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We demonstrate that by carefully analyzing the temperature dependent characteristics of the I-V measure-
ments for a given complex system, it is possible to determine whether it is composed of a single, double, or
multiple quantum-dot structure. Our approach is based on the orthodox theory for a double-dot case and is
capable of simulating I-V characteristics of systems with any resistance and capacitance values and for tem-
peratures corresponding to thermal energies larger than the dot level spacing. We compare I-V characteristics
of single-dot and double-dot systems and show that for a given measured I-V curve, considering the possibility
of a second dot is equivalent to decreasing the fit temperature. Thus, our method allows one to gain information
about the structure of an experimental system based on an I-V measurement.
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Much of the study of charging effects in quantum systems
has focused on a single-dot system, in which a metallic is-
land is coupled to two metallic leads via tunnel junctions.1 If
the electron density is large enough so that the discreet en-
ergy level spacing is negligible compared to the other energy
scales, the relevant scales are the thermal energy, ET=KBT,
and the charging energy, EC=e2 /C, where C is the capaci-
tance of the dot. For low temperatures and small bias
�ET�eV�EC�, no current can flow through the dot leading
to a Coulomb blockade in the I-V characteristic. An effective
method to treat such a system is the orthodox theory.2,3 In
this framework, the quantum dot is represented by a double
barrier tunneling junction �DBTJ�, in which each junction is
modeled as a resistor and a capacitor connected in parallel.
For a given voltage V, a distribution function � determines
the probability at time t for the system to have N extra elec-
trons on the island. Solving the master equation for � enables
one to derive the current-voltage relation as a function of the
tunneling rates. The orthodox model assumes that the tunnel-
ing events are sequential and an electron loses its phase co-
herence during a tunnel process; thus, quantum corrections
are not taken into account.2,3

This approach has been very successful in analyzing the
behavior of a single quantum dot. In many experimental sys-
tems, however, the exact structure is unknown. Even if a
sample exhibits Coulomb-blockade-like features, one cannot
always be certain that only one simple quantum dot is in-
volved in the transport process. An example for such a sys-
tem is demonstrated in Fig. 1 which shows the I-V charac-
teristic of a Co nanowire, 10 �m long and 200 nm wide.4

The wire was evaporated on a step-edge structure5 and was
allowed to oxidize in the atmosphere. It is seen that the I-V
curve shows Coulomb-blockade-like behavior, presumably,
due to the oxidation that gives rise to the formation of me-
tallic islands separated by nanoconstrictions. However, a pri-
ori it is impossible to know whether the structure consists of
one dominant quantum dot, two dots, or perhaps even more.
A similar situation occurs in many experimental configura-
tions and often it is desirable to find a way to determine the
exact structure of the sample. In this paper, we show that it
is, in principle, possible to fit given I-V curves to both single-

dot and double-dot configurations using the orthodox model
when the capacitance and resistance of the barriers as well as
the temperature are treated as fit parameters. Nevertheless,
since the temperature is usually well controlled in the experi-
mental set up, it is possible to determine whether a system
contains one or more quantum dots based on I-V measure-
ments at a given temperature. Most research studying the
transport through the double-dot system have taken into ac-
count the discrete energy spectrum in the dots.6–8 In our
approach, the more common case for metallic dots, i.e., dis-
crete energy level spacing much smaller than KBT, is consid-
ered.

The orthodox theory solution to the single-dot �DBTJ�
case is well known.2,3 Here, we shall describe the double-dot
case which contains three tunnel junctions and is named the
triple barrier tunnel junction �TBTJ�. As in the DBTJ case,
we assume that the tunneling coefficient is low and the tun-
neling events are sequential and noncoherent; hence, quan-
tum interference effects are neglected. In our TBTJ model,
each of the three junctions i=1,2 ,3 is characterized by a

FIG. 1. I-V characteristic at T=10 K of a Co wire evaporated on
a step edge. The inset shows a scanning electron microscope picture
of the wire �white line� grown between two large Co electrodes
�gray pads�.
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tunneling resistance Ri and a capacitance Ci �see Fig. 2�. The
“state” of the system is determined by the number of excess
electrons on each grain �n1 ,n2�. Similar to the case of DBTJ
for T=0, the distribution function is sharply peaked for each
voltage around a most probable state �n1

* ,n2
*�. However, in

contrast to the DBTJ case, one cannot determine this state
analytically and a more complex method is required. Previ-
ous calculations on I-V characteristics of TBTJ systems9,10

overcame this difficulty by restricting the junction param-
eters �the resistance between the dots was assumed to be
much higher dot-lead resistances�, and the temperature was
taken to be zero. We suggest an approach that allows one to
calculate the distribution function in a general case without
making any assumptions on the system. Moreover, we calcu-
late the probability value for any state, thus we can simulate
the I-V curves for any given temperature.

Applying voltage to a TBTJ system causes three different
voltage drops Vi across the tunnel junctions i

V1 =
eC2C3V

�C1C2 + C2C3 + C3C1�
,

V2 =
eC1C3V

�C1C2 + C2C3 + C3C1�
,

V3 =
eC1C2V

�C1C2 + C2C3 + C3C1�
. �1�

Accordingly, six tunneling rates have to be considered.
Each tunneling rate depends on the energy difference before
and after the tunneling event and on the resistance of the
relevant junction. The tunneling can be derived from Fermi’s
Golden rule,

�±k
i =

��E±k
i �

e2Ri�1 − exp�− ��E±k
i �/k�T��

, �2�

where �±k
i is the electron tunneling rate on ��� or off ��� dot

k across junction i. The energy differences E±k
i can be de-

rived by subtracting the electrostatic energy on the island
after the tunneling, event from that before the tunneling add-
ing the gain in energy due to the voltage drop. The total
energy differences due to tunneling of electrons from the
dots to the leads are given by

�E±1
1 =

�C2 + C3���Q1 ± e�2 − Q1
2�

2�C1C2 + C2C3 + C3C1�
	 V1, �3�

�E±2
3 =

�C1 + C2���Q2 ± e�2 − Q2
2�

2�C1C2 + C2C3 + C3C1�
	 V3, �4�

where Q1=en1, Q2=en2.
Taking into account the electrostatic energy differences of

both the dots, the energy difference due to tunneling of elec-
trons from one dot to another is given by

�E±1
2 =

�C2 + C3���Q1 ± e�2 − Q1
2�

2�C1C2 + C2C3 + C3C1�

+
�C1 + C2���Q2 ± e�2 − Q2

2�
2�C1C2 + C2C3 + C3C1�

	 V3. �5�

For the TBTJ, � is the probability to have n1 and n2 elec-
trons on the first and second grain, respectively; hence, the
master equation in a double-dot system is

���V,n1,n2,t�
�t

= ��V,n1 − 1,n2,t��+1
1 + ��V,n1 + 1,n2,t��−1

1

+ ��V,n1,n2 − 1,t��+2
3 + ��V,n1,n2 + 1,t��−2

3

+ ��V,n1 − 1,n2 + 1,t��+1
2 + ��V,n1 + 1,n2 − 1,t��−1

2

− ��V,n1,n2,t���+1
1 + �−1

1 + �+1
2 + �−1

2 + �+2
3 + �−2

3 � .

�6�

In order to find the steady state solution of the distribution
function, we take �� /�t=0. Solving this equation requires a
constraint on the number of electrons permitted to pass
through the system. For a specific number of electrons ne,

FIG. 2. �Color online� A schematic illustration of a system
through which three electrons are allowed to pass. Each box is
divided to two parts where each denotes one dot. Each dot is al-
lowed to contain 0–3 electrons. The arrows indicate a permitted
tunneling between states. For the current calculation, one has to
sum over the transitions for a specific kind of arrow which are
related to a specific junction: middle barrier �solid line�, left barrier
�dashed line�, and right barrier �dotted line�. The insert shows a
schematic representation of a system composed of three tunnel
junctions coupled in series. Each junction is characterized by a
capacitance and resistance.
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there exists a specific number of states N. In Fig. 2, we show
a schematic drawing of the transitions between the charge
configuration of a double-dot system, allowing the addition
of up to three electrons to the system.

For each state, we manipulate the master equation, thus,
achieving a system of N linear equations, where N is the
number of states. This system is described by the formula

� · �� = 0, �7�

where � is a rate matrix and �� is the states vector. The sum
over all the probabilities should be one. For simplicity, we
add the normalization condition in the last row of the rate
matrix. Thus, the previous equation takes the form

�
− ��+1

1 + �+2
3 � �−2

3 �−1
1 . . .

�+2
3 − ��+2

3 + �+1
1 + �+1

2 + �−2
3 � �−1

2 . . .

�+1
1 �+1

2 − ��+1
1 + �−1

2 + �−1
1 + �+2

3 � . . .

] �

1 1 1. . .
��

�0,0�
�0,1�
�1,0�
]

�ne,0�
� = �

0

0

0

]

1
� . �8�

By solving this numerically, we obtain the distribution
function and the vector �� . The current for a given voltage is
derived by summing over all the possibilities for an electron
to pass through a certain junction

I�V� = 	
k,i,n1,n2

C±k
i ��V,n1,n2��±k

i �n1,n2� , �9�

where C±k
i =± is determined by the direction of the tunneling.

The results presented in this paper are obtained for a sys-
tem of up to four electrons tunneling through the dot. In
order to verify that this does not lead to a considerable loss
of information, we plot the numerical I-V characteristics of a
typical TBTJ for one to four tunneling electrons in Fig. 3. It
can be seen that the curves for three and four electrons prac-
tically coincide for the relevant voltage regime; hence, we

conclude that further increasing the number of electrons
would not have a noticeable effect on the I-V characteristics.

Once more than two barriers are considered the system’s
parameter space �i.e., possible values of Ri ,Ci� becomes
large. It is helpful then to gain some information out of the
general properties of the I-V curve. In this paper, we shall
concentrate on the simplest case of symmetric I-V curves
with no prominent staircase features, which are surprisingly
common in the experiments that are discussed later. Since in
the Coulomb blockade range, the case for which R1 ,C1 dif-
fers much from R3 ,C3 results in a nonsymmetric I-V curve
and in some cases leads to staircases with different widths

FIG. 3. I-V curves for the TBTJ model T=0 K, C1=C2=C3

=5
10−18 F, R1=R2=R3=1
106 �. Each number in the graph
indicates the number of electrons passing through the system.
Curves 3 and 4, which correspond to three and four electrons, are,
for all practical purposes, identical �at least in the range of the
Coulomb blockade�.

FIG. 4. Theoretical I-V curves at T=0 K for three cases. Curve
1 is the curve obtained for a pure symmetric system with the pa-
rameters C1=C2=C3=5
10−18 F, R1=R2=R3=1
106 �. Curve 2
was obtained on a system in which the parameters of middle barrier
differ from rest barriers: C1=C3=7
10−18 F, R1=R3=1
105 �,
C2=3
10−18 �, R2=4
106 �. This results in prominent stair-
cases. Curve 3 shows nonsymmetric behavior where the dot-lead
barriers are not equal: C1=C2=5
10−18 F, R1=R2=1
106 �,
C3=2
10−18 �, R3=2
106 �.
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and heights, we will only consider cases for which R1 ,C1 is
similar to R3 ,C3. Another crucial factor for the I-V charac-
teristics are the parameters of the middle barrier �R2 ,C2�.
Choosing the parameters of the middle barrier that are sig-
nificantly different than the other barriers results in I-V
curves that show more prominent staircase structure. In Fig.
4, we compare the I-V curves for the three cases discussed
above. The first case, in which the parameters of the barriers
are significantly different, shows a pronounced nonsymmet-
ric I-V curve. In the second case, for which R1 ,C1=R3, C3
�R2 ,C2, the I-V curve shows prominent staircase jumps. On
the other hand, for the case in which all barriers are equal,
the I-V curve is symmetric and smooth.

We demonstrate the effectiveness of our analysis in deter-
mining the structure of a complex system by applying it to
Co nanowires such as the system depicted in Fig. 1. Figure 5
shows the experimental results and the numerical fits of
I-V characteristics of a typical nanowire taken at different
temperatures. We used the orthodox theory to fit these data
using DBTJ and TBTJ models. For the DBTJ, we were able

to obtain reasonable fits only using much higher tempera-
tures than those of the experiment. Moreover, the ratio be-
tween the measured and calculated temperatures increased
with T. Using our TBTJ calculation, we were able to fit the
data using the correct measurement temperatures.12 This re-
markable agreement for the different temperatures reinforces
our confidence in the validity of the two-dot model to this
experimental system. The diameters of the metallic islands
according to our fit are found to be 
30 nm. This is a rea-
sonable value since it is close to the width of the wire.

We have applied this analysis to other wires. In some
cases, even the TBTJ model yields good fits only for tem-
peratures much higher than the experimental T. We suspect
that these samples contain a larger number of islands for
which a model that takes into account four or more tunnel
junctions is required.

Another complex system in which this analysis method
may prove useful is a disordered granular sample. In such a
system, the geometrical structure may be known but the pre-
cise elements that dominate the transport are unidentified.

FIG. 5. DBTJ �right� and TBTJ �left� theoretical fits �dashed lines� to experimental I-V experimental curves �solid lines� for Co nanowire
samples measured at 10 K �a�, 20 K �b�, and 30 K �c�. The fitting parameters for DBTJ: R1=R2=7
105 �, C1=C2=4
10−18 F,
T=50 K �a�, 65 K �b�, 90 K �c�; for TBTJ: R1=R2=R3=4
105 �, C1=C2=C3=1.55
10−17 F, T=10 K �a�, 20 K �b�, 30 K �c�.

FIG. 6. Experimental results �solid lines� and theoretical fits �dashed lines� for the I-V characteristics of the granular systems. The left
panel is the fit for the DBTJ at T=30 K, C1=C2=5
10−18 F, R1=R2=1.55
106 �. The right panel is for the TBTJ at T=6 K,
C1=C2=C3=2.8
10−17 F, R1=R2=R3=1
106 �.
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We applied our analysis to a 400 nm sample of 20–40 nm
grains placed on an insulating substrate and separated by a
few nanometers of an insulating matrix. Though the sample
contains about 400 grains, not all of them participate in the
transport due to the hopping nature of the electric conductiv-
ity. Actually, it has been shown11 that for low temperatures,
the transport is dominated by hopping through one or two
grains. I-V characteristics of such a system show highly
nonohmic behavior that can be interpreted as signs for charg-
ing effects. Figure 6 shows an I-V curve taken at T=6 K
together with fits to DBTJ and TBTJ models. Again, we were
not able to fit the results to a single-dot system without in-
creasing the fitting temperature considerably. Using the
TBTJ model, on the other hand, we were able to obtain a
very good fit for T=6 K. From the fitting parameters, we find
that the diameter of the grains is about 40 nm, which is in
accordance with atomic force microscope �AFM� pictures
obtained on these systems.

Both examples demonstrate that for a given experimental
I-V curve, using the TBTJ model had a similar effect to that
of using a DBTJ with higher temperature. This can be ex-
pected since the voltage drop in the Coulomb blockade re-
gime is divided to the contributions of the two dots, each one
contributing an energy which has to be compared to KBT.
Thus, the measurement temperature can be an important tool
for determining the number of dots in a complex Coulomb
blockade system. For further confirmation of the analysis, it
is recommendable to acquire I-V curves for different tem-
peratures and repeat the procedure as demonstrated in Fig. 5.

As previously discussed, since the typical experimental
I-V curves considered in this paper were symmetric and had
no pronounced staircases, we choose all barrier parameters to

be equal in the fitting procedure. The assumption that all Ris
and Cis in the experimental structures are identical is clearly
unrealistic. Nevertheless, we find that a finite temperature
smears the difference between barriers which exhibit similar
parameters. The effect of temperature is demonstrated in Fig.
7, where the TBTJ I-V curves for two different values of the
middle barrier parameters �R2 ,C2=R1, C1=R3 ,C3 and
R2 ,C2�R1, C1=R3 ,C3� at zero temperature and at T=6 K
are presented. At zero temperature, there is a clear staircase
structure for the latter case. At T=6 K, on the other hand, the
staircase structure is smeared and the I-V curve is similar for
both identical and nonidentical barriers. Hence, measured
I-V curves cannot determine the precise parameters of the
barriers for the experimental realizations depicted in Figs. 5
and 6, and the best we can do is to estimate the barrier
parameters to be roughly equal. For a more exact evaluation
of the barrier parameters, additional measurements at lower
temperatures are required.

In summary, we propose that by analyzing the I-V char-
acteristics, one may identify systems which are more com-
plicated than the conventional single-dot-double-barrier sys-
tem, although no former knowledge of the system is
assumed. This enables to determine the geometrical structure
of a complex quantum system. In the current work, we have
implemented our approach to identifying two-dot-triple-
barrier configuration. Future work should focus on extending
this method to apply to more complex systems and, eventu-
ally, to find a way to determine the precise number of dots in
an experimental system.
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