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Numerical simulations based on electronic structure calculations are finding ever growing applications in
many areas of physics. A major limiting factor, however, is the cubic scaling of the algorithms used. Building
on previous work �Phys. Rev. B 71, 233105 �2005�� we introduce a statistical method for evaluating inter-
atomic forces, which scales linearly with system size and is applicable also to metals. The method is based on
exact decomposition of the fermionic determinant and on a mapping onto a field theoretical expression. We
solve the problem of an accurate sampling of the Boltzmann distribution with noisy forces. This novel ap-
proach can be used in such diverse fields as quantum chromodynamics, quantum Monte Carlo, or colloidal
physics.
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Atomistic simulations in which interactions are computed
on the fly from electronic structure calculation play an im-
portant role in modern science and have proven their rel-
evance in many fields. However, their computational cost is a
severe limitation. In particular, simulating large systems has
proven challenging due to the cubic dependence of the com-
putation time on the number of electrons. This has long since
been recognized1,2 and a number of algorithms have been
suggested that in principle lead to linear scaling.3–10 Most are
based on the possibility in semiconductors or insulators of
localizing the electronic orbitals. Linear scaling is then
achieved by neglecting interactions between faraway atoms.
This approach, however, suffers from poor convergence and
leads to errors that are not easy to control. The wavefunc-
tions cannot be localized in metals and only very few alter-
native methods have been suggested.9,10 All in all it can be
stated that in spite of considerable progress performing linear
scaling ab initio simulations is still very challenging.

Very recently we have proposed a new algorithm that
scales linearly in all physical dimensions for semiconductors
and metals alike.11 Here we reformulate the algorithm as a
field theory and sample the resulting action stochastically.
We show that in spite of the statistical noise present in the
evaluation of the forces accurate sampling can be performed.
Our way of solving this problem is general and can also
solve problems of similar nature that are encountered in
quantum chromodynamics,12,13 quantum Monte Carlo,14 and
colloidal physics,15 where the interaction is also determined
stochastically.

Let us start with the generic expression for the total en-
ergy in theories that can be formulated in an effective single
particle form:

E = 2�
i=1

N

�i + Vr. �1�

The first term is the so-called band-structure term given by
the sum of the lowest N doubly occupied eigenvalues �i of a
Hamiltonian H. For instance, in density functional theory H

is the Kohn and Sham Hamiltonian and Vr corrects for
double counting and accounts for the direct nuclear nuclear
interaction, while in tight binding and other semiempirical
approaches H is a Hamiltonian that depends parametrically
on the atomic positions, and Vr is a pairwise additive energy.
In either case, Vr can be calculated in O�N� operations, while
the calculation of the band-structure term has an apparent
O�N3� complexity and has been the limiting factor that has
so far prevented simulating very large systems.

Following Refs. 16 and 17 we write the band-structure
term as the low-temperature limit of the grand canonical po-
tential for independent fermions:

� = −
2

�
ln det�1 + e���−H�� . �2�

In Eq. �2� � is the electron chemical potential and it easy to
see that lim�→��=2�i=1

N �i−�Ne, where Ne=2N is the total
number of electrons. We now factorize the operator in Eq.
�2� as

1 + e���−H� = �
l=1

P/2

�Ml
†Ml� , �3�

where P is an even integer and Ml=1+ei��2l−1�/Pe�/P��−H�.
Here we depart from Ref. 11 and since Ml

†Ml is a positive
definite operator we can follow the well-known practice in
lattice gauge simulations12 of writing its inverse determinant
as an integral over a field �l that has the dimension of the
full Hilbert space in the form18

det�Ml
†Ml�−1/2 =

� D��l�e−�l
†Ml

†Ml�l

� D��l�e−�l
†�l

. �4�

The appearance of determinants is ubiquitous in fermionic
theories and is another way of formulating the minus sign
problem. The use of Eq. �4� that implies sampling a positive
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definite distribution circumvents this problem. Inserting rela-
tion �3� into Eq. �2� after having used Eq. �4� we end up with
the following expression for the grand canonical potential:

� =
4

�
�
l=1

P/2

ln � D��l�e−�l
†Ml

†Ml�l + const, �5�

which is the promised field theoretical formulation. The
quantities of physical interest like energy or force can all be
calculated as derivatives of � relative to an appropriate ex-
ternal parameter. For instance Ne=−�� /����, and assuming
that �−1 is so low that temperature effects on the electrons
can be neglected Eband=2�i=1

N �i= �� /�������+�Ne while the
contribution to the force on particle I at position RI coming
from the band term is given by FI

band=−�RI
�. In taking the

derivatives the constant in Eq. �5� vanishes and one is left
with calculating expressions of the type:

��

��
=

4

�
�
l=1

P/2 � D��l���l
†	 �Ml

†

��
Ml + Ml

†�Ml

��

�l�e−�l

†Ml
†Ml�l

� D��l�e−�l
†Ml

†Ml�l

.

�6�

Thus all relevant properties can be evaluated as averages of

the P /2 distributions e−�l
†Ml

†Ml�l.
So far no approximation has been made and no computa-

tional advantage has been gained either. In order to make
further progress we must use the fact that in Ml the operator
e��/P���−H� appears and that P can be taken to be sufficiently
large for suitable approximations to the exponential operator
to be accurate. In Ref. 11 we used as the basis set a grid in
real space, and a Trotter decomposition was the natural ap-
proximation to use. Here we will apply our method to a tight
binding Hamiltonian and simply use a high-temperature ex-
pansion

Ml = 1 + e��2l−1�/P�1 +
�

P
�� − H�� + O�	�

P

2� . �7�

In this manner the operator Ml has the same sparsity of H, a
fact which will eventually lead to linear scaling. Note that no
assumption has been made on the energy spectrum or on the
local character of the wavefunctions and therefore our
method will be valid both for metals and nonmetals. It sim-
plifies the calculation of the properties of the system if in Eq.
�6� we use the expression

�Ml

��
=

1

2P
��Ml − 1�O� + O��Ml − 1� + O	 1

P3
 , �8�

which has an accuracy compatible with Eq. �7�. For instance
in Eq. �8� O� can be �, ��−H�, or −��RI

H for �=�, �, or

RI respectively. A standard approach to sampling e−�l
†Ml

†Ml�l

is to draw a sequence of normal distributed random numbers
�l and compute �l solving the equations Ml�l=�l. Since
Ml is sparse, this equation can be solved in O�N� operations

using for instance a biconjugated gradient method.19 It can
be easily shown that this approach is equivalent to the sto-
chastic inversion method advocated in Ref. 11 Here we have

decided instead to sample e−�l
†Ml

†Ml�l using Langevin dy-
namics.

ml�̈l = − Ml
†Ml�l − 	e�̇l + 
l �9�

where the components � of the white random noise vector 
l
obey the relation

�
l
��0�
l

��t�� = 2ml	e��t� . �10�

In this way we circumvent the need to invert the matrix Ml.
This solves the problem that for a tight binding Hamiltonian
as opposed to the Hamiltonian used in Ref. 11 we were not
able to find good preconditioners. Furthermore, since differ-
ent Ml’s have different eigenvalue spectra one can choose
the ml so as to achieve the optimal sampling speed in each l
channel. This problem is particularly serious for metals
where Ml�P/2 can have eigenvalues close to zero, which
leads to a much slower sampling speed.11 Furthermore, since
we will use a Langevin sampling also for the ions it is pleas-
ing to use the same sampling methodology for electronic and
ionic degrees of freedom.

Inevitably the interatomic forces that are calculated by
this procedure will be affected by a statistical error. This will
prevent us from using these forces to perform energy con-
serving molecular dynamics �MD� calculations. However,
we will show that sampling the Boltzmann distribution is
still possible. Similar to what was done for the electronic
degrees of freedom we sample the ionic configurations with
a Langevin equation

MR̈I = FI − 	IṘI + �I �11�

where the random force obeys the relations

��I�0��I�t�� = 6kBTM	I��t� �12�

and

�FI�0��I�t�� = 0. �13�

From the electrons’ Langevin dynamics we do not get the
exact forces FI but an approximation FI

L=FI+�I
L that is af-

fected by a statistical error �I
L, and therefore there is in prin-

ciple no guarantee that correct Boltzmann averages are ob-
tained from the solution of Eq. �11�. But let us assume, and
we will show later that this assumption is accurate, that �I

L,
is also a white noise obeying

��I
L�0��I

L�t�� � 6kBTM	I
L��t� ,

�FI�0��I
L�t�� � 0. �14�

In this case the noise �I
L simply adds to �I and if we modify

Eq. �11� so as to read

MR̈I = FI − �	I + 	I
L�ṘI + �I + �I

L �15�

we recover a Langevin equation whose trajectories can still
be used to obtain a Boltzmann sampling. Equation �14� is in
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principle an approximation but we will show below how to
make it more and more accurate.

At first sight it would appear that we are defeating our
object since in general we know FI+�I

L but not each term
individually. However, we can determine 	I

L by varying it

until the equipartition theorem � 1
2 MṘI

2�= 3
2kBT is satisfied.

With this choice the sampling will be correct and noisy
forces can be used in the sampling. It is important to note
that once the value of 	I

L is determined it has to be kept
constant during the simulation. With this procedure one can
exactly calculate static observables within the framework of
Langevin dynamics without knowing the exact force. This is
at variance with Ref. 20 where explicit assumptions on the
noise have to be made.

We tested our scheme simulating Si in the solid and the
liquid phase using a tight binding model.21 We checked that
a value of P=200 is sufficient for the approximation of Eq.
�7� to be valid. The Langevin dynamics parameters used
were �te=1, 	e�te=1/20 where �te is the discretized integra-
tion time step and the algorithm of Ricci and Ciccotti22 has
been used throughout. The masses ml are adjusted such that
the average force fluctuations are �Ml

†Ml�l�2��te
2 /2ml�

0.025. In this way we gain at least one order of magnitude
in speed. The integration time step for the ion dynamics is
�t=1 fs. After each ionic displacement we let the �l evolve
under the action of the new Ml

†Ml until the distribution is
equilibrated. The time needed for the equilibration is prob-
lem dependent and can be measured by looking at the corre-
lation function ��l�0��l�t��. In the present case we make the
rather conservative choice of running the electronic Lange-
vin equation for ne=100 time steps. The �l’s thus obtained
are used to calculate the ionic forces for the next integration

step. The chemical potential is continuously adjusted such
that the number of electrons fluctuates around the desired
value.

We first consider the case of 64 Si atoms in a periodically
repeated cell of length 10.86 Å at a temperature of 3000 K
where the system is metallic. Using the procedure described
above we find that if we take 	I=

1
30 fs−1 we need to add a

correction due to the noise in the forces 	I
L= 1

379 fs−1 in order
to fix the average kinetic energy to the desired value. In Fig.
1�a� it is also seen that not only is the average energy correct
but also that its fluctuations follow Maxwell distribution.

In this small system it is possible to calculate the correct
forces on the ions and check the statistical properties of �I

L.
In Fig. 1�b� it can be seen that �FI�0��I

L�t�� is very close to
zero and that ��I

L�0��I
L�t�� is very localized in time and can

be made sharper at will by increasing ne. This is illustrated
also by the behavior of the noise correlation width

�e
2 =
� dt t2 ��I

L�0��I
L�t��

� dt ��I
L�0��I

L�t��

as a function of ne. If we approximate ��I
L�0��I

L�t�� as a
delta function whose strength is given by its integral we find
an estimate for 	I

L�1/345 fs−1 in good agreement with the
empirical determination. In the solid phase the close value of
	I

L=1/502 fs−1 leads to correct sampling. Therefore we ex-
pect that with some adjustment phase transitions can be stud-
ied with our method, at least in this case.

In Fig. 2 we compare the pair correlation functions g�r�
calculated with noisy forces and those evaluated with a stan-
dard approach. We see that the agreement is excellent and
that the use of noisy forces does not degrade the quality of
the simulation.

The break-even point between standard calculations and
the present linear scaling method is not easy to determine
since it depends on the accuracy required, which in our case
is related to the number P used in the decomposition of the

FIG. 1. Statistical properties in a 64 atoms liquid Si simulation
at 3000 K. �a� The ionic kinetic energy distribution �circles� is com-
pared with the exact Maxwell distribution �line�. �b� Autocorrela-
tion of the noise ��I

L�0��I
L�t�� �circles� for ne=100 and ne=800.

The broader distribution corresponds to the ne=100 case and the
lines are two exponential fits to the data. The crosses correspond to
the cross correlation �FI�0��I

L�t��. All correlation functions are nor-
malized to the average square fluctuation of the band energy con-
tribution to the ionic forces. In the inset the variation of �e

2 as
function of ne is shown in double logarithmic scale and exhibits
approximately a ne

−3/2 dependence.

FIG. 2. Pair correlation functions for �a� liquid silicon �3000 K�
and �b� crystalline silicon in the diamond phase �300 K�. The
crosses show the results from our method and the lines are calcu-
lated using standard diagonalization of the tight-binding
Hamiltonian.
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fermion determinant from Eq. �3�. For the case of Si we
estimate on a single processor the crossing point to be at
‘about 500 atoms. In other cases larger values of P might be
necessary, thus shifting the crossing point to larger systems.
However, our algorithm is trivially parallelizable and there-
fore we expect it to be more favorable in terms of wall clock
time on massive parallel platforms.

A simple and interesting extension of the present work
would be to use it for fully self-consistent density functional
theory. In this case one further source of noise would be the
fact that only a noisy estimator of the density can be given.
Whether this leads to a practically working simulation

scheme will be studied elsewhere.
We also stress that the procedure described here for han-

dling noisy forces is fully self contained since the parameter
ne can be varied until convergence on the physical properties
of interest is reached. The only requirement is that the sto-
chastic process through which the forces are calculated has a
finite correlation time. As such, the method described tran-
scends the field of linear scaling algorithms and offers an
alternative to other Monte Carlo �MC� methods with noisy
estimators.13,20

We thank A. Laio for critically reading the manuscript.
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