
Influence of radiative coupling on coherent Rabi intersubband oscillations
in multiple quantum wells

Inès Waldmueller and Weng W. Chow
Sandia National Laboratories, Albuquerque, New Mexico 87185-0601, USA

Andreas Knorr
Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany

�Received 27 September 2005; revised manuscript received 6 December 2005; published 27 January 2006�

The dependence of multiple quantum well intersubband Rabi oscillations on the radiative coupling between
different quantum wells is investigated. We show that in a highly doped multiple quantum well sample,
radiative coupling has a large impact on coherent density oscillations, even stronger than the impact of
many-body effects. Specifically, radiative coupling can dominate nonlinear optical response, such as Rabi
oscillations of subband populations, yielding distinctively different excitation behaviors in the different wells
of a multiple quantum well sample. The magnitude of radiative coupling may be controlled by varying the
angle of incidence of the external electric field.
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I. INTRODUCTION

Rabi oscillations is a much studied phenomena in ultrafast
nonlinear optics: a driving electric field E�t� couples two
energy levels with optical dipole moment d12 and induces
oscillations of the populations at the Rabi frequency ��t�
=E�t�d12/�.1 Rabi oscillations are important for a broad
range of technical applications such as quantum information
processing. There is already considerable interest in Rabi
oscillations involving interband dynamics of low-
dimensional semiconductors such as quantum dots2–5 and
quantum wells.6–8 Recently, the interest extends to intersub-
band systems, where Rabi oscillations between conduction
subbands of a quantum well were observed experimentally9

and addressed theoretically.10,11 In this paper, we further the
investigation of intersubband Rabi oscillations by examining
coherent density oscillations in a highly doped multiple
quantum well system. The reason for this study lies in recent
experimental results which show substantial impact of radia-
tive coupling on the nonlinear response of intersubband tran-
sitions in a multiple quantum well system. Shih et al.12 used
phase and amplitude resolved propagation studies on mul-
tiple quantum well samples with different carrier densities to
demonstrate the dependence of the relationship between ex-
citation amplitude and transmission on the strength of radia-
tive coupling. Using a many-particle theory including light
propagation effects, we were able to fully account for the
experimental results. In this paper, we apply this theory to
show that radiative coupling dominates over many-body ef-
fects when the system is excited by the electric pump field at
a large angle of incidence.

At first sight, intersubband systems appear to have much
in common with atomic two-level systems, because sub-
bands with almost equal curvature �in-plane energy disper-
sion� give rise to a transition energy that is independent of
the in-plane wave vector k �cf. Fig. 1�a��. However, this
simplified picture is valid only in a single-particle picture,
i.e., by neglecting many-particle interactions. Early studies

show that many-body effects reduce similarity to two-level
systems drastically by introducing �i� carrier-carrier Hartree-
Fock contributions,13–15 yielding time-dependent renormal-
izations of subband dispersion and Rabi frequency, and �ii�
dephasing due to carrier-carrier and carrier-phonon
scattering.15,16 Furthermore, nonparabolicity of the conduc-
tion band can have significant impact on the curvature of the
subbands. The impact is strongest for small quantum wells,17

resulting in different subband dispersions �cf. Fig. 1�b�� and
thus a range of transition frequencies. All the above factors
can influence the ability to produce Rabi oscillations and
therefore the coherent nonlinear control of populations in
quantum wells.10,11

This paper expands previous investigations by incorporat-
ing radiative coupling due to transversal fields �light propa-
gation� between quantum wells in a highly doped multiple
quantum well system. We find that radiative coupling can
have an even stronger impact on Rabi oscillations of subband
populations than dispersion and the above many-body effects
associated with longitudinal Coulomb fields. Comparison of
density oscillations are made for single and multiple quan-
tum well samples. The multiple quantum well �MQW�

FIG. 1. �a� Intersubband transitions between subbands with
equal subband dispersions and �b� different subband dispersions.
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sample of interest �cf. Fig. 2� contains 80 electronically un-
coupled AlGaAs/GaAs quantum wells with a well width of
L=10 nm. The wells are modulation doped with a carrier
density of ne=1012 cm−2 and separated by Al0.35Ga0.65As
barriers with a thickness of 20 nm. The system is excited by
an external p-polarized Gaussian pulse with three-
dimensional �3D� wave vector

kL = �k�
L,kz

L� = �i
����0�sin��i�,0,cos��i�� �1�

and laser frequency �L. �� denotes the optical permittivity,
�0 the permeability of free space. To investigate the impact
of radiative coupling on the density oscillations, we excite at
different angles of incidence �i. We will show that for �i
=23� the wells are almost completely uncoupled, whereas for
�i=63� appreciable light propagation effects are observed. As
will be clear later, the two angles of 23� and 63�, respectively,
lead to weak and strong internal electric field contributions.

II. THEORY

Following semiclassical laser theory, we use a combina-
tion of density matrix approach for the material response �cf.,
for example, Refs. 15, 16, and 18� and Green’s function ap-
proach for the propagating electric field in the structure.20

A. Matter

Taking into account optical transitions between the two
lowest conduction subbands, the polarization density in
quantum well m in a multiple quantum well system com-
posed of N electronically uncoupled quantum wells is given
by

P�m��r,t� = �
q�

P̃�m��q�,z,t�eiq�·r� �2�

with

P̃�m��q�,z,t� =
1

A
�
k�

pk�−q�,k�

�m� �t�d12
�m��z� + c. c. �3�

Here pk�−q�,k�

�m� �t�= �a1,k�−q�

† a2,k�
	�m� is the time dependent ex-

pectation value of creating an electron with two-dimensional

�2D� vector �k� −q�� in subband 1 and annihilating an elec-
tron with wave vector k� in subband 2 �intersubband coher-
ence�. The superscript �m� denotes the quantum well in
which the transition occurs. If not stated otherwise, the spin
index is absorbed in the in-plane wave vector. The spatial
distribution of the dipole density is abbreviated by d12

�m��z�
=d12

�m��z�êz=−ez�1
�m��z��2

�m��z�êz with �a
�m��z� being the ath

level confinement wave function of the mth quantum well.
The system Hamiltonian is given by

H = �
a,k�

�ak�
aak�

† aak�

+ �
a,b

�
k�,q�


 dzdab�z� · ẼT�q�,z,t�aak�+q�

† abk�

+ �
a,b,c,d

�
k�,k��,q�

�V̂q�

acbd�ack��−q�

† adk��
	aak�+q�

† abk�

− V̂q�

cabd�ack�+q�

† adk��
	aak��−q�

† abk�
�

+ �
a,b,k�

�
q

�ĝq
abaak�

† bqabk�−q�
+ h. a. � , �4�

where �ak�
denotes the energy of an electron in subband a

with 2D in-plane wave vector k�, ack�

† �ack�
� is the creation

�annihilation� operator for an electron in subband c with
wave vector k� and bq

†�bq� is the creation �annihilation� op-
erator for a phonon with the 3D wave vector q. The Cou-
lomb and Fröhlich coupling matrix elements are given in Eq.
�B2� in Ref. 15 and we have reduced the Coulomb Hamil-
tonian to the corresponding screened Hartree-Fock form. For

the carrier-field interaction ẼT�q� ,z , t� denotes the Fourier
transform of the transverse part of the electric field ET�r , t�
with respect to in-plane space coordinates r�,

ẼT�q�,z,t� =
1

2	

 d2r�e−iq�·r�ET�r,t� , �5�

where ET�r , t� is the total �external and internal� electric field
inside the sample. Note, that only the transverse part of the
field enters the microscopic equations as the longitudinal part
is already included in the Coulomb interaction �Coulomb
gauge�. In the Hamiltonian, we include electrons,
longitudinal-optical �LO� phonons and carrier-field interac-
tion. Furthermore, we investigate the dependence of radiative
effects on other dephasing contributions by including
electron-LO-phonon interaction, where the phonons are
treated as a thermal reservoir at temperature T. Note that we
consider only the Markovian contributions �non-Markovian
effects in single quantum wells are given in Ref. 22�. Due to
their enormous CPU time requirement, electron-electron in-
teraction is included in first order �Hartree-Fock effects�
only. A simultaneous treatment of carrier-carrier �Hartree-
Fock and scattering�, carrier-phonon interaction and radiative
damping in the linear regime is presented in Refs. 14, 15,
and 19, and without radiative interaction in Ref. 16. In this
paper, our focus is on the radiative coupling.

Using the Robertson equation21 and the system Hamil-
tonian, we derive an equation of motion for the intersubband

FIG. 2. Multiple quantum well system consisting of N electroni-
cally uncoupled wells excited by a p-polarized external electric field
Eext at angle of incidence �i. E+ and E− denote the right and left
propagating total outgoing field, consisting of contributions from
the external applied field and the fields generated by the polariza-
tion in the quantum wells.
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coherence in the mth quantum well pk�−Q�,q�

�m� �t�.15

To include radiative coupling, i.e., the coupling between
the wells via the transverse electric field, in the theory, we
must consider the actual space-dependent field �determined
by Maxwell’s equations� in the equations of motion which
yields an in-plane space-dependent macroscopic polariza-
tion. However, we can simplify the space dependence to a
large extent by concentrating on the dominant in-plane con-
tributions driven directly by the external field. In the param-
eter range considered here �cf. Eq. �A4� with Eq. �1�, ��L
�90–110 meV, 
=100 fs� this yields a macroscopic polar-
ization composed of intersubband coherences which are di-
agonal in the in-plane wave vector �the derivation is given in
Appendix A�:

P�r,t� =
1

�2	



−�

�

d��
q�

P̂�q�,z,��ei�q�·r�−�t� �6�

with

P̂�q�,z,�� � P̂�z,���q��L,�k�
L, �7�

P̂�z,�� =
1

A
�
k�,m

�p
k�−

�
�L

k�
L,k�

�m�
��� + c . c . �d12�z�

�
1

A
�
k�,m

�pk�

�m���� + c . c . �d12�z� . �8�

Here, the abbreviation pk�

�m�� pk�,k�

�m� = �a1,k�

† a2,k�
	�m� has been

introduced.
The equation of motion for the intersubband coherence is

coupled to the equations of motion for the carrier distribution
functions ni,k�

m �t�= �ai,k�

† ai,k�
	�m��t� in the two subbands �i

=1,2�, where we distinguish between free-carrier �0�,
carrier-field �cf�, Hartree-Fock contributions �HF� and scat-
tering contributions due to carrier-phonon interaction �scatt�,

d

dt
pk�

�m��t� = � d

dt
pk�

�m��t��
0

+ � d

dt
pk�

�m��t��
cf

+ � d

dt
pk�

�m��t��
HF

+ � d

dt
pk�

�m��t��
scatt

,

d

dt
n2,k�

�m� �t� = � d

dt
ni,k�

�m��t��
cf

+ � d

dt
ni,k�

�m��t��
HF

+ � d

dt
ni,k�

�m��t��
scatt

.

�9�

0 describes the free motion of the electrons, cf the interac-
tion with the z component of the transverse electric field
�Rabi frequency� in dipole approximation. HF yields renor-
malizations of 0 and cf due to carrier-carrier interaction �first
order contributions, Hartree-Fock approximation� and scatt
carrier-phonon scattering and thus introduces optical dephas-
ing on a microscopic basis. A derivation of this part of the
theory can be found in Refs. 15 and 19. We here give only
the carrier-field interaction,

� d

dt
pk�

�m��
cf

=
i

�
�
q�


 dzẼT,z�q�,z,t�d12
�m��z���a1,k�+q�

† a1,k�
	�m�

− �a2,k�

† a2,k�−q�

† 	�m�� , �10a�

� d

dt
n1,k�

�m� �
cf

= −
2

�
�
q�


 dzẼT,z�k�
L,z,t�d12

�m��z���a1,k�+q�

† a2,k�
	�m�

− �a1,k�

† a2,k�−q�

† 	�m�� , �10b�

� d

dt
n2,k�

�m� �
cf

=
2

�
�
q�


 dzẼT,z�k�
L,z,t�d12

�m��z���a1,k�+q�

† a2,k�
	�m�

− �a1,k�

† a2,k�−q�

† 	�m�� . �10c�

ẼT,z�q� ,z , t� is the z component of the transverse electric field
�Fourier transformed with respect to in-plane space coordi-
nates, cf. Eq. �5�� which must be determined self-consistently
by taking into account the external and internal emitted
fields. The other contributions of Eq. �9� are given in Appen-
dix B.

B. Self-consistent optical field

To calculate the internally emitted electric fields, the so-
lution of Maxwell’s equations must be combined with the
equation for the polarization density: in Eq. �10� the actual
local field consisting of externally incident field and remitted
fields generated by the material polarization in the MQW
sample must be considered. Based on the solutions of Max-
well’s equations in Fourier domain �Greens function
formalism15,23,20�, we obtain the z component of the total
electric field �transversal and longitudinal components� gen-
erated by the polarization density of the quantum wells by
Fourier superposition,

Ez
pol�r,t� =

1

2	

 d2q�eiq�·r�Ẽz

pol�q�,z,t� , �11�

Ẽz
pol�q�,z,t� =

1
�2	



−�

�

d�e−i�t�
m=1

N 
 dz�P̂z
�m��q�,z�,��

�� i�0�2

2q�

q�
2

q2eiq�z−z���z − z��

+ �z� − z�� −
1

��

��z − z��� . �12�

Using the approximation given in Eq. �8� and

q� = ��2���0 − q�
2,

we obtain the reemitted electric field as
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Ẽz
pol�q�,z,t� � −

1
�2	



−�

�

d��
m=1

N 
 dz�P̂z
�m��z�,��

� ��0�L

2kz
L sin2 �L

d

dt
e−i��t−�kz

L/�L�z−z����z − z��

+ �z� − z�� +
1

��

��z − z��e−i�t��q�,
�
�L

k�
L. �13�

Next, we insert the transverse part of the total electric
field in Eq. �10�, i.e., the transverse part of Eq. (13) together

with the external applied field Ẽz
ext�q� ,z ,�� �cf. Eq. �A5�� and

notice that for the parameter range considered, �� /�L�k�
L

�k�. Thus we can approximate

�ai,k�

† aj,k�±��/�L�k�
L

† 	�m� � �ai,k�

† aj,k�

† 	�m�

yielding

� d

dt
pk�

�m��
cf

=
i

�

 dzd12

�m��z�ET,z�z,t��n1,k�

�m� − n2,k�

�m� � , �14�

� d

dt
ni,k�

�m��
cf

= ±
2

�

 dzd12

�m��z�ET,z�z,t�Im�pk�

�m�� , �15�

where ET,z�z , t� is the transverse part of the total electric field
composed of the external applied field �cf. Eqs. �A4� and
�A5�� and the generated contributions

Ez
pol�z,t� = �

m=1

N 
 dz��−
1

��

��z − z��Pz
�m��z�,t�

−
�0�L

2kz
L sin2 �L

d

dt
Pz

�m��z�,t −
kz

L

�L
z − z��� .

�16�

The influence of radiative coupling can be investigated by
solving the microscopic equations �14� and �15� for every
quantum well with the total radiation field.

III. NUMERICAL RESULTS

To determine the importance of radiative coupling in
comparison to other effects, we investigate the temporal be-
havior of the relative population ��kn2,k /ne� in the upper
subband in each well in a multiple quantum well system,
with and without the dephasing, Hartree-Fock and nonpara-
bolicity contributions. The system is composed of 80 elec-
tronically uncoupled quantum wells. Each 10 nm
AlGaAs/GaAs quantum well is modulation doped with a
carrier density of ne=1012 cm−2 at a lattice temperature of
T=50 K �temperature of the thermal reservoir of phonons�.
The quantum wells are separated by Al0.35Ga0.65As barriers
with thickness of D−L=20 nm �Fig. 2�. For the numerical
simulations we use a square-well potential model with a fi-
nite height of V0=350 meV and assume the system to be in
thermal equilibrium before being excited by the external
field. The external field is a Gaussian pulse �cf. Eq. �A4� and
Fig. 2� with pulse width 
=100 fs. For the following appli-

cation we characterize the strength of the electron-light in-
teraction by the pulse area:

�z� ª
�12

�



−�

�

dtEz
ext,s�z,t� .

Here Ez
ext,s�z , t� is the slowly varying envelope of Ez

ext�z , t�
and �12=�Ldzd12�z� is the dipole matrix element. We con-
sider two different scenarios.

In scenario �a�, we neglect nonparabolicity �m1=m2

=0.0665m0�, Hartee-Fock and scattering effects. The equa-
tions of motions are so that

d

dt
pk�

�m��t� = � d

dt
pk�

�m��t��
0,cf

,
d

dt
ni,k�

�m��t� = � d

dt
ni,k�

�m��t��
cf

,

we have noninteracting single-particle excitations in a sys-
tem with a transition energy independent of the in-plane
wave vector k.

In scenario �b� we consider nonparabolicity effects in ef-
fective mass approximation as presented in Ref. 17 �m1

=0.071m0 ,m2=0.088m0�, and take into account contribu-
tions from Hartree-Fock and carrier-phonon scattering.

To characterize the response without radiative coupling of
different wells, we focus first on the response of a single well
�cf. Fig. 3�. In scenario �a� the quantum well reacts like an
undamped two level system, when excited resonantly ��L
=�G where �G is the gap energy at k=0 between the sub-
bands� by a Gaussian pulse with pulse area =	, all elec-

FIG. 3. Relative population in upper subband ��kn2k /ne� for a
single quantum well for the two scenarios �a� and �b� �cf. text�.
Scenario �a� is comparable to a two-level system and thus perfect
Rabi oscillations are possible. Scenario �b� takes into account
many-particle contributions and nonparabolicity effects which both
reduce the similarities to a two-level system. Only damped oscilla-
tions can be observed.
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trons are excited to the upper subband. In the case of 
=4	, the electrons exhibit two complete Rabi periods. In
scenario �b�, the oscillations are suppressed by the inhomo-
geneous broadening due to the nonparabolicity, the Hartree-
Fock effects and most importantly by carrier-phonon interac-
tion. The Hartree-Fock effects introduce strong wave vector
and time dependences of the transition energy and effective
Rabi frequency. The exchange shift yields time and wave-
vector-dependent effective transition energies of the elec-
trons, making it impossible to excite resonantly at all times
�even for systems with parabolic conduction band�. The ex-
citonic contribution yields an internal field due to interaction
between carriers in different subbands which renormalizes
the Rabi frequency. The renormalized Rabi frequency de-
pends on the intersubband coherence, which in turn is driven
by the Rabi frequency. Therewith, the renormalized Rabi fre-
quency depends not only on time and wave vector, but also
on laser frequency and pulse duration of the exciting field.
Finally, the depolarization shift, also depends on laser fre-
quency and pulse duration of the exciting field and intro-
duces a second time-dependent renormalization of the Rabi
frequency, which counteracts the impact of the excitonic
contribution. By deliberately detuning the laser frequency
from the gap frequency, the impact of these many-body ef-
fects on the density oscillations can be varied appreciably.
Here, we choose the laser energy ��L= ��G+1 meV to
yield maximum oscillation amplitude. The new laser energy
is roughly the intermediate between the initial gap energy
and the peak position of the linear absorption spectrum.

Next, we consider the full system with all 80 quantum
wells. To investigate the dependence of optical response on
the strength of radiative coupling, we compare results for
two different angles of incidence, �i=23° and 63° �cf. Fig.
2�. In order to have comparable situations, we choose the
amplitude of the external field to yield the same Ez

ext�z , t� for
both cases �if we excite at the small angle of incidence, the
amplitude of the external field must be larger than for the
excitation at a larger angle of incidence�, cf. Eq. �A4�. The
field contribution of the external field in Eq. �14� and �15� is
thus the same in both cases. However, as can be seen in Eq.

�16�, the expression for the generated field depends directly
on the angle of incidence. Consequently, the internal field
contributions are very different in the two cases. For decreas-
ing angle of incidence, the internal field contributions de-
crease. Consequently, the Rabi oscillations in the different
wells are similar. The quantum wells are only radiatively
coupled by very small internal fields. In Fig. 4, we present
the density oscillations in the upper subband for each quan-
tum well of the sample. For direct comparison, the results for
the single quantum well case �cf. Fig. 3� are plotted in the
front. As can be seen, the single and multiple quantum well
results are similar.

In contrast, Fig. 5 shows distinct differences between the
single and MQW behavior for excitation at a larger angle of
incidence. Due to strong internal field contributions, the local
electrical field exhibits strong spatial dependence. For small
pulse area �	 pulse�, reemitted fields dominate the oscilla-
tions at all times: a strong local electrical field excites all
electrons to the upper subband in the first quantum wells. As
the electric field weakens, the subsequent well populations
are predominately in the lower subband. For large pulse area
�4	 pulse� the reemitted fields become visible only at the end
of the external excitation. During the duration of the external
excitation, the external field is stronger than the internal field
yielding almost the same excitation in all wells. At the end of
the external excitation, the impact of the reemitted fields be-
comes visible. Although the external field has almost com-
pletely decayed, reemitted field contributions are strong
enough to excite electrons into the second subband. A third
population peak appears between 200 and 400 fs. This third
peak is absent for a single quantum well, as it is due only to
internal field effects, i.e., fields reemitted by the other quan-
tum wells.

The same results are obtained for scenario �b�. The only
difference between �a� and �b� is a slightly reduced overall
excitation due to many-particle contributions and nonparabo-
licity effects. However, the impact of radiative coupling on
the density oscillations is still dominant, as in scenario �a�.

The results obtained for excitation at �=23° and 63° show
the strong angle dependence of radiative coupling. This de-

FIG. 4. �Color online� Relative
population in the upper subband
in each quantum well of a 80
quantum well sample excited at a
small angle of incidence for mod-
els �a� and �b�. Figures in the left
column show the results of excita-
tion by a pulse with pulse area 
=1	, in the right column for 
=4	. The thick, grey curve in the
front shows the single quantum
well result �cf. with Fig. 3�.
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pendence may be understood by examining the limits of �a�
normal incidence ��i=0° � and �b� grazing incidence ��i

=90° �. Approaching normal incidence, the z component of
the field vanishes, thus, the light-matter interaction is very
weak. Approaching grazing incidence, the z component of
the field is very large, yielding strong light-matter interac-
tion. However, in this case, the z component of the wave
vector vanishes, so that the field does not propagate along the
growth direction of the multiple quantum well system. Con-
sequently, the wells are not coupled by the field. Between
�i=0° and �i=90°, the coupling to the field increases with
sin �i and the z component decreases with cos �i yielding a
strong angle dependence of the radiative coupling effects.

IV. CONCLUSION

In conclusion, we showed that radiative coupling between
quantum wells of a multiple quantum well system can domi-
nate nonlinear optical response, such as Rabi oscillations of
subband populations. Especially for samples with high inter-
nal field contributions due to large carrier density and large
angle of incidence, radiative coupling between wells yields
distinctively different excitation behaviors in the different
wells.

Generally, the impact of radiative coupling depends
mostly on the relation of external and generated fields. If the
external field is considerably larger than the generated field,
local field effects are unimportant. The internal field ampli-
tude depends on the carrier-density in the quantum wells and
the excitation angle. Especially interesting is the case of
highly doped multiple quantum well samples where the re-
sponse of the MQW depends strongly on the angle of inci-
dence.

For a small angle of incidence, where the internal field is
small, the impact of radiative coupling is almost negligible
�see, e.g., 	 and 4	 pulse in Fig. 4�. All the quantum wells
are uniformly excited and there is almost no difference in the
oscillations of a single and MQW sample. In contrast, exci-
tation at large angle of incidence shows strong radiative cou-

pling effects �cf. Fig. 5�, with significant difference in the
Rabi oscillations of a single and MQW sample.
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APPENDIX A

In this appendix, we show how the actual space depen-
dence of the field can be simplified to a large extent by
concentrating on the dominant in-plane contributions driven
directly by the external field. This yields a macroscopic po-
larization composed of intersubband coherences which are
diagonal in the in-plane wave vector �cf. Eqs. �6�–�8��. The
polarization density in quantum well m in a multiple quan-
tum well system composed of N electronically uncoupled
quantum wells is given by

P�m��r,t� = �
q�

P̃�m��q�,z,t�eiq�·r� �A1�

with

P̃�m��q�,z,t� =
1

A
�
k�

pk�−q�,k�

�m� �t�d12
�m��z� + c. c. �A2�

In order to simplify the in-plane space dependence of the
polarization, we focus on the carrier-field contribution to the
equation of motion for the intersubband coherence,

FIG. 5. �Color online� Relative
population in the upper subband
in each quantum well of a 80
quantum well sample excited at a
large angle of incidence for mod-
els �a� and �b�. As in Fig. 4, fig-
ures in the left column show the
results of excitation by a pulse
with pulse area =	, in the right
column for =4	 and in all
cases, the population excited in a
sample containing only a single
quantum well, is plotted addition-
ally in the front �grey line, cf. with
Fig. 3�.
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d

dt
�a1,k�−k��

† a2,k�
	 =

i

�
�
q�


 dzd12�z�Ẽz,T�q�,z,t�

� ��a1,k�−k��+q�

† a1,k�
	 − �a2,k�−k��

† a2,k�−q�
	� .

�A3�

Assuming initial homogenous electron distributions, i.e.,

�a1,k�−k��+q�

† a1,k�
	�t0� = �a1,k�

† a1,k�
	�t0��k�−k��−q�,k�

,

we find that only for intersubband coherences with k��=q� the
dynamics is driven directly by the field.

In the following, we consider the external field �only the z
component is important here� to be of the form

Ez
ext�r,t� = E sin��i�cos��Lt − kx

Lx − kz
Lz�exp�

−
�t − t0 − kx

L/�Lx − kz
L/�Lz�2

2
2 � , �A4�

where �L is the laser frequency and kL= �kx
L ,0 ,kz

L� is the
corresponding wave vector. The Fourier transform of Eq.
�A4� with respect to in-plane space coordinates and time can
be expressed according to

Ẽz
ext�q�,z,�� = Êz

ext�q�,z,����qx −
�

�L
kx

L���qy� �A5�

=Ez
ext�z,t���qx −

�

�L
kx

L���qy� . �A6�

Note, that Êz
ext�q� ,z ,�� is only an abbreviation for the ex-

plicit function as we here are mainly interested in the part
with the delta function. Inserting Eq. �A5� in the �time� Fou-
rier transform of Eq. �A3�, we find that only intersubband
coherences with q� = �� /�L�k�

L are driven directly by the ex-
ternal field. Assuming that these contributions are the domi-
nant ones, we approximate the macroscopic polarization ac-
cording to

P�r,t� �
1

�2	



−�

�

d��
q�

P̂�z,��ei�q�·r�−�t��q�,��/�L�k�
L

with

P̂�z,�� =
1

A
�
k�,m

�pk�−��/�L�k�
L,k�

�m� ��� + c. c. �d12�z� . �A7�

For the parameter range considered, we have k�
L�k� and

expect the dominant contributions to the intersubband coher-
ence for ���L. Thus, we can simplify Eq. �A7� further

P̂�z,�� �
1

A
�
k�,m

�pk�

�m���� + c. c. �d12�z�

and find that the macroscopic polarization is mainly com-
posed of intersubband coherences which are diagonal in k�.

APPENDIX B

The various contributions to Eq. �9� are given by

� d

dt
pk�
�

0
= −

i

�
��2,k�

− �1,k�
�pk�

� d

dt
pk�
�

HF
=

i

�
�
q�

���Vq�

2222 − Vq�

2112�nk�+q�

2 − �Vq�

1111

− Vq�

2112�nk�+q�

1 �pk�
+ �Vq�

1212pk�−q�
+ Vq�

2112pk�−q�

* �

��nk�

1 − nk�

2 � − 2V0
2112�pq�

+ pq�

* ��nk�

1 − nk�

2 �� ,

� d

dt
nk�

i �
HF

=
i

�
�
q�

���Vq�

ijijpk�−q�

ji + Vq�

jiijpk�−q�

ij �pk�

ij − c. c. �

− �V0
jiij�pq�

ij + pq�

ji �pk�

ij − c. c. �� .

� d

dt
pk�
�

cp-scatt
= −

	

�
�d�pk�

� +
	

�
�
q

�nd�pk�+q�

ij � +
	

�
�nl,

For convenience the index �m� denoting the quantum well
number has been suppressed and pk�

ji = �aj,k�

† ai,k�
	 has been in-

troduced. Note that the summation over the spin indices has
already been performed here and thus only the wave vector k
includes a spin index. The Coulomb and Froehlich matrix
elements and the scattering contributions �d�pk�

� ,�nd�pk�+q�

ij �
and �nl are defined in Ref. 15.
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