 5.

C. Uniform spin susceptibility

To see the validity of the effective Heisenberg-model de-
scription further, in particular for its temperature depen-
dence, we calculate the temperature dependence of the uni-
form spin susceptibility for the coupled spin-pseudospin
Hamiltonian. The results are shown in Fig. 6, where com-
parisons are made with the uniform susceptibility for the
system of free spins and with that for the 1D antiferromag-
netic Heisenberg model. We find that the temperature kBT /J2
at which J2�S�T� shows a maximum is lower than that of the
1D antiferromagnetic Heisenberg model; it becomes lower
with decreasing the value of g or with increasing the value of
J1 /J2. In other words, the deviation from the Heisenberg
model is large when the quantum fluctuation of the pseu-
dospins is small, which occurs when g is small or J1 is large.

Let us analyze the data more precisely. In order to do this,
we fit the results with the temperature dependence of the spin
susceptibility of the 1D antiferromagnetic Heisenberg model,
the so-called Bonner-Fisher curve;28 i.e., we introduce the
T-dependent effective exchange coupling constant Jeff�T� and
determine the values so as to fit the calculated uniform spin
susceptibility �S�T�. If the values of Jeff thus obtained do not
depend on T, it follows that the spin degrees freedom of our

FIG. 3. Dynamical spin structure factor SS�q ,�� for the coupled spin-pseudospin model calculated at kBT=0.1J2.
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spin-pseudospin model is reduced to a 1D Heisenberg model

Hspin = Jeff�
i=1

L

Si · Si+1 �12�

at least for the response to the uniform magnetic field. The
results are shown in Fig. 7. We find that the estimated value
of Jeff�T� is indeed a constant for temperatures below kBT
�0.7J2 at g=2. A crossover temperature T* �=0.7J2� is
thereby defined. The effective exchange coupling constant
thus deduced takes a value

Jeff  0.6J2 �13�

at T�T*; this value is consistent with the value estimated
from the dispersion relation of the spin excitation spectra
�see Sec. III B�. We find that also at g=4 the scaling behavior
holds up to a higher temperature �kBT�0.8J2�, but with a
slightly smaller value of Jeff �see Fig. 7�d��, demonstrating
the validity of the effective Heisenberg-model description at
T�T*. At g=1, however, the temperature region, where
Jeff�T� takes a constant value, is already very small, although
the value is still Jeff�0.6J2 at T�0 K, and at g=0.5, the
value of Jeff at T�0 K deviates largely from Jeff=0.6J2 �or
decreases strongly when J1 /J2 is large�, where the effective
Heisenberg-model description completely fails. We thus find
that T* thus deduced is insensitive to J1, scales well with J2,
and depends strongly on g �i.e., T*→� at g→� and T*�0
at g�1�. Note that if we assume Eq. �10� the behavior
should come from the pseudospin fluctuation �T i

+T i+a
−

+H.c.	, and actually we find that very rough tendency in the
parameter and temperature dependence is seen in the results
for the dimer model �see Fig. 5� although the scaling behav-
ior and the presence of T* are not seen.

We note here that the crossover temperature T* roughly
scales with J2 rather than J1, as seen in Fig. 7. One might
suppose that it should scale with the size of the charge gap,

FIG. 4. Dispersion relations of the spin �open symbols� and
pseudospin �solid symbols� excitations calculated at kBT=0.1J2.
Note that the same data at g=2 �at g=1� are plotted in �a� and �b�
�in �c� and �d�� in different energy scales J1 and J2. The dotted line
in �a� and �c� is the dispersion relation for the quantum Ising model
Eq. �5�, and that in �b� and �d� is the scaled dispersion relation for
the 1D antiferromagnetic Heisenberg model Eq. �9�.

FIG. 5. Temperature dependence of the pseu-
dospin quantum fluctuation �T i

+T i+1
− +H.c.	 calcu-

lated exactly for a dimer model of our spin-
pseudospin Hamiltonian Eq. �1�.
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i.e., up to temperatures corresponding to the energy of the
lowest charge excitations, with which the pseudospins can
excite, the spin excitations may be written in terms of the 1D
antiferromagnetic Heisenberg model. However, as we have
discussed in Sec. III B, the size of the charge gap �if it is
defined as a low-energy edge of the peak� shows a rather
complicated behavior and does not simply scale with either
J2 or J1. The naive picture thus does not hold. However,
since there is no other excitation available, the deviation
from the 1D Heisenberg-model description is necessarily due
to the pseudospin excitations.

D. Specific heat

Finally, we present the calculated results for the tempera-
ture dependence of the specific heat C by the finite-

temperature DMRG method.25,26 The results are shown in
Fig. 8, where we find that the curves have a two-peak struc-
ture, e.g., at g=2 and J1 /J2=4, a rather sharp peak appears at
a low-temperature region kBT0.3J2 �which scales with J2�
and a broad peak structure appears at a high-temperature
region kBT�0.8J2 �which scales with J1�, each of which
corresponds to the spin and pseudospin excitations, respec-
tively. We also find that the shape of the low-temperature
peak can be fitted very well with the temperature dependence
of the specific heat of the 1D antiferromagnetic Heisenberg
model with the effective exchange coupling constant Jeff
0.6J2 at g=2; this value is in accord with the value esti-
mated in Sec. III B. The temperature at which the deviation
in the fitting occurs is at kBT /J20.5−1 depending on the
value of g, which is also consistent with the estimate from
the temperature dependence of the uniform spin susceptibil-
ity. The results thus demonstrate the separation of the energy
scales between spin and pseudospin degrees of freedom and
the presence of a low-energy “magnetic” energy scale as has
been pointed out in Ref. 21.

IV. SUMMARY AND DISCUSSION

We have calculated the spin and pseudospin excitation
spectra and the temperature dependence of the uniform spin
susceptibility of the coupled spin-pseudospin Hamiltonian
for the anisotropic Hubbard ladder at quarter filling by using
the QMC method. We have also calculated the temperature
dependence of the specific heat of the model by the finite-
temperature DMRG method. We have first shown that, when
the pseudospin quantum fluctuation is large �g�1�, the dis-
persion relation of the spin exitation spectra of our model at
low temperatures agrees well with that of the 1D antiferro-
magnetic Heisenberg model with the renormalized effective
exchange coupling constant Jeff=0.6J2 that is independent of
the energy scale of the pseudospin system J1. Here, the spin
excitation spectra is well inside the charge gap, and thus the
spin degrees of freedom are separated from the charge de-
grees of freedom. We have then shown that the temperature
dependence of the uniform spin susceptibility of our model is

FIG. 6. Temperature dependence of the uni-
form spin susceptibility �S calculated for the
coupled spin-pseudospin Hamiltonian. The solid
and dotted curves are the uniform susceptibility
for the system of noninteracting S=1/2 spins and
that for the 1D antiferromagnetic Heisenberg
model, respectively.

FIG. 7. Effective exchange coupling constant Jeff�T� estimated
from the fitting of the calculated uniform spin susceptibility to the
Bonner-Fisher curve.28 Note that the same data are plotted as a
function of kBT /J1 �left panels� and of kBT /J2 �right panels�,
whereby a scaling behavior is seen in the latter. The arrows indicate
the crossover temperature T*. The solid lines are the guide to the
eye.
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well described again by the 1D antiferromagnetic Heisenberg
model with the same effective exchange coupling constant
Jeff=0.6J2. This description is valid up to the crossover tem-
perature T* that is related to the pseudospin excitations of the
system and roughly scales with J2 unless the quantum fluc-
tuation of the pseudospins is small �g�1�. We have also
shown the appearance of the two-peak structure in the tem-
perature dependence of specific heat and have confirmed the
presence of the low-energy magnetic energy scale. We have
thus demonstrated the validity of the effective Heisenberg-
model description of the coupled spin-pseudospin model for
the quarter-filled ladders. Then, it follows that the coupling
between the spin and pseudospin degrees of freedom, which
occurs at g�1, leads to the anomalous spin and charge dy-
namics of the system where the spin excitations deviate
largely from the effective Heisenberg-model description.

Finally, let us discuss some possible experimental rel-
evance of our results. The value of the physical parameters
appropriate for ��-NaV2O5 have been estimated in Ref. 3,
where we have t� �0.14 eV, t��0.30 eV, and V� �V�

�0.8 eV, which lead to J1�1.6 eV, J2�0.10 eV, and g
�0.75. We thus find that the real material may be in the
region of g�1, where the spin degrees of freedom are not
completely separated from the charge degrees of freedom.
The anomalous response of the spin degrees of freedom may
therefore be expected. Here we want to point out that the
value of Jeff estimated from the uniform susceptibility ob-
served in the experiment �which takes the value
�600–700 K at T�0 K� indeed decreases with increasing
temperature,9 which is consistent with the results of our cal-
culation. Our explanation is that the effective spin-exchange
couplingconstant depends on the fluctuation of pseudospins,

the temperature dependence of which is strong above the
crossover temperature �T*�0 K in this material�, where the
spin-charge coupling becomes relevant. The reported20 tem-
perature dependence of the nuclear spin-lattice relaxation
rate 1 /T1 in this material is also interesting in the present
respect. The measured14 strong temperature dependence of
the integrated optical spectral weight have also been dis-
cussed in terms of the destruction of short-range spin corre-
lations which occurs as the temperature is increased.21 We
thus want to point out that observed anomalous spin dynam-
ics in the disorder phase of ��-NaV2O5 may possibly be a
consequence of this type of spin-charge coupling. Because
the anomalous charge dynamics has also been noticed in
other transition-metal oxides29 and some organic systems,30

we hope that the present study will stimulate further research
on the intriguing interplay between the spin and charge de-
grees of freedom of strongly correlated electron systems with
the CO instability.
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