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Ultrafast Raman spectra are a powerful tool to probe vibrational excitations, but inherently they are not
normal-mode specific. For a system as complicated as C60, there is no general rule to target a specific mode. A
detailed study presented here aims to investigate normal-mode selectivity in C60 by an ultrafast laser. To
accurately measure mode excitation, we formally introduce the kinetic-energy-based normal-mode analysis
which overcomes the difficulty with the strong lattice anharmonicity and relaxation. We first investigate the
resonant excitation and find that mode selectivity is normally difficult to achieve. However, for off-resonant
excitations, it is possible to selectively excite a few modes in C60 by properly choosing an optimal laser pulse
duration, which agrees with previous experimental and theoretical findings. Going beyond the phenomenologi-
cal explanation, our study shines new light on the origin of the optimal duration: The phase matching between
the laser field and mode vibration determines which mode is strongly excited or suppressed. This finding is
very robust and should be a useful guide for future experimental and theoretical studies in more complicated
systems.
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I. INTRODUCTION

Ultrafast Raman spectra represent a major tool to probe
dynamics in atoms, molecules,1,2 chemical, and biological
systems. For a simple system like NaI with only one vibra-
tional degree of freedom, it is possible to control the vibra-
tional excitation.3 But for large systems, no simple rule can
be used to selectively target a specific normal mode. A the-
oretical investigation is very important to the success of the
selective mode excitation, but the technical challenges are
enormous because the system size often exceeds current
computational power. We choose C60 as a first example for
this purpose since it is large enough to mimic complicated
dynamics encountered in larger systems, and yet small
enough to be handled numerically.

Because C60 has highly-delocalized � electrons, its opti-
cal response is very fast. Using a 2.03 eV pump beam and
pulse duration of 100 fs, Thomas et al. measured the relax-
ation of photoexcited states in C60 by time-resolved optical
absorption and found a 1 ps response, and when tuning to the
forbidden h1u to t1u transition, they found a 2 ps relaxation.4

Ishihara et al. used a 100 fs, 0.2 mJ, and 628 nm laser to find
that the decay times of the self-trapped exciton and polaron
are about 570±120 fs and 54±7 ps, but no clear lattice vi-
bration was resolved.5 A systematic investigation was done
by Chergui’s group on the ultrafast intramolecular relaxation,
where they found that the transient absorption spectra of C60
have a characteristic rise time of 200 fs.6 This study contin-
ued the earlier effort by Boucher et al.7 using a pulse dura-
tion from 60 to 300 fs and pump and probe energies from
1.57 to 3.14 eV. Farztinov et al. showed that the relaxation
rate has a pronounced spectral dependence.8

Dexheimer et al.9 used a 12 fs laser to investigate the
dynamics in C60 and revealed that there is a periodic oscil-

lation in the transmittance change associated with the Ag

modes. This is a clear example that lasers with shorter pulses
can resolve those intrinsic lattice vibrations. However, this
finding contradicts the results of Hohmann et al.10 and
Bhardwaj et al.,11 who found that it is the Hg mode that
dominates the relaxation process. Our previous study12 clari-
fied that the reason for such difference is the laser pulse
duration.

Motivated by the above experimental and theoretical in-
vestigations, in this paper we provide a comprehensive in-
vestigation into normal-mode selectivity under influence of
an ultrafast laser field. We first introduce the kinetic-energy
method for the normal-mode analysis, which is exact and
overcomes the difficulty with the high anharmonicity of the
normal-mode vibration upon the laser excitation. We then
investigate the possibility to selectively excite Raman modes
in C60. We find that such selectivity is normally difficult to
achieve if we excite the system resonantly since strong elec-
tron excitations complicate normal-mode excitation. How-
ever, the off-resonant and weak excitation can be used to
selectively excite a few normal modes. The key is to select
an appropriate laser pulse duration that matches the normal-
mode periods. Going beyond a phenomenological explana-
tion, we gain important insights into this optimal pulse dura-
tion by comparing the time evolutions of the laser field and
kinetic energy of the normal modes. If the field and normal-
mode vibration reach their maxima at the same time, the
mode gains energy substantially from the laser; otherwise,
the mode is basically silent. Our findings will be important
for future experimental investigations since duration-based
control is very robust and does not sensitively depend on the
incident laser frequency, provided that the frequency is away
from the resonance.

PHYSICAL REVIEW B 73, 035422 �2006�

1098-0121/2006/73�3�/035422�6�/$23.00 ©2006 The American Physical Society035422-1

http://dx.doi.org/10.1103/PhysRevB.73.035422


The rest of the paper is arranged as follows. The theoret-
ical scheme is presented in Sec. II followed by the kinetic-
energy-based normal-mode analysis in Sec. III. Resonant and
off-resonant Raman excitation are presented in IV. We con-
clude the paper in Sec. V.

II. THEORETICAL FORMALISM

A dynamical simulation of ultrafast Raman mode excita-
tions at the ab initio level is still very challenging for large
systems such as C60. At present, to our knowledge, there is
no such study which includes the electrons, lattice and laser
field. We have decided to use a tight-binding model to simu-
late C60,
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where ci,�
† is the electron creation operator at site i with spin

��=↑ ↓ �.12 We only include one � orbital for each site, which
consists of the sp2-sp3 hybridization. A similar Hamiltonian
has successfully been used by other research groups16 to treat
C60 and polymer chains such as polyacetylene.17 The first
term on the RHS represents the electron hopping, where tij
= t0−���ri−r j�−d0� is the hopping integral between nearest-
neighbor atoms at ri and r j, and rij = �ri−r j�. Here t0 is the
average hopping constant, and � is the electron-lattice cou-
pling constant. The last three terms on the RHS are the lattice
stretching, pentagon-hexagon and hexagon-hexagon bending
energies, respectively. Since two hexagons are adjacent to
each other, the summation contains two terms. By fitting the
energy gap, bond lengths of two kinds and 174 normal-mode
frequencies, You et al.14 have determined the above param-
eters as t0=1.91 eV, �=5.0 eV/Å, K1=42 eV/Å2, K2
=8 eV/rad2, K3=7 eV/rad2 and d=1.5532 Å. These param-
eters will be fixed in our calculation. To find the equilibrium
position of C60, we minimize the total energy E with respect
to the atom positions, or �E /�r=0. After we obtain the
atomic equilibrium position, we can compute the normal-
mode frequencies and eigenvectors by diagonalizing the
force matrix.14

The dynamical properties are simulated by including the
laser field, which is described by HI=−e�i�E�t� ·rini�, where
ni� is the electron number operator and �E�t��=A cos���t
− t0��exp�−�t− t0�2 /�2�.18 Here A, �, �, e, t, and t0 are the
field amplitude, laser frequency, pulse duration or width,
electron charge, time and time delay, respectively. We nu-
merically integrate the Liouville equation for the electron
density matrices,12,18,19

− i�
��	ij

��
�t

= ��	ij
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where H=H0+HI, 	ij
� =ci�

† cj� is the density matrix operator,
and � � represents the expectation value. The quantum effect
of normal modes is certainly important, but it is very chal-
lenging. As a first step, we treat the carbon atoms classically

as before by solving Newton’s equations for each carbon
atom.19,20 Such a treatment is justified since the quantum
effect of a carbon atom’s vibration is small compared with
the electronic excitation. The semiclassical treatment is for-
mally used in the Car-Parrinello method,21 melting in
metals,22 and simulation in rhodopsin,23 clusters24 and
solids.17 Information about the lattice dynamics is obtained
from the displacements and velocities of each carbon atom.

III. KINETIC-ENERGY-BASED NORMAL-MODE
ANALYSIS

We would like to see how those normal modes absorb
energy from light. In contrast to the electronic part where
once we know the charge density 	ij�t� we can analyze prop-
erties easily, the lattice dynamics is more difficult to treat. At
first, it may appear convenient to use the normal-mode en-
ergy 	E

 as an absolute measure to determine which mode is
strongly excited, where 	E

 is the sum of the normal-mode
kinetic energy 	Eke


 
 and potential energy 	Epe

 
. Here 	Eke


 

=mQ̇


2 /2 and 	Epe

 
=m�
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2 /2, where the normal-mode ve-

locity Q̇
 is computed by Q̇
=�iZ�i ,
� ·vi, the normal-mode
displacement dQ
 is computed by dQ
=�iZ�i ,
� · �ri−ri

0�,
and m is the mass of carbon atoms. The summation �i is
taken over all the atoms i, and 	Z�i ,
�
 is the normal-mode
eigenvector of the force matrix. We use boldface Z to denote
that this vector has three components along the x, y, and z
axes. vi is the velocity of atom i, and �ri−ri

0� is the displace-
ment of atom i, where ri and ri

0 are the final and initial
positions of atom i, respectively. Within the harmonic ap-
proximation, the potential energy can be accurately decom-
posed into 	E

.

However, with the presence of laser excitation, the har-
monic approximation is not enough. In particular, high-order
terms become significant,
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where the first term is the static potential energy, and the
second term is zero at the equilibrium position. We find that
those high-order terms can be larger than the second-order
term, and the harmonic expansion is not accurate. In Fig.
1�a�, we present one example. The laser field amplitude is
0.01 V/Å, the frequency is 0.1 eV, and the pulse duration is
20 fs. The solid line represents the exact potential change
�the new potential energy minus the static potential energy�,
and the dashed line shows the potential energy computed
from the summation over the normal-mode potential energy
�
Epe


 . One sees that even with such a weak laser field, the
deviation is substantial. There are two additional difficulties
associated with the above expansion in Eq. �3�. First, the
potential energy computed by summation over those normal
modes is always positive since �


2 is positive, while in the
exact expansion, the potential energy change can be negative
since the electron may take away the energy from the lattice.
Second, the second term on the RHS of Eq. �3�, which
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should be zero at the equilibrium, is nonzero with the pres-
ence of the laser field, but the normal-mode frequencies and
eigenvectors are computed at the equilibrium position with-
out the external laser field. These three major difficulties call
for an alternative method.

One way to eliminate the above difficulties is to use the
instantaneous normal-mode analysis.25 This method requires
the diagonalization of the force matrix at those pre-selected
time instants. Since the potential expansion is done away
from equilibrium, some of the eigenfrequencies become
imaginary. These imaginary modes are supposed to decay
into real modes when the equilibrium is reached. In C60, we
prefer to choose a different method without explicit diago-
nalization of the force matrix at each time step. Our method
is to expand the kinetic energy. The reason is simple: All the
kinetic energy only has one quadratic term, and there is no
approximation to the expansion of the total kinetic energy in
terms of the normal-mode kinetic energy,

K = �



K
 = �



m

2
Q̇


2, �4�

where K
 is the kinetic energy for mode 
. Numerically, we
compare the total kinetic energies with and without the
normal-mode expansion and find they are indeed the same
�see Fig. 1�b��, where the exact and normal-mode-expanded
kinetic energies overlap completely with each other. The
kinetic-energy-based normal-mode analysis has several ap-

pealing advantages. It is valid for any laser intensity, fre-
quency and pulse duration. This scheme does not rely on the
equilibrium condition either, and is not limited to molecular
systems. We expect this method could be readily used in
liquids, solutions, solids and biological materials, where high
anharmonicity appears. We should note that the normal-
mode kinetic energy can not be directly probed by experi-
ments, but such an analysis contains the same information as
that in the time-resolved absorption spectra, and more impor-
tantly provides experimentally inaccessible insight into those
mode excitations. And the practical application12 shows that
the results are also consistent with the experimental observa-
tions.

IV. EXCITATION IN RAMAN-ACTIVE Ag AND Hg MODES

We are interested in mode selectivity in normal-mode ex-
citations. Two laser parameters, laser frequency and pulse
duration, can be used for this purpose.26 In C60, there are two
Raman-active Ag and eight Hg modes.27 Raman excitation is
a second-order optical process and is directly connected with
the electronic excitation. This can be seen clearly from the
equation28

�2Q�

�t2 + ��
2Q� = �

ij

 ��ij

�Q�
�AiAj , �5�

where � is the electronic susceptibility and A is the electric
field strength. One notices that if there is no change in the
susceptibility, there is no Raman mode excitation. Therefore,
the overall excitation of the Raman modes directly depends
on whether the electronic states are strongly excited or not.
In the case of weak laser and off-resonant excitation, the
Raman excitation is very weak.

A. Resonant excitation

In order to have a strong excitation, we tune the laser
frequency to the first dipole-allowed transition of 2.75 eV.
We find that both electron and normal modes are excited
strongly. Figure 2 shows the resonant excitation results as a
function of laser pulse duration for two different laser inten-
sities, 0.01 V/Å �Figs. 2�a� and 2�b�� and 0.05 V/Å �Figs.
2�c� and 2�d��. For a weak laser, the vibrational excitation is
relatively simpler. From Fig. 2�a�, we notice that the Ag�1�
mode dominates almost all the regions except for very short
laser pulse duration. This breathing mode has the optimal
pulse duration of 50 fs. The physical reason for this optimal
duration is not obvious since both the electron and lattice are
strongly excited and lattice vibrations proceed on both the
ground- and excited-state potential surfaces, but our finding
is in good agreement with the strong laser intensity results.16

This result is also consistent with our previous finding for the
absorbed total energy change with the laser intensity, where
the nonlinear dependence is found.20 Figure 2�b� illustrates
that the Hg�1� mode acquires the second largest kinetic en-
ergy, but its kinetic energy KHg�1� is about 10 times smaller
than KAg�1�. However, what is interesting is that those Hg�1�
modes increase with the laser pulse duration all the way up

FIG. 1. �a� Comparison of the normal-mode-expanded potential
�dotted line� and exact potential �solid line� energy as a function of
time. From −40 to −30 fs both are the same, but with the arrival of
the laser field, the deviation becomes substantial. �b� Comparison
between the exact kinetic energy and normal-mode-expanded ki-
netic energy. Two lines overlap completely. Here A=0.01 V/Å, �
=0.1 eV, and the pulse duration is 20 fs.
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to 120 fs, while the Ag modes decrease after the optimal
pulse duration. The Hg�2� mode acquires the third largest
kinetic energy; it decays after duration 60 fs and then in-
creases after 100 fs. All the other high-frequency modes
have at least three orders of magnitude smaller kinetic en-
ergy than the Ag�1� and Hg�1� modes.

From Eq. �5�, we notice that the field intensity also affects
the mode excitation. We increase the laser intensity from
0.01 to 0.05 V/Å. For the same pulse duration, both the
Ag�1� and Ag�2� modes are strongly excited and have a local
maximum at about �=20 fs and 60 fs, respectively �see Fig.
2�c��. Compared with KAg�2�, KAg�1� is smaller at a shorter
duration but is larger at a longer duration. Figure 2�d� shows
the dependence of the kinetic energy for the Hg mode on the
duration. In contrast to the low-intensity case where the low-
frequency mode Hg�1� acquires most of the kinetic energy,
here the Hg�4� mode dominates and gains a substantial ki-
netic energy. Other than this, the overall change is similar to
that of the Hg�1� mode. Another consequence of the increas-
ing laser intensity is that at strong intensity, KAg

is about
twice as large as KHg�1�, while for weak excitation, KAg

is
about five times larger than KHg�1�. This points out a common
feature that the intensity evens out the difference between the
Ag and Hg modes in terms of the absorbing power of the
kinetic energy. This finding, however, also demonstrates that
it is difficult to selectively excite a few normal modes accu-
rately. So we next explore the off-resonant excitations.

B. Selectivity off resonance

From the above study, it is clear that resonant excitations
lack mode specificity. It is indeed true that even in a two-

level model system, it has been proposed that off-resonant
excitation without substantial electron excitation population
change is more effective to target a few modes. In a real and
large system like C60, the situation is similar and more com-
plicated since many degrees of freedom are involved. We
choose the laser frequency as 1.95 eV and the intensity as
0.05 V/Å. From the above resonant excitation, we know the
normal modes have a strong dependence on the laser pulse
duration. We present a comprehensive investigation of such a
dependence. Figures 3�a� and 3�b� show the dependence of
the Ag and Hg modes on laser pulse duration. Different from
resonant excitations, different modes dominate different re-
gions. For instance, the Ag modes dominate the shorter du-
ration while the Hg mode dominates the longer duration. As
pointed out previously, this is the origin of the differences
between the Dexheimer’s9 and Hohmann’s experiments.10

This also justifies that the kinetic-energy-based analysis is
very accurate and efficient. If we look at these dependences
more closely, we find that each mode has its distinctive op-
timal duration. This is encouraging since it shows the possi-
bility of exciting a specific mode according to the length of
the laser pulse duration. In addition, Fig. 3�b� shows five
degenerate Hg�1� modes absorb energy differently, but their
optimal laser pulse duration stays the same. This means that
the optimal laser pulse duration depends only on the normal
mode’s intrinsic period, which provides the basis for mode
specific excitation.

If we compare the off-resonant results with the resonant
results, we find there are several differences. First, in the
resonant excitation with a weak laser pulse such as I
=0.01 V/Å, only the Ag modes have an optimal duration, but
the Hg modes do not, and their kinetic energies basically

FIG. 2. Resonant excitation with the laser intensity of 0.01 V/Å
for �a� and �b� and intensity of 0.05 V/Å for �c� and �d�. The laser
frequency is 2.75 eV, which corresponds to the first-dipole-allowed
transition from the HOMO to LUMO+1. The kinetic energies for
the Ag modes are shown in �a� and �c�, while the kinetic energies for
the Hg modes are in �b� and �d�. The mode selectivity is difficult to
achieve.

FIG. 3. Selectivity of Raman modes by the pulse duration for
the off-resonant excitation. The laser frequency is 1.95 eV, which is
away from any dipole-allowed transition, and the intensity is
0.05 V/Å. �a� Ag�1� and Ag�2� kinetic energies, where the Ag�1�
mode has an optimal duration at about 22 fs. Hg�1� modes’ kinetic
energy, where five degenerate modes show a common optimal
duration.
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increase with the laser pulse duration. By contrast, for the
off-resonant excitation, the Ag and Hg modes show a similar
dependence on the pulse duration. Second, in the resonant
excitation the laser intensity has a huge impact on the depen-
dence. The Ag�1� and Ag�2� modes dominate in two separate
regions of the duration: one is from 5 to 40 fs, and the other
is from 40 to 100 fs. The Hg�4� mode dominates over Hg�1�
and Hg�2�. In the off-resonant case, the intensity �below
0.2 V/Å� does not change the dependence as shown in our
previous study.12 What is even more important is that in the
off-resonant excitation the laser frequency has a very weak
effect on the pulse duration dependence. If we compare Fig.
3 with Fig. 2�a� in Ref. 12 where the incident laser energy is
0.69 eV, the dependence is similar. Such a robust depen-
dence on the pulse duration is promising and deserves further
investigation. In our previous study we proposed a phenom-
enological explanation for the optimal duration, and here we
go beyond this to gain new physical insight. In particular, we
want to know how the laser energy of different pulse dura-
tions is absorbed into different modes.

C. Physical origin of the optimal pulse duration

To gain insight as to how the laser pulse duration affects
the mode excitation, we use two different laser pulse dura-
tions off resonance, 5 fs in Fig. 4�a� and 20 fs in Fig. 4�b�.
For both pulse durations, the frequency is 1.95 eV, and the
laser intensity is 0.05 V/Å. We start with Fig. 4�a�. One sees
that with arrival of the laser pulse �thin solid line�, the nor-

mal modes are excited immediately �solid and dotted lines�,
but the kinetic energies absorbed into each mode are differ-
ent: Ag�1�’s kinetic energy is tiny �we enlarge the solid line
by 10 times for a better view�, but the Ag�2� mode absorbs a
large portion of kinetic energy. Now, if we compare the
change in kinetic energy of the Ag mode with the shape of
the laser pulse, we find that the Ag�2� mode closely follows
the leading edge of the laser pulse and is almost in phase
with the laser field. But Ag�1� is almost out of phase with the
pulse: when the field reaches its maximum, the Ag�1� mode
only starts to oscillate and lags behind the field, which leads
to a suppression in its kinetic energy.

Next, we want to see what happens if we increase the
laser pulse duration to 20 fs while keeping the rest of param-
eters unchanged. The results are shown Fig. 4�b�. This time,
the Ag�1� mode is in phase with the electric field oscillation.
Both the field and the Ag�1�’s kinetic energy reach their re-
spective maximums at the same time. Consequently, the
Ag�1� mode acquires a substantial portion energy from the
light. By contrast, the Ag�2� mode is out of phase with the
field, and the field’s maximum is the kinetic energy’s mini-
mum of the Ag�2� mode, which explains why the Ag�2� mode
does not obtain a large portion of the kinetic energy for this
particular pulse duration. Such a strong phase dependence
has previously been observed in molecular systems29 and has
been used to selectively control the normal-mode
excitations.12 Since changing laser pulse duration has been
possible for a long time, we expect our results may motivate
future experimental studies to use the laser pulse duration to
control the vibrational excitations. Since our finding is very
robust, it may suit for different experimental conditions as
well.

V. CONCLUSIONS

In conclusion, we have investigated the possibility to se-
lectively excite Raman vibrational modes in C60. We have
found that the Raman modes can be selectively excited by a
given laser pulse duration and off resonance, not on reso-
nance. On resonance, the excitation becomes noticeably in-
tensity dependent and loses mode specificity. We expect that
these findings can be detected experimentally. Pump-probe
experiments with a short pulse of 12 fs have already probed
the rapid oscillations of the Ag modes.9 Even shorter pulses
are now routinely available. Therefore, our study should mo-
tivate further experimental investigations.
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FIG. 4. Origin of the optimal pulse duration with a laser fre-
quency of 1.95 eV: �a� laser pulse duration, 5 fs; �b� duration, 20 fs.
The solid and dotted lines represent the Ag�1� and Ag�2� modes,
respectively. The laser pulse �the thin solid line� is shown at the
bottom of each graph. Whether a mode dominates depends on
whether the normal mode can phase match the laser field.
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