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We present a theoretical study of the electron-phonon coupling in suspended nanoelectromechanical systems
and investigate the resulting quantum chaotic behavior. The phonons are associated with the vibrational modes
of a suspended rectangular dielectric plate, with free or clamped boundary conditions, whereas the electrons are
confined to a large quantum dot (QD) on the plate’s surface. The deformation potential and piezoelectric
interactions are considered. By performing standard energy-level statistics we demonstrate that the spectral
fluctuations exhibit the same distributions as those of the Gaussian orthogonal ensemble or the Gaussian
unitary ensemble (GUE), therefore evidencing the emergence of quantum chaos. That is verified for a large
range of material and geometry parameters. In particular, the GUE statistics occurs only in the case of a
circular QD. It represents an anomalous phenomenon, previously reported for just a small number of systems,
since the problem is time-reversal invariant. The obtained results are explained through a detailed analysis of

the Hamiltonian matrix structure.
DOI: 10.1103/PhysRevB.73.035436

I. INTRODUCTION

The possibility of engineering devices at the nano- and
microscales has created the conditions for testing fundamen-
tal aspects of quantum theory,! otherwise difficult to probe in
natural atomic size systems. In particular, quantum dots
(QDs) have largely been considered as a physical realization
of quantum billiards>* and mesoscopic structures have
played an important role in the experimental study of quan-
tum chaos,” mainly through the investigation of the transport
properties of quantum dot® and quantum well” structures in
the presence of magnetic field. However, some extraneous
effects can prevent the full observation of the quantum cha-
otic behavior. For instance, impurities and soft confining po-
tentials may mask the chaotic dynamics predicted for some
semiconductor quantum billiards® (e.g., the stadium) and the
incoherent influence of the bulk on the electronic dynamics
hinders the observation of the so-called eigenstate scars® in
quantum corrals.” Furthermore, random matrix theory
(RMT) predictions for the Coulomb blockade peaks in quan-
tum dots may fail as a result of the coupling with the
environment.'?

Alternatively, suspended nanostructures are ideal candi-
dates for implementing and investigating coherent phenom-
ena in semiconductor devices, because, at low temperatures,
they provide excellent isolation for the quantum system from
the bulk of the sample.!’"!> Nanoelectromechanical systems
(NEMSs), in particular, are specially suited to study the ef-
fects of a phonon bath on the electronic states, possibly lead-
ing to a chaotic behavior. This point is of practical relevance
since it bears on the question of the stability of quantum
devices,'>'* whose actual implementation could be pre-
vented by the emergence of chaos.'

In a recent paper,'® we have shown that in fact suspended
nanostructures can display quantum chaotic behavior. In this
paper we extend such studies and perform a detailed analysis
of the coupling between the phonons of a suspended nano-
scopic dielectric plate and the electrons of a two-dimensional
electron gas (2DEG). The phonons are associated with the
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vibrational modes of a suspended rectangular plate (i.e., the
phonon cavity) and the 2DEG (in the free-electron approxi-
mation) is confined to a large quantum dot (billiard) built on
the plate’s surface.

Two different scenarios are considered for the shape of
the quantum dot: circular and rectangular geometries (Fig.
1), which yield distinct chaotic features. As for the coupling
mechanisms, we take into account the deformation and pi-
ezoelectric potentials. By performing energy-level statistics
we show that, for sufficiently strong electron-phonon cou-
pling, such electromechanical nanostructures can exhibit
quantum chaos for a large range of material and geometry
parameters. The resulting spectral correlation functions,
which depend on the geometry and location of the center of
the QD on the surface of the plate as well as on the plate’s
boundary conditions (free or clamped), are those expected
from the Gaussian orthogonal ensemble (GOE) or Gaussian
unitary ensemble (GUE) of the random matrix theory.!” We
present a detailed explanation for the occurrence of such dif-
ferent statistics distributions. Noteworthy are the results for
the circular QD, since in this case the GUE statistics can be
obtained in spite of the fact that the system is time-reversal
invariant. By investigating the influence of material and geo-
metrical parameters on the unfolding of chaos, we indicate
the conditions for its experimental observation.
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FIG. 1. Schematics of the suspended nanoelectromechanical
structures depicting the cases of a circular and a rectangular quan-
tum dot on the surface of a suspended dielectric plate.
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II. THE SYSTEM HAMILTONIAN

The full Hamiltonian of the problem is composed of three
parts: the phonons, the electrons, and the electron-phonon
interactions, which are formulated in the sequence.

A. Phonons

At temperatures below 1 K the acoustic phonon mean free
path in SiN (silicon nitride), for instance, can be as large as
10 um.'® This implies that a plane-wave acoustic phonon
propagating through a suspended mesoscopic system whose
dimensions are much smaller than this mean free path hits
the boundaries many times during its expected lifetime, giv-
ing rise to standing waves. Thus, the phonons in such sys-
tems can be described in terms of the plate’s normal modes
of deflection, instead of the plane-wave phonon description
that is more appropriate for bulk systems. Therefore, in the
following we associate the phonons with the vibrational
modes of the suspended mesoscopic system. In addition, at
low temperatures the semiconductor can be treated as a con-
tinuum elastic material due to the large wavelength of the
phonons.

To obtain the long wavelength vibrational modes of the
plate we use the classical plate theory (CPT)
approximation.!” The CPT describes adequately the vibra-
tions of a plate whose thickness is much smaller than its
lateral dimensions, which is the characteristic of our NEMSs.
The deflections of a plate lying in the (x,y) plane are thus

described by a vector field [U(r)zA +V(r)j+ W(r)IG]exp(—iwt)
of components

Vi) =—222 )

ow
U(X,y,z) =—Z s
dx dy

W(x,y) = 2 A X0 Y, (). (2)

m,n

In Eq. (2), W(x,y) is written in terms of the one-dimensional
transverse modes X,, and Y,, which are the solutions of the
Bernoulli-Euler equation'®2?° under the appropriate boundary
conditions. Considering that each of the four sides of the
plate can be either clamped (C) or free (F) (corresponding to
the Dirichlet or Neumann boundary conditions, respec-
tively), we have

X,,(x) = sin(k,,x) + sinh(k,,x) + £ [cos(k,,x) + cosh(k,,x)],
(3)
where

_ cos(k,L,) — cosh(k,,L,)
" sin(k,L,) + sinh(k,,L,)

(4)

Likewise for Y,(y). The signs in Eq. (3) are positive (nega-
tive) for the FF (CC and CF) boundary conditions.?' The k,,’s
are solutions of cos(kL,)cosh(kL,)=1.

Under given boundary conditions, the Rayleigh-Ritz
method is used to obtain the coefficients A, of Eq. (2) and
the eigenfrequencies w, corresponding to the eigenmode
u,(r) of the plate. It is done by imposing d U/ JA,,,=0 on the
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energy functional U= [dx dy[K(x,y)=V(x,y)],>® where the
kinetic and strain energies are written as

o2
K(x’y) = pZDEWZ(XAY)’ (5)
D(#W FW
V(x,y) = E(W + (9—))2) -(1-v)D
(2] o
ax? &yz - dxdy '

Here p,p denotes the two-dimensional density, v is the Pois-
son constant, and D is the rigidity constant.

In the CPT approximation, the most important motion is
that in the z direction, given by W(x,y), whereas the dis-
placements along the x and y directions are described ap-
proximately by the first term of an orthogonal basis expan-
sion. Therefore, an arbitrary transverse motion can be
expanded in the basis of the orthonormal vibrational modes
W,(x,y), for which

<Wa(x7y)|WB(x’y)> = 5aﬁ’
EWa(-x7y)Wa(x’7y,)=6(x_-x,)6(y—y,)' (7)

The U, and V, components are only approximately ortho-
normal. As an illustration, we show in Fig. 2 the vector field
components (U,,V,,W,) of the SA2 eigenmode (i.e., the
second symmetric/antisymmetric eigenmode) for the {FFFF}
boundary conditions. Hereafter, we refer to the set of bound-
ary conditions of the plate, either C or F, as {X,X,Y,Y,}, in
accordance with Fig. 1.

An arbitrary vibration field of the cavity is written in
terms of its deflection modes « as

u(r, 1) = 2 [04(0) + 0L (0] X [U(1)i + Vo (1)] + W,(r)k],
(8)

together with the normal coordinates Q,(f)=Q, exp(—iw,t).
In writing Eq. (8), we have taken into account that the modes
« are real.

To provide the same level of description for the elastic
and electronic degrees of freedom of the electromechanical
nanostructure, we perform the canonical quantization of the
vibration field given by Eq. (8). As a result, we associate the
classical field u(r,r) with the quantum operator G(r,7),
which must satisfy the equal-time commutation relation
[i;(r,1),7(r",1)]=ih(r—r'), with the conjugate momen-
tum operator #(r,7)=md,ii. In particular, for the k compo-
nent of the field we have

[Wx,y), m(x",y")] = ifidx —x") Sy = y"). )

But if we write {X,(1)=0,()+0(1)}

W(x,y,0) = 2 X (OW,,
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FIG. 2. Contour plots for the cavity deflection mode SA2 (the
second symmetric/antisymmetric eigenmode) for the {FFFF} bound-
ary conditions, calculated at the surface of the plate: (a) W(x,y), (b)
U(x,y), and (c) V(x,y). The amplitudes and lateral dimensions are
given in arbitrary units.
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(63,0 = pV, (= iw) X)) Wo= >, Po(W,.  (10)
the commutation relation (9) yields

[W(x,y), m(x,9)] = 2 [Xa PIW W, (11)
a,pB

Then, by requiring that [X,,, Pg]=if, 5 one can use Eq. (7)
to show that Eq. (9) is satisfied. Thus, X, and P, are canoni-
cally conjugate operators, satisfying [X,,Xg]=[P,,Pgl=0
as well.

The normal coordinates are now the quantum mechanical
operators Qa(t) and QZ(t), which are used to define the di-
mensionless number operators

+ [2Vpw, A
i @ AT

a. = s a,=
2 ﬁ Q[l/

From the previous commutation relations it can be shown
that [a,(r).a}(]=08,5 and [a,.a.]=[a}.a,]=0. There-
fore, al and a,, are the creation and annihilation operators of
the phonon deflection modes « and the vibration field opera-
tor u(r,?) is

< Lad(0) +al(0)]
= . \2Vpw,/h

2Vpw, A
TQQ- (12)

[U (1)1 + V()] + W,(r)k]. (13)

B. Electrons

We consider the free-electron approximation and assume
the electrons to be completely confined to a narrow quantum
dot, forming a quasi-2DEG of thickness d. The normalized
electronic _ eigenstates ~ are  written as ¢, (r)
=@, (x,y)\2/d sin(ymz/d). Due to the quasi-2D assumption,
the electrons always occupy the lowest state in the z direc-
tion, so in our calculations we set the quantum number 7y
=1.

For the rectangular QD of sides L, and L,, we have

eulx,y) = ,Lsin(l%)sin(m) (14)

VL, Ly . Ly

with k=(p,q) and p, ¢ assuming positive integer values.
The corresponding eigenenergies are

h? ( P ¢ 1 )
E = S+ 5+, 15
T om 12T L2 & (15)
where m, is the effective electron mass in the QD.
For the circular QD of radius R, we have
Jjy(ay,r/R)exp(il 6)
@.(r,0) = : (16)

VAR 1 ()|

with k=(l,v), [=0,%=1,%2,..., and «;, the vth root of the
Bessel function of order |/|. Here, the eigenenergies are

#? (0112,, 772>

1=\ 2
Y 2m,

E (17)

R P
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C. Electron-phonon interactions

The electrons interact with the lattice vibrations through
different mechanisms, depending on the characteristics of the
solid and the temperature. In addition, from the theoretical
point of view there can be several approaches to describe the
coupling between electrons and phonons. Next we formulate
the electron-phonon interaction terms that are more relevant
to our problem.

1. Deformation potential

At low temperatures only the long-wavelength acoustic
modes are populated and the semiconductor can be described
by the continuum approximation. As a result of the cavity
deflections, local volume changes take place, thus modifying
the lattice constant and the electronic energy bands. In first
order, such volume changes are due to longitudinal (com-
pressional) acoustic modes and the scattering potential acting

on the electrons is proportional to A(r)=V-@(r). Therefore,
the Hamiltonian for the deformation potential (DP) interac-
tion is

Hpp=Cpp f dr ¥i(r) V - a(r)¥(r)
D

\/ E ““”“'bL,(a +a)be, (18)

iy

with Cpp denoting the deformation potential constant for the
material. V(r)=2,b,¢,(r) and \P*(r):EKbZ&Z(r) are the
electron field operators and b,(b") is the fermionic annihila-
tion (creation) operator satisfying the usual anticommutation
relations.

The integral is performed over the volume D comprising
the 2DEG. In the above equation, ng,,K, is given by

Ve, ,=f dr ¢,V (U +Voj + Wk . (19)
D

aK' K

Since

FW,, &ZW
c?xz c?y2

V- (Ujg+V,j+Whk)=-z ( ) (20)

we have from Eq. (2) that

VQ;I:"K’ == E Amnf dl‘ Z¢Z”(X;:1Yn + XmYZ) ¢K’ . (2 1)

2. Piezoelectric potential

In piezoelectric materials, the acoustic lattice vibrations
produce polarization fields that act back on the vibrational
modes. The result is a set of coupled equations for the acous-
tic and polarization fields. However, taking into account the
difference between the sound and light velocities, such equa-
tions can be decoupled, yielding the following electric field
in the semiconductor??
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E=-— 2@(%, ErerEry)- (22)

014 and € are, respectively, elements of the piezoelectric and
dielectric tensors. Expression (22) is obtained taking into ac-
count the cubic symmetry of the lattice. Furthermore, from
the CPT approximation, the strain tensor elements &,,=¢
=0 and

vz

au  Iu FW
Enyw=\-_ 1t —Z . (23)
dy  dx ox dy

Therefore, for a given transverse mode «, the resulting elec-
tric field is perpendicular to the plane of the cavity

14 PWy
=2A(z ) —k, (24)
€ dxdy
with A(z)=d(2d-z7)/2.
The potential energy of the electrons can be written as
—e[E,,-dl, leading to

6914 )E FPW.

(25)

Finally, we write down the piezoelectric (PZ) potential
electron-phonon Hamiltonian as (CPZ=2eQI4/ €)

Hp,= cm/ E “”b,,(a +a)b,, (26)

!
K

with

vz, = AL, f de A2 XL Y by (27)
mn D

D. The full Hamiltonian
The total Hamiltonian of the system, when both the DP

and PZ interactions are included, is

. 1 .
H=H,+H,,+H, =2 EDbb, + > (na + E)hwa +Hpp
K o

+Hpy. (28)

The basis in which H is represented is constructed as the
product of the one-electron state |¢,) with the multiphonon
state |ny,n,,n3,...,ny). Here, n,=0,1,...,n denotes the
number of phonon quanta in mode «, with maximum popu-
lation set by n. A total of N distinct phonon modes are con-
sidered. The values of n and N are chosen to be compatible
with the thermodynamics of the system. At low temperatures
(below 1 K) n is of the order of a few tens, the average
phonon occupation number. On the other hand, N ranges
from ~ 10, at the lowest temperatures, up to ~30 at the high-
est ones. Hence, in the numerical calculations we set n=20
and N=21. It has been verified, however, that by varying n
and N through a considerably wide range does not alter our
main results.
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A typical basis vector is written, for a given n
E(’ll,l’l2,... 9nN)’ as

N
i) =1 @ [1 ——(al)0). (29)
a=1

ln 1
\n,!

For the diagonalization procedure, we energy-sort the basis
set up to a maximum energy value. The diagonalization is
then performed with this set of vectors. Obviously, the en-
ergy of each basis state is given by the sum of the electron
and the phonon energies, E,=E +2,n,+1/2)hw, E,
comes from either Eq. (15) or Eq. (17), depending on the
specific geometry of the 2DEG. For the formation of the
original basis set 10° levels were taken into account; how-

ever, the diagonalization of H is performed in the truncated
basis that varied from 3 X 10% to 15X 103 basis states. It is
important to notice that the proportion of different phonon
states |n) to electron states |¢,), comprising the truncated
basis, ranges from several tens to about a hundred, depend-
ing on the details of the NEMS. That is, the number of pho-
non states taking part in the calculations is much larger.

III. ENERGY-LEVEL STATISTICS

To determine whether the electron-phonon interaction
generates chaos in the NEMS, we consider the standard ap-
proach of looking into the statistical properties of the system
eigenenergies.>>} For completeness, here we give a brief
summary of the main ideas. A general technical overview
can be found in Ref. 24, whereas a very instructive discus-
sion is presented for a particular case in Ref. 25.

Consider the ordered sequence {E;,E,,...} of eigenener-
gies of an arbitrary quantum mechanical problem. The cumu-
lative spectral function, counting the number of levels with
energy up to E, is written as

WE)=> O(E-E,). (30)

In principle, we can always separate 7(E) into smooth (av-
erage) and oscillatory (fluctuating) parts, so that

77(E) = ﬂsmooth(E) + nosc(E)' (31)

The smooth part is given by the cumulative mean level
density.?*

To make the analysis independent of the particular scales
of the spectrum, one can use the so-called “unfolding”
procedure.? It allows the comparison of the results obtained
from any specific system with the predictions of the RMT.!”
The unfolding is done basically by mapping the sequence
{E,,E,,...} onto the numbers {s,,s,,...}, where

Sp = nsmooth(En) . (32)

In the new variables, the cumulative spectral function simply
reads 7(s) =5+ 7oc(s), sO that the smooth part of 7 has unity
derivative. Hence, for our statistical studies we consider the
resulting sets {s;,s5,...}.

In this work we calculate two of the most used spectral
distributions:?® the nearest-neighbor spacing distribution
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P(s) and the spectral rigidity A;(/). The P(s) distribution
probes the short-scale fluctuations of the spectrum. It corre-
sponds to the probability density of two neighboring un-

folded levels s, and s,,,; being a distance s apart. A;(]) is an
example of a distribution that quantifies the long-scale cor-
relations of the energy spectrum. It measures the deviation of
the cumulative number of states (within an unfolded energy
interval /) from a straight line. Mathematically

_ 1 s+l
As() = 7<min{A,B}f ds[ 7(s) — As — B]2> , (33)

0]

where (-) denotes the averaging over different possible posi-
tions s, along the s axes. The parameters A and B are chosen
to minimize [ 7(s)—As—B]? in each corresponding interval.

The RMT predicts three different classes of Gaussian
ensembles,!”2* having distinct P(s) and A;({): the Gaussian
orthogonal ensemble, the Gaussian Unitary Ensemble, and
the Gaussian Sympletic Ensemble, constituted by matrices
whose elements are random and obey certain Gaussian-like
distribution relations.>!” Furthermore, these ensembles are
invariant under orthogonal, unitary, and sympletic transfor-
mations, respectively. Bohigas et al.?’ conjectured that the
spectrum fluctuations of any quantum chaotic system should
have the same features of one of such three cases. This pro-
posal has been firmly established by theoretical and experi-
mental examinations.>?>>* When spin is not involved, it is
expected that the spectrum statistics of a chaotic system is
similar to that obtained from the GOE (GUE) if it is (is not)
time-reversal invariant (TRI). However, there are exceptions
to this rule, consisting of a special class of TRI systems with
point group irreducible representations, which does exhibit
the GUE statistics.?82?° Until recently,'¢ the only family of
systems known to show this anomalous behavior was formed
by billiards having threefold symmetry, implemented experi-
mentally in classical microwave cavities.30-3

For regular (integrable) systems the resulting statistics

follow Poisson P(s)=exp(—s) and linear A;()=I/15
distributions.??> For the GOE and GUE, P(s) is described
with high accuracy by the Wigner distributions®*

o gs exp(— jfsz) (GOE), .
S)=
%sz exp(— isz) (GUE).

T

Finally, A5(/) can be approximated by the expressions

i(l 27l 3 ﬁ) GOE
= nQ2wl) + y— 178 ( ),
A5(D) = 1 5 (35)
ﬁ(ln(Zﬂl) +y- Z) (GUE).

Here, y=0.5772 ... is the Euler constant.
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FIG. 3. The distinct positions, A, B, C, D, and E (on the plate)
used as centers for the quantum dot. The dashed lines represent the
possible symmetry axes for the plate phonon modes «, depending
on the boundary conditions {X;X,YY>}.

To characterize our nanostructures, we compare the nu-

merically calculated distributions P(s) and As(/) with the
corresponding analytical expressions for the regular and cha-
otic cases. Very good statistics are obtained using 2000 up to
2500 energy levels.

IV. RESULTS

We have applied the previous analysis to the eigenener-
gies of our suspended NEMS, considering a wide range of
material and geometrical parameters, and it was found that
chaos emerges in the system for a sufficiently strong
electron-phonon (el-ph) coupling. Although the phenomenon
proved to be quite robust with respect to variations of physi-
cal dimensions, boundary conditions, and basis size, it was
observed that the chaotic features depend on some material
parameters, like the electronic effective mass and the el-ph
coupling constants. The materials used to model the NEMS
comprise an AlAs dielectric phonon cavity and an
Aly 5Gag sAs quantum dot, where the 2DEG is formed. This
choice takes advantage of the very small lattice parameter
mismatch in the interface as well as the large electronic ef-
fective mass of the X valley in AlGaAs.?

In our investigation we varied the DP and PZ interaction
strengths (by means of the multiplicative factors Bpp and
Bpy), the stiffness tensor elements c,;, ¢,, and c,4, the mass
density of the cavity and the in-plane electron effective mass.
As for the geometrical parameters, we also varied the size
and aspect ratio of the dielectric plate, the area of the QD, the
thicknesses of the plate (5) and of the 2DEG (d). More in-
terestingly, however, we considered different positions for
the center of the QD (shown in Fig. 3), which produces dis-
tinct chaotic behaviors.

The most representative results will be presented through-
out this section. A detailed analysis is found in Sec. V.

A. Circular 2DEG

Here we present a detailed analysis for the spectral statis-
tics of the NEMS containing a circular quantum dot. Unless
mentioned otherwise, the system comprises a QD of radius
R=450 nm and thickness d=05/5 on the surface of a square
phonon cavity of sides L=1 um and width 6=40 nm.
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FIG. 4. Energy-level statistics for the nanostructure with only
the DP interaction, for Bpp=10 and four different positions (A, B,
C, and D) for the center of the QD (refer to Fig. 3). The cavity
boundary conditions are {FFFF}. The symbols + represent the nu-
merically calculated results. The curves indicate the expected be-
havior for regular (solid), chaotic GOE-type (dashed), and chaotic
GUE-type (dot-dashed) systems.

Once enough electron-phonon coupling is assured, regular
or chaotic spectral features will emerge depending on the
interplay between the symmetries of the cavity phonon
modes and the electronic wave functions. In this respect the
boundary conditions of the phonon cavity (i.e., the dielectric
plate) and the localization of the circular 2DEG play a cru-
cial role. In order to systematically investigate this effect we
make use of the scheme presented in Fig. 3. Slight displace-
ments of the QD out of the center of the plate suffice to
generate different spectral features. So, the relative coordi-
nates (—0.5<x,y<0.5) used in the calculations are A
=(0,0), B=(0.05,0.05), C=(0.05,0.025), D=(0.05,0), and

E=(0,-0.05). Figure 4 shows P(s) and A(I) for cases A, B,
C, and D in the {FFFF} phonon cavity, taking into account
only the DP interaction, with Bpp=10. For A, the spectral
statistics indicates a regular dynamics, but in B the occur-
rence of quantum chaos is clear and the level distributions
are well described by the predictions of GOE random matri-
ces. The same occurs for D. The more interesting case, how-
ever, is C, for which the statistics belongs to the GUE class,
although the system is time-reversal invariant. The same be-
havior is obtained for a phonon cavity with {CCCC} bound-
ary conditions.'® The reasons for obtaining GUE statistics in
this time-reversal invariant system will be discussed in Sec.
V.

It is also instructive to look at the evolution of the spectral
statistics as a function of the position of the QD. The effect is
illustrated by the A;(/) statistics in Fig. 5, for the {CCCC}
plate and the parameters of Fig. 4. Leaving A along the S,
axis the statistics evolves from regular to GOE, at (0.02,0),
passing through a mixed behavior at the locus (0.005,0). Pro-
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FIG. 5. A;(I) X1 for different positions of the center of the cir-
cular QD. The cavity boundary conditions are {CCCC} and Bpp
=10.

ceeding perpendicularly to the S, axis, the statistics evolves
from GOE toward GUE, (0.02,0)— (0.02,0.005)
—(0.02,0.01) =C, going back to GOE when the S,_, axis is
reached at (0.02,0.02).

By the examination of several different scenarios we were
able to classify the general behavior of our system. Table I
summarizes the results obtained for the center of the circular
2DEG located at points A, B, C, D, and E with either the DP
or the PZ interaction taken into account. Furthermore, we
have considered a comprehensive set of boundary condi-
tions, which are representative of all possible combinations
of the Dirichlet and Neumann conditions for the phonon cav-
ity, thus, producing distinct symmetry axes for the phonon
modes: {CCCC}, {FFFF}, {CCFF}, {CFCF}, {CCCF}, and
{CFFF}. From Table I, we see that the chaotic behavior is
determined by the overall (or global) symmetries of the
NEMS, that is, the one that results from the joint combina-
tion of the boundary conditions of the phonon cavity and the
position of the QD. For instance, if the boundary conditions
are {CCCC} and the QD is located at D, the S, S,_,, and S,
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are not symmetry axes for the coupled electromechanical
system. According to Table I, if the present NEMS has (i)
four symmetry axes (position A for {CCCC} and {FFFF}
plates), the statistics indicates a regular (integrable) problem;
(ii) two symmetry axes (position A for {CCFF}), the statistics
corresponds to the uncorrelated superposition of two distri-
butions of the GOE type;* (iii) one symmetry axis, the re-
sults are those of the GOE; and finally (iv) no symmetry axes
at all, the spectrum exhibits the GUE statistics.

The boundary conditions determine not only the position
of the center of the 2DEG at which regular, GOE, or GUE
statistics are obtained, but also the intensity of the quantum
chaos. This happens because the electron-phonon coupling
depends on the phonon energies, which vary according to the
boundary conditions. The higher the phonon energy, the
stronger the electron-phonon interaction, thus leading to
spectral fluctuations that are more faithful to the typical cha-
otic features. The energies of the phonon modes decrease
according to the following sequence: {FFFF}, {CCFF},
{CCCC}, {CFFF}, {CCCF}, and {CFCF}. The energies for the
first five boundary conditions are similar, and quantum chaos
can be observed for essentially the same values of the inter-
action strength 8. For the {CFCF} case, however, the phonon
energies can be one order of magnitude smaller than the ones
for the other cases, requiring larger values for the parameters
Bpp and Bp, (approximately three times larger).

It is, however, important to notice that, regardless of the
geometry adopted, the nanostructure shows a regular spec-
trum for the bare parameters of the reference materials. We

present in Fig. 6 the dependence of the spectral rigidity A;(1)
on the electron-phonon coupling strength. For the locus C of
the {CCCC} phonon cavity, we take into account only the DP
interaction, with Bpp=1, 3, 5, and 10. As B increases, the
calculated statistics gradually converges to the GUE predic-
tion. Note that the numerical calculations are never well fit-
ted by the GOE distribution. The inclusion of more basis
states does not alter the observed results. At this point we
observe that the strong el-ph coupling regime (8>3) can be
achieved by using different materials. For instance, alumi-
num nitride (AIN) is a strong piezoelectric semiconductor,
with @33=1.5 C/m?, that is currently being used to produce
nanomechanical resonators.>> The piezoelectric constant for
GaAs is 0,,=0.16 C/m?

Next, we summarize the effects of the geometrical and
material parameters on the chaotic behavior. Irrespective of

TABLE 1. Symmetry axes and spectral statistics for points A, B, C, D, and E, as defined in the text, for
a circular 2DEG. Here, 2 GOE means that the statistics can be described by the uncorrelated superposition of

two GOE distributions.

Boundary conditions ~ Symmetry axes for the phonon modes A B C D E
{FFFF} Se:Sy,S4ysSaty Regular GOE GUE GOE GOE
{cccct Se:Sy,S4ysSaty Regular GOE GUE GOE GOE
{CCFF} S:. S, 2GOE GUE GUE GOE GOE
{CFCF} Sy GOE GOE GUE GUE GUE
{CCCF} S, GOE GUE GUE GUE GOE
{CFFF} S, GOE GUE GUE GOE GUE
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15 20

FIG. 6. The calculated spectral rigidity for various DP coupling
constants Bpp=1 (open circle), 3 (filled circle), 5(X), and 10(+).
The system corresponds the {CCCC} plate with the QD located at
position C. The curves represent the regular (solid), GOE (dashed),
and GUE (dot-dashed) cases.

the boundary conditions, when the QD radius R decreases to
less than one-third of the plate side L, the system starts to
become regular and, for about L/R=35, the nanostructure
presents no clear signs of chaos in its spectrum. This is illus-

trated in the top panel of Fig. 7, by the A4(/) statistics calcu-
lated for case A in the {CFFF} plate. On the other hand, an
important physical parameter for the occurrence of chaos is
the in-plane electron effective mass m”". It is shown in the
bottom panel of Fig. 7 that chaos arises as m"/m, is in-
creased. Indeed, for m*=0.6 the system is clearly chaotic,
becoming regular for m”<0.2 m,. As before, similar results
hold for other boundary conditions. A weak dependence on
both the density and the value of the stiffness tensors ¢, and
c44 1s also observed. In essence, lighter and softer materials
favor the appearance of chaos. As for the size of the dielec-
tric plate, chaos is favored by short and thin plates. The

0.5

0.4

0.3 1

0.2 1

FIG. 7. Top panel: A5(/) statistics at point A of the {CFFF} plate
for various radii of the QD: R=200 (filled dot), 300 (star), and 400
nm (open dot). Bottom panel: same statistics for various m"/m,
ratios 0.2 (filled dot), 0.4 (star), 0.6 (open dot), and 0.8 (cross).

Bpp=10.
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FIG. 8. The nearest-neighbor spacing distribution for the
{CCCC} plate with the circular QD located at D. Both the DP and
PZ interactions are included with Bpp=Bp,=10. The curves corre-
spond to the GOE (dashed) and GUE (dot-dashed).

former should be expected because the phonon energies in-
crease as the area of the plate decreases. However, structures
much smaller than the one here considered do not present a
significantly higher tendency to chaotic behavior.

So far, we have considered only the DP or PZ interactions
acting individually. When acting together, the spectrum sta-
tistics of loci B and D change from GOE to GUE. Figure 8
demonstrates this effect by showing the P(s) distribution for
the circular QD at locus D in the {CCCC} plate, for both the
DP and PZ interactions included with Bpp=Bp,=10. The
agreement with the GUE statistics is excellent, in contrast to
case D of Fig. 4 (we recall that the {CCCC} and {FFFF} cases
give similar results). Because the AlGaAs alloy is a weak
piezoelectric material, the DP coupling shows a stronger ef-
fect in promoting the chaos, whereas the main action of the
PZ interaction (in the presence of DP) is to break the sys-
tem’s overall symmetry. The explanation for such a change
in the spectrum statistics is left to Sec. V.

B. Rectangular 2DEG

Chaos is also observed in the calculations for a rectangu-
lar 2DEG interacting with the suspended phonon cavity. In
this section we investigate such nanostructures following the
procedures previously described. The obtained statistics are
summarized in Table II for the interactions, either DP or PZ,
taking into account individually. The calculations were made
for the same phonon cavity considered throughout Sec. IV A,
but now supporting a square QD of sides 400 nm and thick-
ness equal to the circular case.

Representative results of the P(s) distribution are shown
in Fig. 9, which illustrates the chaotic behavior of the
{CCFF} phonon cavity through cases A to E. Here too, the
global symmetries of the system depend on the combination
of the symmetry axes of the plate with the position of the
square QD. From extensive simulations we verified that (see
Table II) whenever the full problem has only one global sym-
metry axis, either SysSysSy_y, O Sy, the resulting spectral
statistics corresponds to the superposition of two uncorre-
lated GOEs, contrasting with the case of the circular QD
NEMS (see Table I). If there are no overall symmetry axes,
the statistics is that of the GOE type. Finally, the spectrum is
regular if there are at least two global symmetry axes,
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TABLE II. The same as Table I, but for a rectangular quantum dot.

Boundary conditions Symmetry axes for the phonon modes A B C D E
{FFFF} SysSysSxmysSyay Regular 2 GOE GOE 2 GOE 2 GOE
{ccect SysSysSxmysSyay Regular 2 GOE GOE 2 GOE 2 GOE
{CCFF} Sy, Sy Regular GOE GOE 2 GOE 2 GOE
{CFCF} Syey 2 GOE 2GOE GOE GOE GOE
{CCCF} S, 2GOE GOE GOE GOE 2 GOE
{CFFF} S, 2GOE GOE GOE 2GOE GOE

namely, the position A for the {CCFF}, {CCCC} or {FFFF}
boundary conditions.

Despite the fact that circular and rectangular QD NEMSs
display chaotic features, it is important to emphasize that the
GUE statistics never occurs for the rectangular 2DEG
coupled to a rectangular phonon cavity. This is, therefore, an
effect that results from the interplay between the cylindrical
and rectangular symmetries in the circular QD NEMS. We
discuss this phenomenon in detail in the next section.

The dependence of the spectrum statistics on the geo-
metrical and material parameters is, nonetheless, similar to
that observed for the circular QD. Specifically, heavier in-
plane electron effective masses, lighter and softer materials,
and larger and thinner quantum dots favor the appearance of
chaos. The {CFCF} plate requires stronger interaction
strengths than the other boundary conditions to give rise to a
chaotic spectrum.

J A
0.5 1TI1I% .
O T T T T T T
0.5 171l
O T L
. o= C
2 o051/ T
D- -
O T T )| =
J D
0.5 -L’” T
O T T T T 1
J E
0.5 1/l T
O Im T T | T 1
0 1 2 3

FIG. 9. P(s) for the {CCFF} boundary conditions and the rect-
angular QD centered at positions A, B, C, D, and E. Only the DP
interaction is considered (Bpp=10). The dashed lines represent the
uncorrelated superposition of two GOEs and the continuous lines
the regular and GOE cases.

Finally, when the system has one global symmetry axis
and both the DP and PZ interactions act simultaneously, the
spectrum statistics changes from two uncorrelated GOEs to a
single GOE. This effect is illustrated in Fig. 10 for the rect-
angular 2DEG centered at points A (right panel) and D (left
panel) of the {CFFF} cavity. A comparison with Table II evi-
dences the aforementioned transformation. On the other
hand, when the nanostructure displays either regular or cha-
otic (GOE) distributions for one of the interactions, the in-
clusion of the other does not alter the original statistics, re-
gardless of the strength of the interactions.

V. DISCUSSION

It has been shown that distinct geometrical configurations
of the QD NEMS produce different energy-level statistics, in
most cases typical of chaotic dynamics. To understand this
effect we investigate the structure of the Hamiltonian matrix
of our systems and explain the previous results in terms of
the underlying symmetries of the problem. At the end, we
explain the anomalous GUE statistics in the light of a more
general analysis.?®%

A. The Hamiltonian block structure due to the phonons

From Egs. (18) and (26), for the deformation and piezo-
electric potentials, one verifies that the interaction mecha-
nism is mediated by one-phonon processes. This becomes
clear by writing the matrix elements in the basis (29) [£

=(x,n)]

]
A D
084 o
0.6
& 0.41 I
02- f
O T T T T T T T T T T
o 1 2 3 1 2 3

FIG. 10. P(s) for the {CFFF} boundary conditions and both
interaction potentials acting together (Bpp=Bpz=10). The rectan-
gular QD is located at positions A (right panel) and D (left panel).
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FIG. 11. (a) A block of the interaction potential matrix repre-
senting fixed electron quantum numbers and all possible combina-
tions for the phonon states. The small blocks d, shown in (b), are
diagonal matrices whose diagonal elements d;; are all equal. The #’s
forming the main diagonal in (a), depicted in (c), are also block
tridiagonal matrices. Noticeably, d and ¢ in (a) are different from the
corresponding blocks in (c).

h IaK”K’
h /; ! =C - — 5}1”)1’.” 5]1"}1’— 5}1"}1’
(&":¢") V2pV§ \f'wa( ! "' -1 e

where C and 7, denote, respectively, the appropriate cou-
pling constant and the overlap of the phonon mode « with
the electronic eigenfunctions x” and «’. Notice that the Kro-
necker &’s allow only a single phonon transition.

In this representation we have a very particular form for
the interaction matrix. Consider the block n X n, schemati-
cally depicted in Fig. 11(a). It corresponds to fixed values for
the electron quantum numbers «” and «’, but embraces all
possible configurations for the phonon states. The structure
of the block n X n is such that the outermost block spans all
possible states for the phonon quantum number n,
=0,1,...,n. Then, the next internal block spans the quantum
number n,, followed by the inner blocks ns3,ny,...,ny. Due
to the action of the Kronecker &’s in Eq. (36), the nXn
matrix is block tridiagonal. Consequently, the small blocks d
[refer to Fig. 11(b)] must be diagonal, since the interactions
are mediated by one phonon only. On the other hand, the
small blocks 7 are also tridiagonal [Fig. 11(c)]. Such self-
similar arrangement goes on at all block levels n;,n,,...,ny.

+ 5n"n/ tt 5n”n’+l Tt
171 a a

B. Phonon mode parities

The reflection symmetries of the phonon cavity lead to
phonon modes of well-defined parity. Such properties are
examined in this section; for guidance refer to Fig. 3. For
instance, when the boundary conditions at Y; and Y, are
equal, i.e., both C or both F, the modes « have either a
symmetric (+) or an antisymmetric (—) parity with respect to
S,. The same holds for S, regarding the edges X, and X,. If
the boundary conditions are opposite at X; and X, and also at
Y, and Y,, then one of the main diagonals of the plate, S,_,
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FIG. 12. Circular quantum dot positioned at (a) locus A for the
{FCCC} (or {CFFF}) plate; and (b) locus D for the {X,;X,CC} (or
{X,X,FF}) plate. Notice that both cases have overall symmetry only
about the x axis, i.e., S,.

or S, is the only symmetry axis. Therefore the phonon
modes « have well-defined + and — parities about it. Finally,
the cases {CCCC} and {FFFF} have definite parities about all

the symmetry axes S,, S, S,_,, and S,,,.

C. Circular quantum dot

In the following we analyze the element 7/, appearing
in Eq. (36). For the circular quantum dot case we have, gen-
eralizing Egs. (21) and (27),

IDzK”K/ :f(d)f dx dy gK”K’(r) Fa(x’y)
Dy,

X A{cos[(I"=1") @) +isin[(I"-1")6]}. (37)

Here, g, (r) denotes the product of Bessel functions com-
ing from Eq. (16), r=+/(x=x)*+(y—y,)? with (x,,y,) as the
center of the QD, @ is measured from the S, axis, and f(d)
results from a simple integration along the z axis. For the
deformation  potential  F2P(x,y)=V2E,, A% X, (x)Y,(y),
whereas for the piezoelectric interaction F'%(x,y)
=(*19x 3y)Z,, A% X,,(x)Y,(y). Notice that the Laplacian is
a second-order operator; therefore the function FSP has the
same parity as the phonon mode a. On the other hand, ng
results from first-order derivatives, so it has the opposite par-
ity to a.

A first examination of Eq. (37) reveals that if ["=1" the
sine function vanishes and the matrix element is real. For
["#1', it will be complex, real or purely imaginary depend-
ing on the system’s characteristics. For the sake of under-
standing we shall briefly analyze a representative case. Let us
assume the same boundary conditions for Y; and Y,, then
consider two scenarios: the circular QD at locus A and dif-
ferent boundary conditions for X, and X, [Fig. 12(a)], or
locus D regardless of X, and X, [Fig. 12(b)]. In both cases
only the phonon parity about the S, axis will be relevant for
the evaluation of (37). In fact, the + (—) parity of F, about S,
leads to a matrix element that is real (purely imaginary) for
the DP interaction and purely imaginary (real) for the PZ
interaction. That is a consequence of the parity of the sine
and cosine functions about #=0 together with the parity of
F, regarding the same axis.

On the basis of the above analysis and the discussion of
Sec. V A, it follows that if there is one or more global sym-
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metry axes in the system, then each matrix block n Xn of
Fig. 11(a) can be written as A+iB, with A and B originating
from the cosine and sine parts of the integral in Eq. (37),
respectively. Moreover, those matrices are real symmetric
and mutually disjoint, that is, for A,;# 0 (B, # 0) necessarily
Brszo (Ars=0)~

Therefore, when a single interaction mechanisms is act-
ing, we have the following scenarios.

(1) If the geometrical configuration of the nanostructure
is such that there is only one global symmetry axis (e.g.,
locus A or D for plate {CFFF}), the ensuing partial symmetry
break is enough to generate chaos. Moreover, the matrix rep-
resentation of the Hamiltonian A :I:IO+I:I pp(pz) Can be writ-
ten in blocks of fixed I's as Hpy=Ap+(i) B,
where A and B are disjoint, real, and symmetric. Thus, H is
completely characterized by orthogonal matrices, so belong-
ing to the GOE universality class. It is straightforward to
verify that the present reasoning encompasses all the cases of
a single GOE statistics listed in Table 1.

(2) For locus A and {CCFF} boundary conditions, the
above structure for H is still valid. However, now the system
has two symmetry axes, leading to new restrictions for the
matrix elements. In fact, denote by o0, (with =) the «
mode parities with respect to S, and S,. One finds that the
integral over the cosine (sine) in Eq. (37) is different from
zero only if |I”—1'| is even and the a mode is ++ (--), or
|I”7-1"| is odd and the « mode is +— (=+). Such selection
rules produce two different families of eigenvalues for the
problem. For {CCFF} (and {FFCC}) each distinct family is
chaotic, explaining the occurrence of two superposed uncor-
related Wigner distributions in the P(s) statistics (for an ex-
plicit example, see the simpler case of a rectangular QD in
Sec. VD).

(3) For locus A and boundary conditions {CCCC} (or
{FFFF}) there exists one further global symmetry, namely,
the equivalence of the x and y directions. The extra symme-
try prevents the emergence of chaos.

(4) Finally, in the absence of a global symmetry axis
(e.g., the quantum dot at C for any boundary condition, or
loci B, C, or E for {CFFF}) the Hamiltonian matrix does not
separate into real and purely imaginary disjoint parts. Hence,
it is a full complex unitary matrix and the chaotic behavior
takes place with the system belonging to the GUE universal-
ity class.

The last case to be considered is the inclusion of both
interactions in the Hamiltonian. From the previous discus-
sion we know that for a given parity of the mode « the DP
and PZ potentials lead to exactly opposite types of matrix
elements. Indeed, if the DP matrix element is real (pure
imaginary), necessarily that corresponding to PZ is pure

imaginary (real). Therefore, the Hamiltonian H=Hy+Hpp

+Hp, has a complex matrix representation that results in a
GUE statistics for the energy levels.

D. Rectangular quantum dot

For the rectangular quantum dot the element Z,,»,, can be
written as

PHYSICAL REVIEW B 73, 035436 (2006)

IaK"K’ =f(d)f dx dy Fa(x9y)
D,y

X sin( ”w(x_f)>sin( ’,W—(y—)_]))
s q'm

y

X sin(p'w(x;f)>sin(q'7r(y;—)—})), (38)

X 'y

where X=xo—L,/2,y=yo—L,/2, and (x,,y,) are the coordi-
nates of the center of the QD (for guidance refer to Sec.
I B). From Eq. (38) it is evident that the matrix elements are
always real numbers. Consequently, any chaotic behavior
must belong to the GOE class and the occurrence of the GUE
statistics is ruled out for this nanostructure.

With respect to the quantum numbers, the conditions for
which the above integral is different from zero are again
entirely dependent on the global symmetries of the system.
For instance, if the whole nanostructure has S, as a symme-
try axis, then Z,,», is nonzero for the following combina-
tions: p”"+p’'=even and a mode parity o, =+, or p"+p’
=o0dd and o, =-. Similar relations hold for ¢"+¢’ regarding
S

y

The behavior of the spectral statistics generated by the
rectangular QD NEMS can be summarized by the following
representative situations: for the loci B, C, or E in the {CFFF}
plate there are no global symmetry axes and we obtain GOE
distributions. For loci A and D in the {CFFF} plate, there is
one overall symmetry axis (S,) and the resultant statistics is
the superposition of two uncorrelated GOE distributions. Fi-
nally, for locus A in the {CCFF} and { FFFF} (or {CCCC})
plates, which contain more than one global symmetry axis,
no chaotic features are observed. One can verify that all
cases in Table II follow the same trends.

In order to visualize the occurrence of the two GOE sta-
tistics, consider the case D in the {CCFF} plate. Despite the
fact that the phonon modes a have two symmetry axes S,
and S, only the parity about S, is a global symmetry, due to
the position of the QD. Assume then three phonon modes,
such that a basis state is written as |p,q;n;,n,,n3), with
p,q=1 or 2 and n,=0 or 1. In addition, the three-phonon-
mode parities with respect to S, are taken to be {+,—,+}.
This results in the 32 X 32 matrix schematically represented
in the top of Fig. 13, where the filled dots indicate the non-
zero elements. It is possible to transform the original
matrix in to that shown at the bottom of Fig. 13 just by
rearranging its rows and columns. By labeling the original
rows (from left to right) and columns (from top to
bottom) as 1,2,...,32, we obtain the first nonzero
block of the transformed matrix by performing
the operation 12345678910111213141516
—125271319109323162014282324. A similar pro-
cedure, i.e., operating over the remaining 17,...,32 positions,
leads to the other nonzero block. Here, the el-ph interaction
generates chaos in each family of eigenvalues, originating
from the two independent blocks. Consequently, the spec-
trum of the full matrix gives rise to the superposition of two
uncorrelated GOE distributions. The above analysis is valid
for any matrix size.
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FIG. 13. Top: schematics of the 32X 32 interaction matrix for
locus D in the {CCFF} nanostructure, ordered as pgoa;a,a; with
p,q=1 or 2 and a]:O or 1. Bottom: the transformed matrix in a
block form. The filled dots indicate the nonzero elements.

Finally, if both interactions act together in a system with a
single global symmetry axis, say S,, their effect is to break
the selection rules previously described. This happens be-
cause F,(x,y) has opposite parities for the DP and PZ inter-
actions. As a result the Hamiltonian matrix does not have a
block form and a pure GOE statistics emerges from the two
GOE case, as seen in Fig. 10.

E. Symmetry operator analysis of the anomalous GUE
statistics

So far we have examined the structure of the Hamiltonian
matrix to explain the chaotic features exhibited by our
NEMS. Here, we make a link between our results and a more
general analysis®® to clarify the appearance of the anomalous
GUE statistics in our time-reversal invariant system.

As already mentioned, the spectral fluctuations of TRI
chaotic systems typically correspond to the GOE distribu-
tion. However, Leyvraz et al.”® have shown that there are
exceptions to this rule, which can be interpreted even
semiclassically.?’ Suppose a TRI chaotic system that has a
discrete point symmetry represented by the operator S, then
[H,S]=[H,7T]=0, where H is the Hamiltonian and 7 the
time-reversal operator. More importantly for the effect, as-
sume also that S has two invariant subspaces whose repre-
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sentations are complex conjugate of each other. We call them
{W® and {¥)}, which are solutions of H\If,(f) =E’(f)‘1"(f).
Since T \Ifl(f):[‘l'ff)]*:\lfff) , it may seem that the problem is
not TRI because each subspace changes into the other under
7, therefore causing a GUE statistics (notice that the Hamil-
tonian matrix is complex Hermitian in this basis). However,
this is just an artifact of the particular structure of the sub-
spaces. Actually, the full Hilbert space is TRI, as can be
verified after the simple basis transformation ®®
=i&-D2(¢®) £ ¥y /{2, for which T@;i):q)ii). Note also

that the Kramers theorem?!*® imposes E£,+)=E,(1_)- Finally, as

pointed out in Ref. 28, the present phenomenon is rare be-
cause often there exists an extra operator P (e.g., the parity
symmetry operator) for which [H,P]=[7,P]=0. This opera-
tor is responsible for combining the two complex conjugate
representations of S into an irreducible representation that is
self-conjugate,?? therefore producing a GOE statistics.

Prior to our earliest paper,'¢ the only systems known to
show such behavior were billiards with threefold but no mir-
ror (parity) symmetries, which have been realized experi-
mentally in microwave cavities.’*3> They are chaotic by
construction (due to their particular geometry) and have their
eigenstates composed by complex degenerate doublets (of
GUE statistics) and real singlets (of GOE statistics). It is
possible, however, to establish a parallel between our circu-
lar QD NEMS and these billiards. In our case the electron
states Eq. (16) naturally provide the necessary complex rep-
resentation through the angular momentum quantum number
l. They are divided in singlets, for /=0, and degenerate dou-
blets, for I=+1,+2,.... Of course, the original electron states
as well as the phonon states are regular, but the el-ph cou-
pling generates chaos. If, nevertheless, the boundary condi-
tions and the location of the QD are such to give rise to an
global symmetry axis, the energy-level statistics is of the
GOE type due to the ensuing definite parity. On the other
hand, in the absence of an overall symmetry axis (e.g., loca-
tion C for any plate), no P operator exists and GUE statistics
arises.

As a last comment, we recall that in our system the origi-
nal electron degeneracies are destroyed by the interaction
with the phonons. Nonetheless, the last behave as a pertur-
bation for the electronic spectrum, because the energies of
the electrons are much higher than those for an individual
phonon. It is important to mention, however, that the occur-
rence of the doublets is not necessary for the manifestation of
the GUE statistics. Actually, even when an additional small
perturbation breaks that degeneracy, the GUE statistics also
arises for each split family of eigenstates. It has been con-
firmed experimentally by the study of imperfect threefold
microwave triangular billiards.3°

VI. CONCLUSION

We have presented a theoretical study of the electron-
phonon coupling in nanoelectromechanical systems com-
prised of a suspended dielectric plate and a quantum dot on
its surface. It is shown that a quantum chaotic behavior de-
velops as a result of the el-ph interaction, for a wide range of
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geometrical and material parameters of the QD NEMS. A
method is developed to treat this class of systems. It associ-
ates the phonons with the vibrational modes of a suspended
rectangular plate, for clamped and free boundary conditions.
The electrons are confined to a large QD, of either circular or
rectangular symmetry, and described by the free-electron-gas
approximation. The deformation potential and piezoelectric
interactions are included nonperturbatively in the model, by
calculating the eigenenergies of the NEMS on the basis of
the el-ph states.

By performing standard energy-level statistics we demon-
strate that the resulting spectral fluctuations are very well
described by those of the Gaussian orthogonal ensemble or
the Gaussian unitary ensemble. It is evidenced that the com-
bination of the phonon mode parities together with the posi-
tion of the QD determine the overall symmetries of the sys-
tem, which are ultimately the responsible for the distinct
chaotic features observed. Although, quantum chaos is com-
monly obtained in the system, the GUE statistics occurs only
in the case of a circular QD NEMS. It represents an anoma-
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lous phenomenon, since the problem is time-reversal invari-
ant. The fundamental reason for this effect lies in the struc-
ture of the electronic spectrum, which is formed by doublets
with /=+1,+2,... . In the absence of any overall geometrical
symmetry, the complex conjugate doublets transform into
each other under the action of the time-reversal operator,
thus simulating the behavior of a non-TRI system.

Finally, calculations are under way to include the effects
of the electron-electron interaction in the model. We conjec-
ture that the same chaotic behavior can also arise in this case,
because the el-el interaction preserves the total angular mo-
mentum of the electronic system, justifying the previous
analysis.
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