
Quantum state tomography with quantum shot noise

P. Samuelsson1 and M. Büttiker2

1Division of Solid State Theory, Lund University, Sölvegatan 14 A, S-223 62 Lund, Sweden
2Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland

�Received 30 November 2005; published 19 January 2006�

We propose a scheme for a complete reconstruction of one- and two-particle orbital quantum states in
mesoscopic conductors. The conductor in the transport state continuously emits orbital quantum states. The
orbital states are manipulated by electronic beam splitters and detected by measurements of average currents
and zero frequency current shot-noise correlators. We show how, by a suitable complete set of measurements,
the elements of the density matrices of the one- and two-particle states can be directly expressed in terms of the
currents and current correlators.
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According to the standard interpretation of quantum me-
chanics, the wave function, or more generally the density
matrix, determines the probabilities for the possible out-
comes of any measurement on the quantum state. To com-
pletely characterize the wave function of the state is there-
fore of fundamental interest.1 A complete characterization of
an unknown state requires an ensemble of identically pre-
pared states and the measurement of a complete set of ob-
servables on the state.2 A reconstruction of the quantum state
wave function via such a series of measurements is known as
quantum state tomography �QST�.3

Initially, QST was performed experimentally on the dis-
crete angular momentum state of an electron in a hydrogen
atom.4 During the last decade QST has been performed on
the quantum state of squeezed light,5 the vibrational state of
a molecule,6 and the motional states of trapped ions,7 and of
atomic wave packets.8 Recently there has been an interest in
QST of two-particle states in the context of quantum infor-
mation processing. The entanglement of a quantum state, a
potential resource for quantum information processing, is
characterized by the density matrix of the state. The quantum
state of polarization entangled pairs of photons has been re-
constructed using QST.9

To date, no QST has been performed on quantum states in
solid state systems. Very recently a theoretical scheme10 was
developed for solid-state two-levels systems, qubits, appro-
priate for, e.g., the macroscopic superposition state in super-
conducting qubits and the spin state of electrons in quantum
dots. The set of measurements necessary to reconstruct the
state involves controlled rotations and detection of the indi-
vidual qubits. For coupled qubits, where entanglement be-
tween the qubits is of interest, such measurements are highly
involved and have not been demonstrated.

In this paper we take a different approach and present a
scheme for QST of discrete single and two-particle orbital
quantum states in mesoscopic conductors. The key point is
that our proposal can be implemented with existing experi-
mental technics. In mesoscopic conductors one typically
measures electrical currents and current correlators, shot
noise.11,12 Since orbital quantum states13–15 are continuously
emitted from the conductor during transport, a long time
measurement is equivalent to an average over an ensemble of
states. Orbital states can be manipulated by electronic beam

splitters16,17 and detected by shot-noise measurements. In ad-
dition QST demands phase sensitive rotations of the qubit
and below we show how these can be implemented.

The QST procedure is most directly illustrated for orbit-
ally entangled states. In several recent works,13–15,18,19 it has
been shown theoretically that quantum correlations, en-
tanglement, between two spatially separated particles can be
investigated via current correlation measurements. In par-
ticular, in Ref. 15 it was shown how entangled orbital qua-
siparticle states could be generated, manipulated, and de-
tected in a quantum Hall system17,20 by violating a Bell
inequality.13–15,19 In contrast to a Bell test, QST allows for a
complete reconstruction of the two-particle density matrix
and consequently a complete characterization of the en-
tanglement. Importantly, QST also demonstrates that the
maximum possible information one can infer about the two
particle properties of a mesoscopic conductor can be ob-
tained from current and shot-noise measurements.

A generic setup for orbital QST is shown in Fig. 1. A
mesoscopic conductor S acts as a source for orbital quantum
states. The source is connected via four single mode leads
A1,A2,B1, and B2 to two regions, A and B, where the emit-
ted state is manipulated and detected. The mesoscopic source
has one or more reservoirs biased at eV and an arbitrary
number of reservoirs kept at ground. We note that two-
particles effects are only present for two or more biased
reservoirs.11 The temperature is taken to be zero. It is as-
sumed that the scattering in the conductor is elastic; how-
ever, we can account for arbitrary dephasing inside the con-
ductor.

FIG. 1. �Color online� Schematic of the setup. A mesoscopic
conductor acting as a source S �thick red �dark gray� box� is con-
nected via four leads, A1,A2,B1, and B2, to regions A and B
�dashed boxes� each containing two reservoirs + and −, a beam
splitter �green �gray� cross� and a side gate �thin open box�, which
induces a phase shift �A or �B. Two particles �red �dark gray� dots�
emitted from the source are shown.
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The regions A and B each contain an electronic beam
splitter16,17 and an electrostatic side gate �see e.g. Ref. 20� to
induce a phase shift, �A or �B, by modifying the length of
the lead. The beam splitters, taken to be reflectionless, are
further connected to two grounded reservoirs + and − where
the current is measured. The combined beam splitter–side
gate structure can be characterized by a scattering matrix,
for, e.g., A given by

SA = � �RAei�A2 �TAei��A3−�A�

�TAei��A1+�A2� − �RAei��A1+�A3−�A� � . �1�

The transmission probability TA=1−RA can be controlled via
electrostatic gating.16,17,20 The phases �Ai , i=1, 2, 3 picked
up when scattering at the beam splitter are, however, as-
sumed to be uncontrollable but fixed during the measure-
ment.

In the general case, the quantum state emitted by the me-
soscopic source is a many-body state. It is a linear superpo-
sition of states with different number of particles.21 This is
different from, e.g., the true two-particle states investigated
in optics.9 Importantly, the states with more than one �two�
particle�s� contribute to one- �two-� particle observables,
such as current �noise�. However, the contribution of such
many-particle states can be incorporated in effective one-
and two-particle states that completely characterize any one-
and two-particle observables. It is thus these effective states,
quantified by the reduced density matrix, which are the ob-
jects of interest. Only in some special cases, in conductors
typically only in the tunneling limit,13–15 are the emitted
states true one- or two-particle states. In the presence of
dephasing, the emitted state is mixed. Moreover, even an
emitted pure many-body state generally gives rise to a mixed
reduced one- or two-particle state. It is therefore appropriate
to discuss the state in terms of density matrices.

To simplify the discussion we consider a spin-polarized
system with scattering amplitudes independent on energy on
the scale of the applied bias eV, i.e., the linear voltage re-
gime. The emitted state then has only orbital degrees of free-
dom. We first consider the single-particle orbital state emit-
ted, e.g., towards A �the same considerations hold for B�.
Introducing operators bAn

† creating electrons in lead An, with
n=1, 2, propagating out from the source, the 2�2 density
matrix �not normalized� is by definition given by

�A = �
n,m=1

2

�nmbAn
† 	0
�0	bAm = ��11 �12

�21 �22
� , �2�

where we work in the basis �	1
A , 	2
A
, with bAn
† 	0
= 	n
A,

formed by the lead indices �see Fig. 1�. The matrix elements
�nm= �bAm

† bAn
. The Hermitian density matrix, �A=�A
† , has

four independent parameters and can be written as follows:

�A =
1

2�
i=0

3

ci�i =
1

2
� c0 + c3 c1 − ic2

c1 + ic2 c0 − c3
� , �3�

where ��i
= �1 ,�x ,�y ,�z�. A normalized density matrix is
obtained by dividing all elements by c0. In the same way, the
two-particle density matrix is given by

�AB = �
n,m,k,l=1

2

�nm
kl bAn

† bBk
† 	0
�0	bBlbAm �4�

with the matrix elements �nm
kl = �bAm

† bBl
† bBkbAn
. The two-

particle density matrix has 16 independent parameters and
can be written

�AB =
1

4 �
i,j=0

3

cij�i � � j �5�

with � the direct product. Expressing the real coefficients ci
and cij in terms of outcomes of ensemble averaged measure-
ments thus gives a complete reconstruction of the emitted
state. The accessible measurements are average current and
zero frequency current correlations. Importantly, in the trans-
port state the source continuously emits quantum states. As a
consequence, the long time measurements automatically pro-
vide an ensemble average measurement. At A the average
currents at contacts �=± are

IA
� =

e2V

h
�nA

�
, nA
� = bA�

† bA�. �6�

The zero frequency correlator between currents fluctuations
�I in reservoirs A� and B	, given by SAB

�	

= �1/2��dt��IA��0��IB	�t�+�IB	�t��IA��0�
 can be
written11

SAB
�	 =

2e3V

h
��nA

�nB
	
 − �nA

�
�nB
	
� �7�

with nB
�=bB�

† bB�. The operators bA� and bB	 in the reservoirs
at A and B are related to operators bAn and bBk in the leads
An ,Bk, with n ,k=1, 2 �see Fig. 1� via the scattering matrix
SA of the beam splitters at A as

�bA+

bA−
� = SA�bA1

bA2
� �8�

and similarly at B.
We start with the reconstruction of the one-particle state at

A, accessible via the average current �the same procedure
holds for the state at B�. Here a formal approach is taken that
can be extended to the investigation of the two-particle state.
We note that the reconstruction approach is similar to QST
schemes for qubits in other systems �see, e.g., Refs. 10 and
22�. There are, however, a number of important special fea-
tures for mesoscopic systems, making a detailed investiga-
tion important. It is desirable to minimize both the type and
number of experiments having to be carried out. As is clear
from the following, for a complete reconstruction it is suffi-
cient to consider only measurements of currents in one res-
ervoir in A. Here we consider the current at A+. Using the
relation between operators, Eq. �8� and Eq. �6�, we have

IA
+/�e2V/h� = �nA

+
 = tr ��AA� �9�

with the matrix
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A = � RA �TARAe−i��A+�A�

�TARAei��A+�A� TA
� . �10�

The phase �A=�A2−�A3 contains all the information about
uncontrollable phases of the beam splitter. From Eqs. �9� and
�10� it is clear that the phase �A can be included in �A
by a change of local basis �A→UA�̄AUA

† with UA
=diag �exp �−i�A /2� , exp �i�A /2��. Below we consider the
reconstruction of �̄A, parametrized by coefficients c̄i �see Eq.
�3��, thus working with A��A=0� in Eq. �10�. This yields �A

up to an unknown local basis rotation.
Importantly, only four settings of the beam splitter are

needed, both for the current and the current correlators, for a
complete state reconstruction. The settings I to IV considered
here are listed in the table in Fig. 2. By constructing suitable
linear combinations jA�j� of the observables at the different
settings, in the �	1
A , 	2
A
 basis

jA�0� = A�I� + A�II� = 1 ,

jA�1� = 2A�III� − �A�I� + A�II�� = �x,

jA�2� = 2A�IV� − �A�I� + A�II�� = �y ,

jA�3� = A�I� − A�II� = �z, �11�

we obtain a complete set2 of measurements, since the Pauli
matrices � j obey the relation tr ��i� j�=2
ij. Here A�I� is the
matrix A in Eq. �10� for the setting I, etc. From Eqs. �9� and
�11� and the relation �jA�j�
=tr ��̄A� j
= c̄j we then directly
obtain the coefficients c̄j, parametrizing �A in Eq. �3�

c̄j = �
k=0

3

Qjk�nA
+�k�
, Q =�

1 1 0 0

− 1 − 1 2 0

− 1 − 1 0 2

1 − 1 0 0
� �12�

in terms of the measured currents for the different settings,
taking the index �k
= �0,1 ,2 ,3���I , II , II , IV�. This com-
pletes the one-particle state reconstruction.

We then turn to the two-particle state. In Eq. �7�, the
quantity that is directly linked to the density matrix elements
�nm

kl is the reducible correlator �nA
�nB

	
. This correlator is di-

rectly obtained from the measured noise and the average cur-
rents. In analogy to the current, it is sufficient to consider
correlations between currents in one terminal in A and one in
B. Considering here A+ and B+, one obtains from Eq. �7�
and �8� the dimensionless correlator

SAB
++

2e3V/h
+

IA
+IB

+

�e2V/h�2 = �nA
+nB

+
 = tr ��ABA � B� , �13�

where the matrix B is given from A in Eq. �10� by
changing indices A→B in the scattering amplitudes. Similar
to the one-particle state, we note from Eq. �13� that both
phases �A and �B can be included in �AB by independent
local rotations �AB→ �UA � UB��̄AB�UA � UB�†, with UB

=diag �exp �−i�B /2� , exp �i�B /2��. Below we thus consider
the reconstruction of �̄AB, parametrized as in Eq. �5� by the
coefficients c̄ij, yielding �AB up to a local basis rotation.23

By considering the same four settings at B as at A, we can
use the linear combination operators jA�j� in Eq. �11� and
correspondingly jB�i� to construct a complete set of observ-
ables, in the basis �	1
A	1
B , 	1
A	2
B , 	2
A	1
B , 	2
A	2
B
,

jA�j�jB�i� = � j � �i �14�

since the direct products of the � matrices obey tr ��� j

� �i���k � �l��=4
 jk
il. From Eq. �13� and the relation
�jA�j�jB�i�
=tr ��̄AB� j � �i
= c̄ji we then directly obtain the
coefficients c̄ji as

c̄ji = �
k,l=0

3

QjkQil�nA
+�k�nB

+�l�
 �15�

in terms of the measured current correlators and averaged
currents. We emphasize that all elements can be determined
from 16 current correlations and eight average currents �four
at A and four at B�. We have so far assumed that the mea-
surement process is ideal. In a real experiment there are,
however, imperfections due to, e.g., fluctuations of the beam
splitter gate potential or limited accuracy of the measurement
electronics. In mesoscopics conductors,12 such errors can
roughly be estimated to lead to deviations of a couple of
percent from the ideal result. This might lead to a recon-
structed density matrix with negative eigenvalues, i.e., not
positive semidefinite. Schemes to correct for this, maximum
likelihood estimations, for one- and two-qubit states are dis-
cussed e.g., in Refs. 22 and 24.

In the context of two-particle entanglement, it is interest-
ing to compare the QST scheme with a Bell inequality, re-
cently discussed for mesoscopic system �see e.g., Refs. 13
and 19 and for a density matrix approach, Ref. 25�. Both
schemes require the same number of current correlation mea-
surements. The density matrix reconstructed by QST, how-
ever, completely determines the entanglement. In contrast, a
Bell inequality cannot be used to quantify the
entanglement,26 there are mixed entangled states27 that do
not lead to a violation of a Bell inequality.

It is clarifying to illustrate the above scheme with a
simple example �see Fig. 2�. We consider the Hanbury
Brown–Twiss geometry of Ref. 15, where the number of
nonzero elements of the one- and two-particle density matri-

FIG. 2. �Color online� Left: Table with scattering parameters at
A for the four different settings. Right: Schematic of an elementary
mesoscopic source S �thick red �dark gray� box, see Fig. 1�. Two
reservoirs biased at eV, 1 and 2, and two grounded reservoirs, 3 and
4, are connected via beam splitters to the four leads going out
towards A and B. Scattering between upper and lower leads, e.g.,
A1 and A2, is not possible.
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ces are reduced due to the topological properties of the con-
ductor. Since no scattering between the upper, 1, and lower,
2, leads is physically possible due to the spatial separation,
the one-particle density matrix �̄A has only two nonzero ele-
ments, �̄11 and �̄22. These elements are parametrized by c̄0
and c̄3, obtained by measuring �jA�0�
 and �jA�3�
.

The two-particle density matrix �̄AB has four nonzero el-
ements, �̄11

22, �̄22
11, �̄21

12, and �̄12
21. Using the relation between the

coefficients c̄ij resulting from several matrix elements being
zero, �̄AB can then be parametrized as

�̄AB =
1

2�
0 0 0 0

0 c̄00 + c̄33 c̄11 − ic̄21 0

0 c̄11 + ic̄21 c̄00 − c̄33 0

0 0 0 0
� . �16�

Conseqently, only four correlations �jA�i�jB�j�
 need to be
measured to completely reconstruct �̄AB, reducing the num-
ber of actual current correlations needed to be carried out to
12 for the settings considered here �see Eq. �15��. It is inter-
esting to note that in the geometry in Fig. 2, considering the
tunneling limit for the beam splitters in the source and

changing to an electron-hole picture,14 the emitted state is a
true two-particle state.15 Since the hole currents and current
fluctuations are directly related to the electron ones, it is
possible to employ our scheme to reconstruct an electron-
hole state as well.

In this paper we have shown that a quantum state tomog-
raphy procedure is possible in electrical conductors using
only current and shot-noise measurements. In particular for
orbital entanglement we have shown that a QST procedure is
possible if the phase of qubits can be tuned with additional
side gates. The fundamental advantage of QST over a Bell
inequality test is the fact that QST allows a full determina-
tion of the entanglement content of a quantum state. The
connection between QST and shot-noise measurement dem-
onstrates that the maximum possible information one can
infer about two-particle properties of a mesoscopic conduc-
tor can be gained from current and shot-noise measurements.
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