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We investigate the possibility of an Anderson transition below two dimensions in disordered systems of
noninteracting electrons with symplectic symmetry. Numerical analysis of energy level statistics and conduc-
tance statistics on Sierpinski carpets with spin-orbit coupling indicates the occurrence of an Anderson transition
below two dimensions.
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According to the scaling theory of Abrahams et al. for
noninteracting electrons in disordered systems, all states are
localized in two dimensions �2D� and the Anderson transi-
tion occurs only above 2D.1 This prediction applies to sys-
tems with orthogonal symmetry, i.e., systems with time re-
versal and spin rotation symmetry.2–4 Accordingly, it is
believed that the lower critical dimension for the Anderson
transition in systems with orthogonal symmetry is

dL
�orth� = 2. �1�

The prediction of Abrahams et al. does not apply to systems
with symplectic symmetry, i.e., in systems with time reversal
symmetry but in which spin rotation symmetry is broken by
spin-orbit coupling.2,5 For such systems it is known that there
is a transition in 2D, if the spin-orbit interaction is suffi-
ciently strong.

The prediction of Abrahams et al. rests on an argument
concerning the form of the � function that describes the scal-
ing of the conductance. Reasonable assumptions concerning
the asymptotic behavior of this function in the strongly me-
tallic and localized limits, respectively, and the assumption
that the � function is monotonic lead to their conclusion. As
we explain below it is this latter assumption that does not
hold in systems with symplectic symmetry.

In Fig. 1 we show the � function that describes the scaling
of the quantity �3

��ln �� =
d ln �

d ln L
. �2�

Here � is the ratio of the quasi-one-dimensional localization
length to the system width for electrons on a long quasi-one-
dimensional system of width L. The � functions that describe
the scaling of different physical quantities are expected to
differ in detail, but for systems with the same dimensionality
and symmetry all are expected to share some common prop-
erties. For example, a zero of the � function indicates a
transition and this property should be common to all the �
functions. Also the slope at the zero, which is related to the
critical exponent � describing the divergence of the localiza-
tion length, should be the same for all the � functions.

The solid lines in Fig. 1 are numerical estimates of the �
function �2� for systems with symplectic symmetry.6,7 The �
function tends to d−2, with d being the dimensionality, in
the metallic limit and becomes negative in the localized
limit. In contrast to systems with orthogonal symmetry
�shown schematically, see Ref. 3 for numerical result� the �
functions are nonmonotonic and a fixed point exists even in
2D. It is thought that the � function for the conductance
behaves similarly.8,9

Looking at Fig. 1 the obvious question is, “What happens
below 2D for systems with symplectic symmetry?” Does the
� function change discontinuously and suddenly become
monotonic? Or does it change smoothly? In the latter case,
we expect the Anderson transition to persist below 2D.
This is a longstanding problem.10 Our numerical results
suggest that the Anderson transition persists below 2D for
systems with symplectic symmetry. It is known that states in
�quasi-�one-dimensional systems with symplectic symmetry
are always localized, so the lower critical dimension must be
at least one. This would mean that

1 � dL
�symp� � 2. �3�

FIG. 1. The numerically estimated � functions for systems with
symplectic symmetry in 2D and 3D �solid lines�6,7 as well as the
schematic ones for systems with orthogonal symmetry �dotted
lines�.
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To study this problem we have simulated noninteracting
electrons on the Sierpinski carpet11 with spin-orbit coupling.
The Sierpinski carpet is constructed by repeating the follow-
ing iteration. We start from a b�b square lattice with a
central c�c square removed. This first generation or “gen-
erator” is denoted as SC�b ,c, 1�. At each step the next
generation is constructed by magnifying the lattice b times
and replacing each site of the current generation with the
generator. The linear size of the kth generation SC�b ,c ,k� is
L=bk and the number of sites is N= �b2−c2�k. The Sierpinski
carpet becomes a true fractal in the mathematical sense when
the generation number k tends to infinity. This true fractal is
denoted as SC�b ,c�. According to a lot of studies of thermal
magnetic phase transitions, the Sierpinski carpets are useful
to study phase transitions in fractal dimensionality less than
two12 �see also a recent work Ref. 13 and references therein�.
We have studied SC�3,1,k� and SC�5,1,k� with fixed bound-
ary conditions imposed in both directions.

A fractal system has a fractal dimension df. This
dimension describes how the mass of the fractal depends
on the size of the fractal. The fractal dimension df of the
Sierpinski carpet SC�b ,c�, defined by N=Ldf, is equal to
df= ln�b2−c2� / ln b. We find df�1.893 for SC�3,1� and
df�1.975 for SC�5,1�. A fractal system also has a spectral
dimension ds.

14 This dimension describes the spectra of the
low energy vibrations on the fractal. Numerical studies of the
Anderson transition in bifractal systems indicate that this is
the relevant dimension when discussing the Anderson
transition.4,15 The spectral dimension of the Sierpinski carpet
has been estimated by simulating a classical random walk on
the fractal.16 The values reported for SC�3,1� and SC�5,1�
are, respectively, ds=1.785±0.008 and ds=1.940±0.009.

We have simulated the SU�2� model,6,17

H = �
i,�

	ici�
† ci� − �

�i,j�,�,��

R�i, j����ci�
† cj��. �4�

Here ci�
† �ci�� denotes the creation �annihilation� operator of

an electron at the site i with spin �. This model has symplec-
tic symmetry. There is an on-site random potential 	i which
is identically and independently distributed with uniform
probability in the range �−W /2 ,W /2�. There is also nearest
neighbor hopping between lattice sites with the hopping ma-
trices R�i , j� sampled uniformly from the group SU�2�. Apart
from the fractal lattice the model is exactly as described in
Refs. 6 and 17 and the reader should refer to these for further
details.

To investigate the localization of electrons on these frac-
tals we have examined the energy level statistics of �4�. In
particular, we have looked at the distribution P�s� of the
nearest neighbor level spacing s measured in units of the
mean level spacing.18 It is known that P�s� is well approxi-
mated by the Wigner surmise for the Gaussian symplectic
ensemble PGSE�s�=As4e−Bs2

in the extended limit, and the
Poisson distribution PP�s�=e−s in the localized limit. We
have calculated the energy eigenvalues using either LAPACK

or the Lanczos method.19 An unfolding procedure has been
applied to the level spacings to compensate for the variation

with energy of the ensemble average density of states. For a
quantitative analysis of P�s�, we define

Ys0
=

	
0

s0

dsP�s� − 	
0

s0

dsPP�s�

	
0

s0

dsPGSE�s� − 	
0

s0

dsPP�s�
. �5�

In the extended limit Ys0
=1, and in the localized limit

Ys0
=0. Note that since each energy level has a twofold

Kramers’ degeneracy we consider only distinct eigenvalues
when calculating the spacing distribution.

We have simulated lattices SC�5,1,k� up to k=4. Calcula-
tion of higher generations is not possible at present because
the CPU time required is too large. For the first generation
k=1 the number of eigenvalues is small. Therefore, we re-
stricted our analysis to a single pair of consecutive levels per
sample, the smallest positive eigenvalue and the largest
negative eigenvalue. When we choose the pair of levels in

this special way, the probability P̃�s� of a level spacing with

a value s is equal to sP�s�. Therefore we multiply P̃�s� by
1/s to obtain level spacing distribution P�s�. We simulated
1 000 000 samples for k=1. For higher generations the num-
ber of eigenvalues is greater so we reverted to the usual
procedure of analyzing a sequence of consecutive levels. The
number of samples was reduced accordingly. We used levels
in the interval E= �−0.3,0.3�. We simulated 15 000, 600, and
10 samples for k=2, 3, and 4, respectively. The total number
of the level spacings for each of the �k ,W� pair is thus of
order 105 to 106.

Figure 2 shows Y1.5 as a function of disorder W for SC�5,
1, k�. There are large corrections to scaling in the first gen-
eration. The data for the higher generations k=2, 3, and 4
indicate that an Anderson transition occurs on SC�5,1�
around W�5. When disorder is weak enough, Y1.5 increases
with k for k
2 indicating a delocalized phase. When disor-

FIG. 2. Y1.5 vs W for SC�5, 1, k� �k=1, 2, 3, 4�. The solid lines
are the best fits of �7� to the data inside the box �shown by dashed
lines�. Outside the box the fit deviates from the numerical data
because the expansion parameters �L1/� and w are no longer small.
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der is strong enough, Y1.5 decreases as k increases indicating
a localized phase.

Further analysis of the level statistics on SC�5,1� is based
on the assumption that finite size scaling applies to fractals in
the same way as to systems with integral dimension. Accord-
ingly the statistic Ys0

should, in the absence of any correc-
tions to scaling, obey the single parameter scaling law

Ys0
= f±�L/�� = F0��L1/�� . �6�

Here � is the localization �correlation� length, � the critical
exponent for the divergence of �, and � a smooth function of
disorder W that crosses zero linearly at the critical disorder
Wc. The subscript ± distinguishes the scaling function in the
delocalized and localized phases. It is, however, clear from
Fig. 2 that corrections to scaling are not negligible. Taking
account of corrections up to the first order in an irrelevant
variable Ly we have20–22

Ys0
= F0��L1/�� + LyF1��L1/�� . �7�

For the purpose of fitting, the scaling functions F0 and F1
are approximated by a power series up to the order nR
and nI in �L1/�. The functions � and  are also approximated
by expansions in terms of dimensionless disorder w= �Wc

−W� /Wc up to the order mR and mI. The best fit to data is
determined by minimizing the �2 statistics and the precision
of the parameters are determined using the Monte Carlo
method.23

The best fit is shown in Fig. 2 and the results of the
scaling analyses for s0=0.5 and s0=1.5 are tabulated in Table
I. The estimates of the critical disorder Wc and the critical

exponent � for s0=0.5 and s0=1.5 are consistent as required.
Our estimate �=3.4±0.2 for SC�5,1� is clearly different from
the value �=2.746±0.009 in 2D,6 reflecting the difference of
the dimensionality. To exhibit single parameter scaling the
data are replotted, after subtraction of the corrections due to
an irrelevant variable in Fig. 3. The two branches correspond
to the delocalized and localized phases.

To complement our study of the level statistics, we have
also analyzed statistics of the Landauer conductance g �in
units of e2 /h�.21,22,24 Two perfect leads of width L=5k are
attached to the Sierpinski carpet SC�5, 1, k� and the recursive
Green’s function method is used to calculate the
conductance.25 The hopping matrices in the direction trans-
verse to the current are set to the unit matrix. As a scaling
quantity, we choose the typical conductance

gtyp = e�ln g�. �8�

Here � � means the ensemble average. We have set the Fermi
energy to E=0 and have accumulated 3 000 samples for
k=2, 3 and from 150 to 300 samples for k=4. Figure 4
shows the typical conductance gtyp as a function of W for
SC�5, 1, k�. These data also indicate the occurrence of an
Anderson transition at about W�5.

We have also analyzed energy level statistics and conduc-
tance statistics on SC�3, 1, k� up to the fourth generation. We
did not find any evidence for a delocalized phase. We cannot
conclude from this that SC�3,1� is below the lower critical
dimension because the SU�2� model has significant random-
ness even when the on-site random potential is zero.

FIG. 3. The numerical data Y1.5 after subtraction of the correc-
tions to scaling plotted as function of the ratio L /�.

TABLE I. The details of the scaling analyses for SC�5, 1, k�. Data with W in �4.2, 5.7� have been used. The range of Ys0
has also been

restricted as indicated. Here, Np is the number of parameters, Nd the number of data, Q the goodness of fit probability, and Yc the critical
value of Ys0

. The precision of the fitted parameters is expressed as 95% confidence intervals.

s0 Ys0
nR ,nI ,mR ,mI Np Nd Q Wc Yc � y

0.5 �0.60,0.93� 4,1,2,0 11 63 0.3 4.99±0.02 0.791±0.009 3.50±0.11 −0.80±0.09

1.5 �0.34,0.77� 3,1,2,0 10 63 0.7 4.98±0.03 0.536±0.013 3.44±0.15 −0.77±0.11

FIG. 4. The typical conductance gtyp vs W for SC�5,1,k� �k=2,
3, 4�. The lines are a guide to the eye only.
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In Fig. 5 we have plotted the available results for
the critical exponent for systems with orthogonal and
symplectic symmetries. For 2D and 3D system with sym-
plectic symmetry the critical exponent are estimated to be
�=2.746±0.009 in 2D �Ref. 6� and �=1.37±0.02 in three-
dimension �3D�.7 For systems with orthogonal symmetry we
have used the estimates reported in Refs. 4 and 20. In the
figure we plot 1 /� as a function of ds.

We recall that the slope of the � function at the fixed point
is equal to 1/�. Assuming that the � function changes con-

tinuously as the dimensionality changes, then just above the
lower critical dimension the fixed point should correspond to
the maximum of the � function. We therefore expect the
critical exponent � to diverge at the lower critical dimension.
This is consistent with the theoretical analysis of the nonlin-
ear � model with orthogonal symmetry where it was found
that �=1/	 for 	=d−2�1.26 The numerical data for or-
thogonal systems shown in Fig. 5 are consistent with this.

For systems with symplectic symmetry fewer data are
available.6,7 When only the estimates for � in 2D and 3D are
considered, it can leave the impression �cf. the dotted line in
Fig. 5� that the lower critical dimension is 1 in this case.
However, our estimate of the critical exponent on SC�5,1� is
well below the dotted line, suggesting that the lower critical
dimension is closer to 2 than to 1.

To confirm the occurrence of the Anderson transition be-
low 2D for systems of noninteracting electrons in disordered
systems with symplectic symmetry, and to determine more
precisely the lower critical dimension, further numerical
studies on a variety of fractals over a larger range of genera-
tions are needed. Analysis of fractals with ds intermediate
between the values for SC�3,1� and SC�5,1� might be par-
ticularly helpful. The nature of the possible delocalized
phase also warrants further study.

Recently electron transport through systems with fractal
perimeter was studied experimentally.27 Electron transport
through fractal structures can be an interesting topic for fur-
ther theoretical and experimental investigation.
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