
Multiple-scattering theory for two-dimensional electron gases in the presence
of spin-orbit coupling

Jamie D. Walls,1,* Jian Huang,2 Robert M. Westervelt,2,3 and Eric J. Heller1,2

1Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

3Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
�Received 25 July 2005; revised manuscript received 17 November 2005; published 23 January 2006�

In order to model the phase-coherent scattering of electrons in two-dimensional electron gases in the
presence of Rashba spin-orbit coupling, a general partial-wave expansion is developed for scattering from a
cylindrically symmetric potential. The theory is applied to possible electron flow imaging experiments using a
moveable scanning probe microscope tip. In such experiments, it is demonstrated theoretically that the Rashba
spin-orbit coupling can give rise to spin interference effects, even for unpolarized electrons at nonzero tem-
perature and no magnetic field.
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I. INTRODUCTION

There has been recent interest1–3 in utilizing the spin de-
gree of freedom in semiconductor devices, where the charge
carrier’s spin provides an additional degree of control and
flexibility towards developing devices that are faster and
more efficient devices than conventional electronic devices.
One component of potential “spintronic” devices, the spin
transistor proposed by Datta and Das,4 modulates the current
passing through a semiconductor due to the presence of the
spin-orbit interaction, which couples the electron’s spin with
its kinematical motion. Interest in the spin transistor has gen-
erated numerous theoretical and experimental investigations
into the spin dynamics under the spin-orbit interaction in
two-dimensional electron gases �2DEG�.

In layered semiconductors devices, the two predominant
sources of spin-orbit coupling arise from either structure in-
version asymmetry �SIA or Rashba interaction5� or bulk in-
version asymmetry �BIA or Dresselhaus interaction6�. The
BIA spin-orbit interaction arises from the breaking of inver-
sion symmetry by the inherent asymmetry of the atomic ar-
rangement in the structure and is not very amenable to ex-
ternal manipulation. The Rashba spin-orbit coupling, on the
other hand, arises from band bending at the interfaces be-
tween semiconductor layers and/or any external electric
fields applied to the the device. Unlike the Dresselhaus cou-
pling, the strength of the Rashba coupling can be partially
controlled by application of an external electric field7 and in
principle can be made the dominant form of spin-orbit inter-
action in the 2DEG. Such tunability of the Rashba interac-
tion is ideally suited for applications in spintronic devices,
and as such, only the Rashba spin-orbit coupling will be
considered in this study.

Numerous studies have been conducted on the diffusive
transport of spins in the presence of spin-orbit coupling8–10

in order to investigate a variety of phenomena, such as the
spin Hall effect.11,12 Most of the studies were conducted up
to the first-Born approximation for the scattering from non-
magnetic impurities, and the results were disorder averaged.
However, there are many cases where such statistical theo-

ries are not warranted. For example, coherent scattering from
a fixed set of impurities, which give rise to quantum inter-
ference effects induced by multiple-scattering events from
the localized impurities, cannot be described by such statis-
tical theories. One method of tackling such problems is mul-
tiple scattering theory, which has been routinely used in op-
tical and acoustic scattering and has been proposed as a
method for understanding the fringing patterns in recent im-
aging experiments on electron flow in 2DEG.13,14 In scatter-
ing theory, the effect of a scatterer k can be localized to a
point in space at the center of the scatterer r�k, such that an

operator T̂k can be constructed which generates the scattered

wave �S�R� � from the incident wave �in�R� � evaluated at the

site of the scatterer R� =r�k:

��R� � = �in�R� � + �S�R� � = �in�R� � + �T̂k�R� ,r���in�r���r�=r�k
.

�1�

The subscript r�=r�k means to operate T̂k�R� ,r�� upon �in�r�� and
evaluate the result at r�=r�k. In the presence of N point scat-
terers, the total wave function is then given by

��R� � = �in�R� � + �
k=1

N

�T̂k�R� ,r����r���r�=r�k
. �2�

Thus the complete wave function can be found if

�T̂k�R� ,r����r���r�=r�k
is known at each scatter k.

In the following article, a multiple-scattering theory in the
presence of Rashba spin-orbit coupling in a 2DEG is devel-
oped. The general formalism is presented, along with the

explicit calculation of the scattering operator T̂k for a cylin-
drically symmetric well/barrier, which will be used as a
model for impurities in a 2DEG. As an application, the meth-
odology is applied to possible flux measurements for phase-
coherent transport in a 2DEG with Rashba spin-orbit inter-
action in the presence of a scanning probe microscope �SPM�
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tip in zero magnetic field. Additional interference effects
arise in the flux measurements due to spin interference ef-
fects caused by the Rashba coupling.

II. SCATTERING FROM A CYLINDRICALLY SYMMETRIC
POTENTIAL: PARTIAL-WAVE EXPANSION

The Hamiltonian for a 2DEG in the presence of the
Rashba spin-orbit interaction and impurities is given by

Ĥ =
p̂X

2

2m* +
p̂Y

2

2m* −
�

�
�p̂Y�̂X − p̂X�̂Y� + V�x,y� = Ĥ0 + V�x,y� ,

�3�

where �̂ j are the Pauli spin matrices and � is the Rashba
spin-orbit coupling constant. The eigenstates and corre-
sponding eigenvalues for the free-particle Hamiltonian with

Rashba spin-orbit coupling Ĥ0, are given by

�k���, ± ���� = �kY = k cos���,kX = k sin����� ± ���� �4�

E± =
�2k2

2m* � �k , �5�

where

tan��� =
kX

kY
,

� ± ���� =
1
�2

	 1

±exp�− i��

 , �6�

and k=�kX
2 +kY

2.
The dispersion relation in Eq. �5� represents two parabolic

bands centered upon k= ±m*� /�2. For states propagating
with their momentum vectors making an angle � with respect

to the Ŷ axis and for an energy E	0, there exists a twofold
degeneracy with the degenerate states given by

�k1���, + ���� = �k�1�����1

2
	 1

exp�− i��

 , �7�

�k2���,− ���� = �k�2�����1

2
	 1

− exp�− i��

 , �8�

where k�1�2�=k1�2��cos���Ŷ +sin���X̂� with

k1 =
m*�

�2 +�	m*�

�2 
2

+
2m*E

�2 ,

k2 = −
m*�

�2 +�	m*�

�2 
2

+
2m*E

�2 . �9�

The states �k1��� , + ���� and �k2��� ,−���� represent plane-
wave states whose spin states are quantized in the plane,
perpendicular to the momentum direction.

In polar coordinates, which are useful when considering
scattering from a localized, cylindrically symmetric poten-

tial, Ĥ0 can be written as

Ĥ0 = −
�2

2m*	 �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2


+ i�� 0 exp�i��	 �

�r
+

i

r

�

��



exp�− i��	 �

�r
−

i

r

�

��

 0 � .

�10�

The eigenstates of Ĥ0 which represent states propagating out-
ward from or towards a particular origin r�i can be written as

R� �
l,↑,E
± � = 
l,↑

± �R� ,E�

= exp�il��
�k1

2�2
	 Hl

±�k1�R� − r�i��

− iHl−1
± �k1�R� − r�i��exp�− i��


 ,

R� �
l,↓,E
± � = 
l,↓

± �R� ,E�

= exp�il��
�k2

2�2
	 Hl

±�k2�R� − r�i��

iHl−1
± �k2�R� − r�i��exp�− i��


 ,

�11�

where Hl
±�z� are Hankel functions given by Hl

±�z�
=Jl�z�±iYl�z�, and k1 and k2 are given in Eq. �9�. A similar
solution to Eq. �10� for a cylindrical well has been given

before.15,16 The states 
l,↑�↓�
± �R� ,E� satisfy a flux orthogonality

condition through a circular surface surrounding the origin,
r�i, which is given by

1

2
�

0

2�


l,a,E
± ���R� ����R� ����Ĵ� + Ĵ

��R� ����R� ������
m,b,E
± � · R� ���d�

=
�k̄

m*�l,m�a,b, �12�

where the current operator Ĵ is given by

Ĵ
�

= ĴXX̂ + ĴYŶ = 	 p̂X

m* +
�

�
�̂Y
X̂ + 	 p̂Y

m* −
�

�
�̂X
Ŷ . �13�

The states in Eq. �11� can be used to generate the scatter-

ing operator T̂k �Eq. �1�� for scattering in the presence of
Rashba spin-orbit coupling. The following treatment follows

closely a previous treatment for constructing T̂k in the ab-
sence of spin-orbit coupling.17 We will begin by solving the

Schrödinger equation for an eigenstate of Ĥ0 �Eq. �3�� inci-
dent upon a cylindrically symmetric potential centered at r�k,
Vk�r��, as shown in Fig. 1. Vk�r�� is given by

Vk�r�� =
V0 for �r� − r�k�  a ,

0 for �r� − r�k� � a ,
�14�

where a is the radius of the scattering potential. Consider the
case of an incident wave propagating with momentum k�±

=k±�cos��0�Ŷ +sin��0�X̂�, where � denotes a particular
eigenstate of H0 ��k�+��0� , + ��0��= �k�1��0� , + ��0�� and
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�k�−��0� ,−��0��= �k�2��0� ,−��0�� given in Eqs. �7� and �8��. The

incident wave function �in
± �R� � written in a coordinate system

centered about the scatterer at r�k is given by

�in
± �R� � =

1
�2

exp�ik�± · R� �	 1

±exp�− i�0�



=
1
�2

exp�ik�± · r�k�exp�ik±rR� ,r�k
cos��0 − �r�k

R� ��

�	 1

±exp�− i�0�

 =

1
�2

exp�ik�± · r�k�	 1

±exp�− i�0�



�	 �
l=−�

�

Jl�k±rR� ,r�k
�il exp�il��r�k

R� − �0��
 , �15�

where rR� ,r�k
= �R� −r�k� is the distance measured from the center

of the scatterer and �r�k

R� is the angle with respect to the Ŷ axis
of the vector r�, i.e.,

exp�i�r�k

R� � =
�R� − r�k� · Ŷ + i�R� − r�k� · X̂

rR� ,r�k

. �16�

The wave function outside of the scatterer �R� −r�k��a can
therefore be written as

�I
±�R� � = �in

± �R� � + �S
±�R� � , �17�

where the scattered wave function �S
±�R� � can be written as

�S
±�R� � = �

l=−�

�

f l
±1
l,↑

+ �R� ,E� + f l
±2
l,↓

+ �R� ,E� . �18�

The wave function inside the cylindrical potential �II
±�R� � can

be similarly written for �R� −r�k�a as

�II
±�R� � = �

l=−�

�

dl
±11

2
�
l,↑

+ �R� ,E − V0� + 
l,↑
− �R� ,E − V0��

+ dl
±21

2
�
l,↓

+ �R� ,E − V0� + 
l,↓
− �R� ,E − V0�� . �19�

Note that Eq. �19� contains both incoming and outgoing
states �as given in Eq. �11�� in order to remove the Yl terms

in 
l,↑�↓�
± , which are singular at R� =r�k.

From the continuity equations of the Schrodinger equa-

tions, �I
±�R� � and �II

±�R� � must satisfy the following condi-

tions for all R� such that �R� −r�k�=a:

�I
±��R� − r�k� = a� = �II

±��R� − r�k� = a� , �20�

�2

2m*� ��I
±�R� �
�r

�
�R� −r�k�=a

+ � �2

2m*a

− i�� 0 exp�i�r�k

R� �

exp�− i�r�k

R� � 0 ���I
±��R� − r�k� = a�

= � �2

2m*

��II
±�R� �
�r

�
�R� −r�k�=a

+ � �2

2m*a

− i�II� 0 exp�i�r�k

R� �

exp�− i�r�k

R� � 0 ���II
±��R� − r�k� = a� .

�21�

In the following discussion, �II=�, i.e., the spin-orbit cou-
pling strength is the same inside and outside the well.

The solutions for the various coefficients dl
± and f l

± are
given in Appendix A for a cylindrical well/barrier. In the
following, we are interested in studying the wave function
away from the scatterer, so the relevant coefficients are f l

±1

and f l
±2, which can be written for convenience as

f l
±1 = 2il exp�ik�± · r�k�exp�− il�0�

f̃ l
±1

�k1

,

f l
±2 = 2il exp�ik�± · r�k�exp�− il�0�

f̃ l
±2

�k2

. �22�

The coefficients f̃ l
±1 and f̃ l

±2 depend upon the energy and the
form of the potential but do not depend upon the initial di-
rection of the incident momentum vector �0 �different poten-
tials will generate a different dependence of the coefficients

upon �0, E, etc.�. Thus the scattered wave function �S
±�R� �

can be written as

�S
±�R� � = �

l=−�

�

il exp�il��r�k

R� − �0���T̃k,l�in
± �R� ��R� =r�k

, �23�

where

FIG. 1. Scattering of an incident plane wave �in
± �R� � �Eq. �15��

from a potential located at r�k, Vk�R� � �Eq. �14��. The various angles
and vectors used in Eqs. �15� and �16� are illustrated.
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T̃k,l = � f̃ l
+1
l,↑

+ �R� − r�k,E�+ ��0�� + f̃ l
−1
l,↑

+ �R� − r�k,E�− ��0��� + � f̃ l
+2
l,↓

+ �R� − r�k,E�+ ��0�� + f̃ l
−2
l,↓

+ �R� − r�k,E�− ��0���

=
1

2	 Hl�k1rR� ,r�k
�Al

1 exp�i�0�Hl�k1rR� ,r�k
�Bl

1

− exp�− i�r�k

R� �iHl−1�k1rR� ,r�k
�Al

1 − exp�i��0 − �r�k

R� ��iHl−1�k1rR� ,r�k
�Bl

1

+

1

2	 Hl�k2rR� ,r�k
�Al

2 exp�i�0�Hl�k2rR� ,r�k
�Bl

2

exp�− i�r�k

R� �iHl−1�k2rR� ,r�k
�Al

2 exp�i��0 − �r�k

R� ��iHl−1�k2rR� ,r�k
�Bl

2
 , �24�

where

Ãl
j = f̃ l

+j + f̃ l
−j ,

B̃l
j = f̃ l

+j − f̃ l
−j , �25�

where Hl�Hl
+ in Eq. �24� �the � sign will be implicitly

assumed for the Hankel function for the rest of this paper�.
The operators T̃k,l in Eqs. �23� and �24� appear to generate

the lth partial wave from the incident wave function �in
evaluated at the site of the scatterer. The only problem with
this interpretation are the various factors of exp�il�0� occur-
ring in Eqs. �23� and �24�. Since different incident waves will
possess or be a superposition of different incident momen-
tum directions �i.e., �0 in Fig. 1�, an additional operator
needs to be constructed which generates the various factors
of exp�il�0� from the incident wave with energy E. The op-

erator D̂l can be constructed such that for any given state of
the form ��in�=c1�k1��0� , + ��0��+c2�k2��0� ,−��0��,

D̂l�in�R� � = exp�il�0��in�R� � . �26�

The operator D̂l which satisfies the above equation is given
by

D̂l = 	 alP̂l blP̂l+1

clP̂l−1 dlP̂l


 , �27�

where

P̂l = 	 l

�l�
�

��R� · X̂�
− i

�

��R� · Ŷ�

�l�

�28�

with P̂0=1. The construction and full expression for D̂l is
given in the Appendix B.

The operator which generates the scattered wave from the
wave incident upon scatterer k, T̂k, can finally be written as

T̂k = �
l=−�

�

il exp�− il�r�k

R� �Ĝl
kP̂l, �29�

where

Ĝl
k =

1

2� Hl�k1rR� ,r�k
� − i exp�i�r�k

R� �Hl−1�k1rR� ,r�k
�

i exp�− i�r�k

R� �Hl+1�k1rR� ,r�k
� Hl�k1rR� ,r�k

� �	tk,l
11 0

0 tk,l
12 


+
1

2� Hl�k2rR� ,r�k
� i exp�i�r�k

R� �Hl−1�k2rR� ,r�k
�

− i exp�− i�r�k

R� �Hl+1�k2rR� ,r�k
� Hl�k2rR� ,r�k

� �	tk,l
21 0

0 tk,l
22 
 , �30�

where tk,l
11 =A−l

k,1al+B−l
k,1c1+l, tk,l

l2 =A1−l
k,1 bl−1+B1−l

k,1 dl, tk,l
21 =A−l

k,2al+B−l
k,2c1+l, and tk,l

22 =−A1−l
k,2 bl−1−B1−l

k,2 dl. From the values for the various
f l

k,±1 and f l
k,±2 calculated in Appendix A for a cylindrically symmetric barrier/well, it can be shown that tk,l

11 = tk,−l
12 and tk,l

21

= tk,−l
22 . Note that the form of T̂k is the same for all cylindrically symmetric scatterers; the values of the scattering amplitudes f̃ l

±j

depend upon the actual potential used for the cylindrically symmetric scatterer.

III. MULTIPLE SCATTERING THEORY

For N isolated scatterers, the overall wave function at R� can be written as

��R� � = �in�R� � + �
k=1

N

�T̂k��R� ��R� =r�k
. �31�

Equation �31� indicates that if the value of ��R� � and its derivatives �due to the P̂l dependence of T̂k in Eq. �29�� at each

scatterer is known, the entire wave function ��R� � is completely determined. In principle, the values of ��R� � and its derivatives
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at each scatterer can be found using Eq. �31�. In practice, it is only practical to calculate the first few derivatives of ��R� � at
each scatterer. When the size of the scatterer �or in general, the scattering length� is much smaller than the wavelengths, i.e.,

k1a�1 and k2a�1, the only significant contribution to T̂k comes from the l=0 term in Eq. �29�. This is analogous to the
heavily studied “s-wave” scattering models, and in the following discussion, only the l=0 term in Eq. �29� will be considered.

IV. LOW-ENERGY SCATTERING LIMIT

In the limit k1�2�a�1, Eq. �31� can be approximated as

��R� � = �in�R� � + �
k=1

N

G0
k�R� ���r�k� , �32�

where G0
k can be written as

G0
k�R� � =

1

2� H0�k1rR� ,r�k
� i exp�i�r�k

R� �H1�k1rR� ,r�k
�

i exp�− i�r�k

R� �H1�k1rR� ,r�k
� H0�k1rR� ,r�k

� �tk,0
1 +

1

2� H0�k2rR� ,r�k
� − i exp�i�r�k

R� �H1�k2rR� ,r�k
�

− i exp�− i�r�k

R� �H1�k2rR� ,r�k
� H0�k2rR� ,r�k

� �tk,0
2 .

�33�

It should be noted that Eqs. �32� and �33� are similar to the
Lippmann-Schwinger equation for a potential V��r�� com-
prised of N delta functions V��r��=�kVk��r�−r�k�, which has
been used before in previous studies of the spin dynamics in
the presence of spin-orbit coupling.8,10,18 From the
Lippmann-Schwinger equation, the wave function in the
presence of V��r�� is given by

��R� � = �in�R� � +� Ĝ+�R� ,r�,E�V��r����r��d3r

= �in�R� � + �
k=1

N

VkĜ+�R� ,r�k,E���r�k� , �34�

where Ĝ+�R� ,r�k ,E� is the Green’s function in the presence of
Rashba spin-orbit coupling, which is given by Eq. �C13� in

Appendix C and is similar in form to G0
k�R� �. The form of

G0
k�R� � would be identical to Ĝ+�R� ,r�k� if

tk,0
1

tk,0
2 =

k1

k2
. �35�

In general, Eq. �35� is not satisfied, although for k̄a�1 Eq.

�35� is approximately correct. The difference Ĝ+�R� ,r�k ,E�,
and Ĝ0

k�R� � can be understood as follows: Ĝ+�R� ,r�k ,E� propa-
gates the scattered wave function from the �-function poten-

tial, whereas Ĝ0
k�R� � propagates the scattered wave function

from the finite-sized potential Vk�r�� �Eq. �14��, which, in the
� function limit �a→0, V0→ ±�, �V0a2= ±Vk�, does not
scatter �i.e., the scattering coefficients tk,0

1 and tk,0
2 vanish�.

Far away from the scatterers �k1�2�rR� ,r�k
�1�, Eq. �33� can

be written as

G0
k�R� � =� 2

�rR� ,r�k

exp	i�k̄rR� ,r�k
−

�

4
+ �k�


�� t̄k − i�tkÛ	�

2
,�r�k

R� 
�Û�k�rR� ,r�k
+ ��k,�r�k

R� � ,

�36�

where

k̄ =
k1 + k2

2
=�	m*�

�2 
2

+
2m*

�2 E ,

k� =
k1 − k2

2
=

�m*

�2 ,

t̄k =
�t̂k,0

1 ��k2 + �t̂k,0
2 ��k1

2�k1k2

,

�tk =
�t̂k,0

1 ��k2 − �t̂k,0
2 ��k1

2�k1k2

,

exp�i��k� =� t̂k,0
1 �t̂k,0

2 �*

�t̂k,0
1 t̂k,0

2 �
,

exp�i�k� =� t̂k,0
1 t̂k,0

2

�t̂k,0
1 t̂k,0

2 �
�37�

and Û�� ,�� is a rotation operator given by

Û��,�� = exp	i
�

2
�̂Z
exp�i��̂X�exp	− i

�

2
�̂Z
 . �38�

Equation �33� contains a dynamical factor which depends
upon the distance from scatterer k multiplied by a sum of two
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rotation operators. In the presence of spin-orbit coupling, the
low-energy limit scattered wave functions possess an
“s-wave” character and also a “p-wave” character due to the

�r�k

R� dependence in Eq. �33�, which vanishes in the limit as
�→0.

In the calculations to be performed, �tk / t̄k�0.05 and
��k�1. In this case, Eq. �33� can be approximately written

as �for k1�2��R� −r�k��1�:

G0
k�R� � = t̄k� 2

�rR� ,r�k

exp	i�k̄rR� ,r�k
−

�

4
+ �k�
Û�k�rR� ,r�k

,�r�k

R� �

�39�

which now contains a dynamical, distance-dependent factor

times a single rotation operator Û�k�rR� ,r�k
,�r�k

R� �, which corre-
sponds to a rotation by an angle k�rR� ,r�k

about the spin-orbit

field for propagation along the direction �R� −r�k� / �R� −r�k�. In
this limit, the total wave function in the presence of N scat-
terers is given by

��R� � = ��R� � + �
j

t̄ j� 2

�rR� ,r�j

exp	i�k̄rR� ,r�j
−

�

4
+ � j�


�Û�k�rR� ,r�j
,�r�j

R� ���r� j� . �40�

From Eq. �40�, knowing the value of the wave function at
each scatterer k, ��r�k�, completely determines the total wave

function ��R� �. The various values of ��r�k� can be found by

setting R� =r�k in Eq. �32� for each scatterer k. This provides a
system of 2N linear equations to solve for the various ��r�k�.
The resulting system of equations can be expressed in matrix
form as

M̂�̂ = �̂ , �41�

where �̂ and �̂ are 2N by 1 matrices where �̂�2k−1�
=�↑�r�k�, �̂�2k�=�↓�r�k�, �̂�2k−1�=�↑�r�k�, �̂�2k�=�↓�r�k�,
and M̂ is a 2N by 2N matrix where M̂�m ,m�=1 for m=1 to
m=2N, and for k , j� �1,N� and k� j,

M̂�2k − 1,2j − 1� = − �G0
j �r�k��1,1,

M̂�2k,2j� = − �G0
j �r�k��2,2,

M̂�2k − 1,2j� = − �G0
j �r�k��1,2,

M̂�2k,2j − 1� = − �G0
j �r�k��2,1, �42�

where G0
j �r�k� is given in Eq. �33�. Once M̂ is specified, �̂

can be found by inverting M̂ as follows:

�̂ = M̂−1�̂ . �43�

V. APPLICATIONS TO FLUX MEASUREMENTS IN TWO-
DIMENSIONAL ELECTRON GASES IN THE

PRESENCE OF RASHBA SPIN-ORBIT COUPLING

Recent experiments13,19,20 have imaged electron flow
through a quantum point contact �QPC� in a 2DEG by moni-
toring the changes in conductance through the QPC as a
moveable SPM tip is scanned above the surface of a hetero-
structure. The SPM tip generates a Lorentzian-shaped poten-
tial in the 2DEG with its height determined by the voltage of
the SPM tip and its width given by the distance from the tip
to the 2DEG.21 This tip-induced potential can backscatter
electrons in the 2DEG. As the SPM tip is scanned above the
surface of the heterostructure, the backscattered current into
the QPC is monitored, and the change in conductance is
mapped out as a function of SPM tip position. Placing the tip
over regions of large electron flow results in a larger change
in conductance �since more electrons are backscattered in
this case� than placing the tip over regions of low electron
flow �where fewer electrons are backscattered�. In this man-
ner, a map of the electron flow is generated. Numerical
studies13,20,22,23 have demonstrated that the resulting conduc-
tance images mirrors the actual electron flow in the 2DEG.
However, interference effects induced by the SPM tip itself
are also observed on top of the electrons flow pattern. Inter-
ference between the single scattering trajectory from the
SPM tip with the single scattering trajectories from random
impurities within the sample generates interference fringes
spaced at half the Fermi wavelength atop the conductance
maps;13,19,20,22 these fringes are not in the actual electron
flow. Recently, additional interference effects for electrons
emitted from a single QPC were also reported for an SPM tip
in the presence of a fixed reflector gate.24 In this experiment,
interference fringes result not only from the interference be-
tween the single scattering trajectories of the reflector gate
and the SPM tip but also from the interference of the double
scattering trajectories involving the reflector gate and the
single scattering trajectory from the SPM tip. The observed
interference fringes due to these multiple-scattering trajecto-
ries can complicate backing out the actual electron flow from
the conductance map.25–27

The samples used in the above experimental studies were
GaAs/AlGaAs heterostructures, which have very low spin-
orbit coupling28 ��=3�10−13 eV m�, and the experimental
results were well described by quantum simulations and cal-
culations in the absence of spin-orbit coupling.13,14,19,22,24,29

However, other samples can possess considerably larger
spin-orbit coupling,30 such as InAs, which can have �=4
�10−11 eV m. The question therefore arises as to what ef-
fects or signatures of spin-orbit coupling exist in electron
flow imaging experiments using a moveable SPM tip.

Figure 2 shows the setup under consideration. A point
source is used to inject electrons into the 2DEG �analogous
to a QPC�. The injected electrons are backscattered by ran-
dom impurities present in the sample and by the potential
generated by the SPM tip placed above the surface of the
2DEG. The backscattered current into the detection QPC is

then measured as a function of the SPM tip position R� t. In
the setup shown in Fig. 2, the possibility that the detection

WALLS et al. PHYSICAL REVIEW B 73, 035325 �2006�

035325-6



QPC can be separate from the emitter QPC is allowed. Such
experimental geometries have been used in magnetic focus-
sing experiments in the past.31

The injected electrons from the emitter are taken to be an
unpolarized beam comprised of an equal mixture of the cy-

lindrical wavelike states �1�R� � and �2�R� �, which are given
by

�1�R� � = exp	i
�

4

�
0,↑�R� � + 
0,↓�R� �� ,

�2�R� � = i exp	i
�

4

�
1,↑�R� � − 
1,↓�R� �� . �44�

Each state represents current of �k̄ /m* being injected into the
emitter, as shown in Fig. 2. Far away from the source, the
states can be approximated as

�1�R� � =
1

���R� �
exp�ik̄�R� ��Û�k��R� �,�e�	1

0

 , �45�

�2�R� � =
1

���R� �
exp�ik̄�R� ��Û�k��R� �,�e�	0

1

 , �46�

where �e is the given with respect to the emitter. Note that
when �→0, the states �1 and �2 correspond to a spin up
and spin down electron being injected from the point source.

The net current injected into the detector is given by the
following formula:

� = ��
−�/2

�/2

d��JX����sin��� + JY����cos���� , �47�

where

JX���� =
�

m* Im��†�R� ��X��R� ��R� =�� +
�

�
�†�����̂Y����� ,

JY���� =
�

m* Im��†�R� ��Y��R� ��R� =�� −
�

�
�†�����̂X����� ,

�48�

and �� =��cos���Ŷ +sin���X̂�. In the actual experiment/
simulation, the current injected into the detector is measured
as a function of tip position several microns away from the
detector. As will be discussed later, the interference between
the incident waves and the scattered waves can be neglected
in Eq. �47� due to thermal averaging, so only the scattered
wave function �S needs to be considered. Phase-coherent
transport is assumed in the application of Eq. �47�. Addition-
ally, since the width of the detector is taken to be negligible,
only the current operator of �S evaluated at the detector
needs to taken into account in Eq. �47�. The injected current
into the detector becomes

� = 2�	 �

m* Im��S
†�R� d��Y�S�R� d�� −

�

�
�S

†�R� d��̂X�S�R� d�
 .

�49�

Using the form of the wave function in Eq. �40� evaluated at
the site of the detector, the injected current can then be writ-
ten as a function of tip position and energy as

��R� t,E� =
4�

�
�

k

t̄k
2

rk,d
cos��k

d�
�k̄

m*�†�r�k���r�k� −
t̄k
2

rk,d

�

�
�†�r�k�Û†�k�rk,d,�k

d�� sin�2�k
d�

2
�̂Y + sin2��k

d��̂X�Û�k�rk,d,�k
d���r�k�

+
4�

�

�k̄

m* �
j�k

t̄kt̄ j	 cos��k
d� + cos�� j

d�

2�rk,drj,d

„�†�r�k�Û†�k�rk,d,�k

d�Û�k�rj,d,� j
d���r� j�

�exp�i�k̄�rj,d − rk,d� + � j − �k�� + H.c.… +
4�

�

�

�
�
j�k

t̄kt̄ j

�rj,drk,d

	 �cos�� j
d��2 + �cos��k

d��2

2
− 1


���†�r�k�Û†�k�rk,d,�k
d��̂XÛ�k�rj,d,� j

d���r� j�exp�ik̄�rj,d − rk,d� + � j − �k� + H.c.�

FIG. 2. Electrons injected by the emitter QPC �represented by
�in� are backscattered due to random impurities in the 2DEG along
with a moveable “scatterer” generated by an SPM above the 2DEG
surface. Measurements of the backscattered flux into the detector

QPC as a function of the SPM tip position R� t can be used to image
the electron flow from the emitter.
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−
4�

�

�

�
�
j�k

t̄kt̄ j

�rj,drk,d

sin�� j
d�cos�� j

d� + sin��k
d�cos��k

d�
2

� ��†�r�k�Û†�k�rk,d,�k
d��̂YÛ�k�rj,d,� j

d���r� j�exp�ik̄�rj,d − rk,d� + � j − �k� + H.c.� , �50�

where the energy dependence of ��R� t ,E� comes in through

the energy dependence of both k̄ and t̄k. Since all experi-
ments are done at nonzero temperatures, thermal averaging
of Eq. �50� becomes necessary. Assuming the injected cur-
rent is a result of a small potential drop �V over the emitter
QPC and that the electrons on both sides of the emitter QPC
can be described as being free 2DEG, the energy weighting
function is simply related to the Fermi-Dirac distribution
function f�E� and is given by

− f��E�dE =
dE

kBT

exp	E − EF

kBT



�1 + exp	E − EF

kBT

�2 , �51�

where EF is the Fermi energy. All quantities calculated will
be thermally averaged using Eq. �51�. The thermally aver-
aged injected current is then given by

��R� t� = − �
0

�

��R� t,E�f��E�dE . �52�

Since ��R� t� contains interference terms that go as

k̄ exp�ik̄r� �where r is some length related to the various
distances in the system�, the following integral32 will be use-
ful in evaluating Eq. �52�:

− �
0

�

k̄ f��E�exp�ik̄r�dE = − 2i�T exp�ik̄Fr�sinh−1��Tr��1 − �Tr coth��Tr�� +
�T

k̄F

exp�ik̄Fr�sinh−1��Tr��k̄F
2r − 2�T coth��Tr��

−
�T

k̄F

exp�ik̄Fr�sinh−1��Tr��T
2r�coth2��Tr� + sinh−2��Tr�� � exp�ik̄Fr�sinh−1��Tr�g�r,T,EF� , �53�

where �T= k̄F�kBT�2EF�−1. For large r, interference terms in ��R� t� decay as r exp�−�Tr�. For T=3 K, EF=16 meV, m*

=0.022m0 �where m0 is the free electron mass�, �T=2.35 �m−1, which allows one to neglect the interference between the

incoming wave and scattered wave when calculating ��R� t� many microns away from the QPC.

A. The single-scattering limit

Before considering the case of multiple scattering �which can only be analytically solved for simple cases�, it is useful to
consider the single-scattering case for an unpolarized beam (i.e., averaged over the incident waves �1 �Eq. �44�� and �2 �Eq.
�44��). In this case, the value of the wave function at scatterer k is given by

�1�r�k� =
1

��re,k

exp�ik̄re,k�Û�k�re,k,�e
k�	1

0

 �54�

for incident wave �1 �Eq. �45�� and

�2�r�k� =
1

��re,k

exp�ik̄re,k�Û�k�re,k,�e
k�	0

1

 �55�

for incident wave �2 �Eq. �46��.
First consider the case when the detector and the emitter are one and the same. The spin averaged �i.e., averaged over

incident waves �1 and �2� and thermally averaged change in flux as a function of tip position ���R� t ,E�=��R� t ,E�
−��R� t=� ,E� is given by
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���R� t� �
2�

�2

�k̄F

m* �1 +
�2

12
	 kBT

EF

2� t̄t

2cos��t
d�

�rtip,d�2 +
2�

�2

�

m*�
k

cos��k
d� + cos��t

d�
rtip,drk,d

t̄kt̄t exp�i2k̄F2�rtip,d − rk,d� + �t − �k�

� sinh−1�2�T�rtip,d − rk,d��g�2�rtip,d − rk,d�,T,EF� + H.c.

=
2�

�2

�k̄F

m* �1 +
�2

12
	 kBT

EF

2� t̄t

2cos��t
d�

�rtip,d�2 + F�R� t�exp�i2k̄Frtip,d� + H.c., �56�

where F�R� t� is some nonoscillatory function which depends
on the particular configuration of scatterers, along with a
some angular dependence of the tip and a exponential damp-
ing factor depending upon the tip position from the scatter-
ers. Spin-orbit effects are not seen in Eq. �56� due to the fact
that for electrons moving along effective one-dimensional
trajectories, the amount of spin rotation induced is simply
proportional to the net distance the electrons have traversed.
Since an electron which is directly scattered back to the de-
tector has effectively traveled no net distance, the net spin
rotation is zero. Another way to see this is that

Û�k�rk,d ,�d
k�Û�k�re,k ,�e

k�=1̂ when the emitter and detector
are one and the same, since rk,d=re,k and �k

d=�e
k+�. As

shown at the end of Appendix C, the above conclusions also

hold if the approximation to Ĝ0
k�R� � in Eq. �39� is not made.

Consider the case explicitly illustrated in Fig. 2 where the
detector and the emitter are two distinct entities. In this case,
an electron does not traverse the same path back to the de-
tector, and the effects of spin-orbit coupling do not average
away in the flux calculation. Performing the thermal averag-

ing and spin averaging �using Eqs. �45� and �46��, ���R� t�
can be written as

���R� t� =
2�

�2

�k̄F

m* �1 +
�2

12
	 kBT

EF

2� t̄t

2 cos��t
d�

re,tiprtip,d
+ exp�ik̄FrS�

��G1�R� t�exp�ik�rS� + G2�R� t�exp�− ik�rS��

+ exp�ik̄FrS��G3�R� t�exp�ik�rD�

+ G4�R� t�exp�− ik�rD�� + H.c., �57�

where rS=re,tip+rtip,d and rD=rtip,d−re,tip, and where G1�R� t�,
G2�R� t�, G3�R� t�, and G4�R� t� are nonoscillatory functions of tip
position which depend upon the particular configuration of
scatterers. From Eq. �57�, the expected elliptical fringes

spaced at k̄FrS=2n� with the detector and the emitter acting
as the foci of the ellipse are present; however, the amplitude
of these oscillations are now modulated by the Rashba spin-
orbit coupling. Since the electron trajectories from the emit-
ter to the detector QPC are now two dimensional, the elec-
tron’s spin will undergo a trajectory-dependent spin rotation
for each pathway between the emitter and the detector QPC.
The interference between different pathways will thus have
an additional, spin-dependent modulation. Such an amplitude

modulation is similar to the D’yakonov-Perel’ model of spin
dephasing in the presence of spin-orbit coupling.3,33 The first
two oscillatory terms in Eq. �57� G1�R� t� and G2�R� t� lead to
elliptical amplitude modulations of the regular fringes spaced
at k�rS=2n�, while the G3 and G4 terms in Eq. �57� lead to
a hyperbolic amplitude modulation spaced at k�rD=2n�,
with the foci of the hyperbola again being the detector and
the emitter. Interference between the terms G1 and G3 and
between the terms G2 and G4 lead to fringes at k�re,tip
=2n� for rtip,d=const. Likewise, interference between the
terms G1 and G4 and between the terms G2 and G3 lead to
fringes at k�rtip,d=2n� for re,tip=const. The presence of all
four types of fringe patterns leads to a checkered pattern in

���R� t�. This can be seen in the calculation of ���R� t� in Eq.
�57� which is shown in Fig. 3�a�. In this simulation, the emit-

ter was placed at r�e=1.5 �m X̂ and the detector was placed

3 �m away at r�d=−1.5 �m X̂. In addition, the thermal aver-

age of ���R� t� was evaluated by numerically integrating Eq.
�52� over the interval EF±6kBT, and the following param-
eters were used �similar to the parameters found for InAs30�:
m*=0.022m0 �where m0 is the free electron mass�, EF
=16 meV, T=3 K, and �=4�10−11 eV m which gives a
spin rotation length �i.e., the length required to rotate the spin
by 180° of l�=��2 / �2m*��� of 134 nm. �For comparison,
spin rotation lengths of l��1.8 �m were found for hetero-
structures of GaAs/AlGaAs in a past study.28� Scatterers
were randomly placed in the region �Y ,X�= �0 �m,6 �m�
� �−6 �m,6 �m� with a scatterer density of
20 scatterers per �m2. All scatterers were modeled as cylin-
drical wells or barriers, with the well depths randomly cho-
sen between ±.04 eV. The coupling constants, t̄k, were evalu-
ated using Eq. �37� and the results in Appendix A. The radius
of the barriers/wells were all taken to be a=3 nm, which

gave k̄Fa�0.3 so that a model of s-wave scatterers could be
used. The tip was modeled as a hard disc �i.e., infinite bar-
rier� with the radius of the tip chosen to be a=3 nm. Al-
though the width of the actual depletion area induced by the
tip in the 2DEG is probably on the order of 100 nm, the
above radius was chosen to be consistent with the s-wave
model used in the calculations �further studies incorporating
higher partial wave scattering in the presence of Rashba cou-
pling are currently being carried out and will be addressed at
a later time�. Figure 3�a� is a typical result from the calcula-
tions performed on numerous scatterer configurations. In ad-

dition to the kinematical elliptical fringes spaced at k̄FrS
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=2n�, the hyperbolic and elliptical modulations are clearly
present in Fig. 3�a�, along with the circularlike fringes about
the emitter and the detector, which leads to a checkered pat-
tern.

For a comparison, simulations were also performed for
the same scattering configurations and coupling constants but
without the Rashba spin-orbit coupling ��=0 eV m�. The
fermi energy of these simulations EF� was chosen to be
slightly higher in energy than EF in Fig. 3�a� so that the
magnitude of the fermi vectors was the same for both simu-

lations, i.e., k̄F� = k̄F. As expected, only regular elliptical
fringes about the emitter and detector are shown in Fig. 3�b�,
with any resulting modulation arising from the particular
scatterer configuration. Note that the intensities of the fringes
are larger when the tip is near to the detector than the corre-
sponding fringes in the presence of Rashba coupling. Figures
4�a� and 4�b� demonstrates this more clearly by plotting a

slice of ���R� t� �shown in Figs. 3�a� and 3�b�� along the Ŷ
axis, passing through the detector. Near the detector, the

magnitude of ���R� t� is greater in the absence of Rashba

coupling. However, the magnitudes of ���R� t� with and
without spin-orbit coupling are comparable far away from
the detector. This is due to the fact that far away from the
detector and emitter, the scattered wave functions can
no longer resolve the detector and the emitter, i.e.,

Û�k�rk,d ,�d
k�Û�k�re,k ,�e

k�� 1̂, which makes ���R� t� indepen-
dent of �. It must be stressed, however, that although the
form of the fringe pattern is robust to scatterer configura-
tions, the overall intensity does depend on the scattering con-
figuration. Figures 4�c� and 4�d� give the same slice through
a system with a different set of scatterers.

B. Two scatterer solution

As mentioned earlier, if there is only one QPC, the effects
of spin-orbit coupling are not observed if the electron trajec-
tories from and towards the QPC are purely one dimensional.
As shown in Fig. 5, two-dimensional multiple-scattering tra-
jectories exist for electrons exiting and arriving at the detec-
tor. Consider the case of two scatterers: a moveable scatterer

at R� t and a fixed scatterer at r�s. In addition, both the tip and
the fixed scatterer will be modeled as being infinite potential

FIG. 3. Simulation of ���R� t� �Eq. �57�� for an unpolarized

beam of electrons injected from an emitter located at r�e=1.5 �m X̂

and observed at a detector located at r�d=−1.5 �m X̂ �A� with and
�B� without Rashba spin-orbit coupling for the same random con-
figuration of scatterers. A scatterer density of 20 scatterers per �m2

was chosen; each scatterer was modeled as a cylindrical barrier/well
of radius 3 nm with the height/depth of the potential randomly cho-
sen between ±.04 eV. The tip was modeled as a hard disc of radius

3 nm. In �A�, the amplitude of ���R� t� is modulated by the Rashba
spin-orbit interaction, due to the fact that electrons traveling from
the emitter to the detector undergo net spin rotations. In �B�, the
expected elliptical fringes are observed. The same, arbitrary scale

for ���R� t� was used in both �A� and �B�. The following parameters
were used in the simulation: m*=0.022m0, T=3 K, EF=16 meV,
�=4�10−11 eV m.

FIG. 4. Slices of ���R� t� through the detector at r�d=−1.5 �m X̂.
The plots shown in �A� and �B� come from Fig. 3. Modulations are
clearly evident in �A� due to spin-orbit coupling. Note also that the
intensity of the fringes is larger in the absence of spin-orbit cou-
pling ��B� vs �A��. However, the fringe intensities also depend upon
the configuration of the random impurities. �C� and �D� show the

same slice of ���R� t� for a different configuration of scatterers. Note
again that modulations due to Rashba coupling are present in �C�
and not in �D�.
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barriers of radius 3 nm. Using Eq. �43�, the value of the
wave function at each of the two scatterers is given by

��R� t� = �s,t��R� t� − �s,tG0
s�R� t���r�s� , �58�

��r�s� = �s,t��r�s� − �s,tG0
t �r�s���R� t� , �59�

where �s,t= �1−Det�G0
t �r�s���−1. This includes all orders of

scattering between the two scatterers �i.e., any number of
bounces between the two scatterers�. The change in current

as a function of R� t in the presence of the fixed scatterer at r�s
and a random configuration of weak scatterers can be found
by inserting Eqs. �58� and �59� into Eq. �50� and performing
the thermal average using Eq. �52�. Since t̄�1 in the s-wave

limit, it is useful to expand ���R� t� in powers of t̄. The single
scattering contribution has already been discussed, and is
given in Eq. �56�, which is order t̄2. The next term of order
t̄3, which involves the interference between the trajectories
shown in Fig. 5 and the single scattering trajectories, can be
written as

��3���R� t� = exp�ik̄R̃S��K1�R� t�exp�ik�R̃S� + K2�R� t�exp�ik�R̃D��

+ exp�ik̄R̃S��K3�R� t�exp�− ik�R̃S�

+ K4�R� t�exp�− ik�R̃D�� + exp�ik̄R̃D�

��L1�R� t�exp�ik�R̃S� + L2�R� t�exp�ik�R̃D��

+ exp�ik̄R̃D��L3�R� t�exp�− ik�R̃S�

+ L4�R� t�exp�− ik�R̃D�� + H.c., �60�

where R̃S=rtip,d+rs,tip and R̃D=rtip,d−rs,tip. The functions

K1�R� t�, K2�R� t�, K3�R� t�, and K4�R� t� �which mostly represent
the interference between the impurity single scattering events
and the trajectories shown in Fig. 5� are nonoscillatory func-

tions of R� t which depend upon the configuration of random

scatterers, whereas the functions L1�R� t�, L2�R� t�, L3�R� t�, and

L4�R� t� �which represent the interference between the single
scattering trajectories �for the tip and the fixed impurity� and
the multiple-scattering trajectories shown in Fig. 5� are

nonoscillatory functions of R� t which only depend upon the
position of the fixed scatterer at r�s. Figure 6 shows a simu-

lation of ���3���R� t�� in Eq. �60� for a fixed, hard disc scatterer

of radius 3 nm located at r�S=1.7 �m X̂+2.4 �m Ŷ. The
detector/emitter QPC was placed at �X ,Y�= �0 �m,0 �m�.
Figure 6 represents the evaluation of Eq. �60� for the follow-
ing parameters: T=3 K, m*=0.022m0, �=4�10−11 eV m,
and EF=16 meV �the same parameters as those given in Fig.
3�. The random impurities were again modeled as cylindrical
wells/barriers of radius 3 nm with depth/height randomly
chosen between ±.04 eV and with a scatterer density of
20 scatterers per �m2. Modulations due to spin-orbit cou-
pling are again present, as predicted in Eq. �60�.

If the scattering amplitudes t̄ become large, then higher
orders �i.e., multiple bounces� must also be included. The
interference between these different trajectories can lead to
resonances induced by the scattering configuration. For the
trajectories shown in Fig. 5, however, no resonances due to
spin rotation can be generated, since no net spin rotation is
generated if the particle bounces from scatterer A to scatterer
B and back to scatterer A again, as shown in Fig. 7�a�. The
lack of spin rotation for such trajectories can be seen using

the exact form of Ĝ0
k�R� � given in Eq. �33� as follows:

Ĝ0
A�R� B�Ĝ0

B�R� A� � 1̂ . �61�

However, for three or more scatterers �as shown in Fig. 7�b��,
there exist trajectories which will give a net spin rotation.
Calculating possible interference effects between multiple
scattering trajectories requires using higher partial waves
�Eq. �29�� than the simple s-wave scattering models studied
mostly in this paper, and will be investigated in the future.

FIG. 5. Possible multiple scattering trajectories which result in a
net spin rotation applied to spins which make round trips from the
emitter back to the emitter. Since the path is two dimensional, a net
spin rotation results, even when the detector and the emitter are the
same.

FIG. 6. Calculation of ���3���R� t�� in Eq. �60� for a fixed hard

disc scatterer of radius 3 nm located at r�S=1.7 �m X̂+2.4 �m Ŷ.
The modulations due to Rashba spin-orbit coupling are seen, similar
to those shown in Fig. 3. These modulations mainly result from the
interference between the trajectories shown in Fig. 5 and the single
scattering trajectories from the tip and fixed scatterer. The flux scale

and parameters used in the calculation of ���3���R� t�� are the same as
those given in Fig. 3.
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VI. CONCLUSIONS

In this paper, a partial wave expansion for scattering from
a cylindrical potential in the presence of Rashba spin-orbit
coupling was developed and was used to construct an opera-

tor T̂k which generates the scattered wave from the incident
wave at scatterer k. This allowed for the development of
point scattering models beyond the s-wave limit. The often
studied s-wave scattering from �-function potentials are
shown to be different from the s-wave models developed in
this work due to the fact that cylindrical wells and barriers do
not scatter in the �-function limit; however, both models give
the same qualitative results for the flux calculations pre-
sented in this work. Although only s waves were discussed
herein, extensions to higher partial wave scattering can be
readily performed using the formalism developed in this

work. Additionally, the operator T̂k and the calculated

Green’s function Ĝ±�r�1 ,r�2 ,E� can be used to apply all the
scattering theory machinery to study 2DEG confined in a
variety of geometries.

The Rashba spin-orbit coupling was shown to generate
additional interference fringes in possible electron imaging
experiments which were produced using a moveable scan-
ning probe microscope tip. In the single-scattering limit,
spin-orbit coupling does not produce any modulation in the
observed flux using a single quantum point contact. This is
due to the fact that no net spin rotation is generated from
effective one-dimensional trajectories which start and end at
the same location. If the injected current through a separate
quantum point contact is measured instead, interference ef-
fects due to Rashba coupling are observed from the various
two-dimensional trajectories from the emitter to the detector.
This is due to the noncommutation of the resulting spin ro-
tations along the trajectory, which results in spin-orbit-
related interference effects. These interference effects are
similar to the D’yakonov-Perel’ mechanism of spin dephas-
ing observed in electron systems. If multiple-scattering ef-
fects are also included, a single quantum point contact can
again be used to observe the spin interference caused by the
Rashba spin-orbit coupling.

In the future, calculations involving higher partial waves
and stronger scattering will be performed in order to look for
possible spin resonances resulting from interference between

the various multiple scattering trajectories. In addition, more
realistic simulations of the scattering induced by a scanning
probe microscope tip, requiring other partial waves in addi-
tion to the s waves, will be performed. Finally, the multiple-
scattering theory presented in this work can also be used to
study scattering and polarization profiles generated in quan-
tum wires where phase coherence effects between the scat-
tered waves can now be fully taken into account.

ACKNOWLEDGMENTS

This work was supported at Harvard University by the
Nanoscale Science and Engineering Center �NSF Grant No.
PHY-0117795�, and by NSF Grant No. CHE-0073544.

APPENDIX A: SOLUTION FOR SCATTERING FROM A
BARRIER OR WELL

For the problem of the square well/barrier centered about
r�k, Eqs. �20� and �21� require the various f l

± and dl
± for

�r�−r�k�=a to satisfy the following equations:

�l
±Jl�k±a� + �k1f l

±1Hl�k1a� + �k2f l
±2Hl�k2a�

= ��1dl
±1Jl��1a� + ��2dl

±2Jl��2a� ,

±�l
±Jl−1�k±a� + �k1f l

±1Hl−1�k1a� − �k2f l
±2Hl−1�k2a�

= ��1dl
±1Jl−1��1a� − ��2dl

±2Jl−1��2a� ,

�l
±k±Jl��k±a� + k1

3/2f l
±1Hl��k1a� + k2

3/2f l
±2Hl��k2a�

= �1
3/2dl

±1Jl���1a� + �2
3/2dl

±2Jl���2a� ,

±k±�l
±Jl−1� �k±a� + k1

3/2f l
±1Hl−1� �k1a� − k2

3/2f l
±2Hl−1� �k2a�

= �1
3/2dl

±1Jl−1� ��1a� − �2
3/2dl

±2Jl−1� ��2a� , �A1�

where

�l
± = 2il exp�ik�± · r�k�exp�− il�0� . �A2�

Using Eq. �A1�, the various values for the coefficients dl
±1,

dl
±2, f l

±1, and f l
±2 can be found. In order to simplify the pre-

sentation of the solution to Eq. �A1�, the following functions
will be introduced to simplify the solutions:

�l�p,q,a� = Jl�pa�Jl−1�qa� + Jl�qa�Jl−1�pa� ,

��l�p,q,a� = Jl��pa�Jl−1� �qa� + Jl��qa�Jl−1� �pa� ,

gl
b�p,q,a� = Jl−1�qa�Hl�pa� + �− 1�bJl�qa�Hl−1�pa� ,

Gl
b�p,q,r,a� =

p�l�q,r,a�
q��l�q,r,a�

�Jl−1� �ra�Hl��pa�

+ �− 1�bJl��ra�Hl−1� �pa�� − gb�p,r,a� ,

FIG. 7. Possible higher-order scattering processes. For two scat-
terers shown in �A�, if the electron bounces between scatterer A and
B, no net spin rotation results. For three or more scatterers, how-
ever, net spin rotation can occur. Such a possibility is shown in �B�,
where an electron traveling from A to C to B to A undergoes a spin
rotation.

WALLS et al. PHYSICAL REVIEW B 73, 035325 �2006�

035325-12



Fl
b�k±,q,r,a� = �Jl−1�ra�Jl�k±a�

± �− 1�bJl−1�k±a�Jl�ra��

−
k±�l�q,r,a�
q��l�q,r,a�

�Jl−1� �ra�Jl��k±a�

± �− 1�bJl−1� �k±a�Jl��ra�� . �A3�

The solution to the above equations can be written as

f l
±1 = �l

± Fl
2�k±,�1,�2,a�Gl

2�k2,�2,�1,a� − Fl
1�k±,�2,�1,a�Gl

1�k2,�1,�2,a�
�k1�Gl

2�k1,�1,�2,a�Gl
2�k2,a2,�1,a� − Gl

1�k1,�2,�1,a�Gl
1�k2,�1,�2,a��

= �l
± f̃ l

±1

�k1

,

f l
±2 = �l

± Fl
2�k±,�1,�2,a�Gl

1�k1,�2,�1,a� − Fl
1�k±,�2,�1,a�Gl

2�k1,�1,�2,a�
�k2�Gl

1�k2,�1,�2,a�Gl
1�k1,a2,�1,a� − Gl

2�k2,�2,�1,a�Gl
2�k1,�1,�2,a��

= �l
± f̃ l

±2

�k2

,

dl
±1 = �l

±Jl−1��2a�Jl�k±a� ± Jl��2a�Jl−1�k±a�
��1���1,�2,a�

+
�l

±

���1,�2,a�
Fl

2�k±,�1,�2,a��gl
2�k1,�2,a�Gl

2�k2,�2,�1,a� − g1�k2,�2�Gl
1�k1,�2,�1,a��

��1�Gl
2�k1,�1,�2,a�Gl

2�k2,�2,�1,a� − Gl
1�k1,�2,�1,a�Gl

1�k2,�1,�2,a��

−
�l

±

���1,�2,a�
Fl

1�k±,�2,�1,a��gl
2�k1,�2,a�Gl

1�k2,�1,�2,a� − g1�k2,�2�Gl
2�k1,�1,�2,a��

��1�Gl
2�k1,�1,�2,a�Gl

2�k2,�2,�1,a� − Gl
1�k1,�2,�1,a�Gl

1�k2,�1,�2,a��
,

dl
±2 = �l

±Jl−1��1a�Jl�k±a� � Jl��1a�Jl−1�k±a�
��2���1,�2,a�

+
�l

±

���1,�2,a�
Fl

2�k±,�1,�2,a��gl
1�k1,�1,a�Gl

2�k2,�2,�1,a� + g2�k2,�1�Gl
1�k1,�2,�1,a��

��2�Gl
2�k1,�1,�2,a�Gl

2�k2,�2,�1,a� − Gl
1�k1,�2,�1,a�Gl

1�k2,�1,�2,a��

−
�l

±

���1,�2,a�
Fl

1�k±,�2,�1,a��gl
1�k1,�1,a�Gl

1�k2,�1,�2,a� + g2�k2,�1�Gl
2�k1,�1,�2,a��

��2�Gl
2�k1,�1,�2,a�Gl

2�k2,�2,�1,a� − Gl
1�k1,�2,�1,a�Gl

1�k2,�1,�2,a��
. �A4�

It is useful to consider the limiting case of a hard disc, i.e.,
V0→�. In this case,

�1 =
m*�

�2 + i�2m*�V0�
�2 ,

�2 = −
m*�

�2 + i�2m*�V0�
�2 �A5�

with �V0�→�. In this limit, the coefficients are given by

f l
±1 = −

�l
±

�k1

Jl�k±a�Hl−1�k2a� ± Jl−1�k±a�Hl�k2a�
Hl�k1a�Hl−1�k2a� + Hl�k2a�Hl−1�k1a�

,

f l
±2 = −

�l
±

�k2

Jl�k±a�Hl−1�k1a� � Jl−1�k±a�Hl�k1a�
Hl�k1a�Hl−1�k2a� + Hl�k2a�Hl−1�k1a�

. �A6�

Note also that in the opposite limit of an infinite well, V0
→−�, the expressions for f l

±1 and f l
±2 are the same as those

given in Eq. �A6�.

APPENDIX B: CONSTRUCTION OF D̂l

For an arbitrary plane wave state specifed by energy E
and with incident momentum vectors making an angle of �0

with respect to the Ŷ axis,

	�↑�R� �

�↓�R� �

 = � A

�2
exp�ik�1 · R� �	 1

exp�− i�0�

 +

B
�2

exp�ik�2 · R� �

�	 1

− exp�− i�0�

� �B1�

an operator D̂l can be constructed such that

D̂l	�↑�R� �

�↓�R� �

 = exp�il�0�	�↑�R� �

�↓�R� �

 . �B2�

First define the operator P̂l by
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P̂l = 	 l

�l�
�

�RX
− i

�

�RY

�l�

�B3�

with P̂0=1. Exponential functions of the form exp�ik� ·R� �,
where k� =k�cos��0�Ŷ +sin��0�X̂�, are eigenfunctions of P̂l,
where

P̂l exp�ik� · R� � = k�l� exp�il�0�exp�ik� · R� � . �B4�

The operator D̂l can be decomposed in terms of the op-

erators P̂l as follows:

D̂l = 	 alP̂l blP̂l+1

clP̂l−1 dlP̂l


 , �B5�

where the coefficients al, bl, cl, and dl need to be determined.

Operating D̂l on ��R� � in Eq. �B1�:

D̂l	�↑�R� �

�↓�R� �

 =

A exp�il�0�exp�ik�1 · R� �
�2

	 alk1
�l� + blk1

�l+1�

exp�− i�0��clk1
�l−1� + dlk1

�l��

 +

B exp�il�0�exp�ik�2 · R� �
�2

	 alk2
�l� − blk2

�l+1�

− exp�− i�0��dlk2
�l� − clk2

�l−1��



= exp�il�0�	�↑�R� �

�↓�R� �

 . �B6�

The various coefficients must therefore satisfy

alk1
�l� + blk1

�1+l� = 1,

alk2
�l� − blk2

�1+l� = 1,

clk1
�l−1� + dlk1

�l� = 1,

dlk2
�l� − clk2

�l−1� = 1, �B7�

which gives

al =
k2

�l+1� + k1
�l+1�

k2
�l+1�k1

�l� + k1
�l+1�k2

�l� ,

bl =
k2

�l� − k1
�l�

k2
�l+1�k1

�l� + k1
�l+1�k2

�l� ,

cl =
k2

�l� − k1
�l�

k2
�l−1�k1

�l� + k1
�l−1�k2

�l� ,

dl =
k2

�l−1� + k1
�l−1�

k2
�l−1�k1

�l� + k1
�l−1�k2

�l� . �B8�

For an arbitrary eigenstate of Ĥ0 � Eq. �3�� with energy E,

	�↑�R� �

�↓�R� �

 = �

0

2�

d�0��1��0�
�2

eR� ·k�1��0�	 1

exp�− i�0�



+
�2��0�

�2
eR� ·k�2��0�	 1

− exp�− i�0�

�

� �
0

2�

d�0���0� . �B9�

Operating D̂l upon ��R� � gives

D̂l	�↑�R� �

�↓�R� �

 = �

0

2�

d�0 exp�il�0����0� . �B10�

APPENDIX C: THE GREEN’S FUNCTION IN THE
PRESENCE OF SPIN-ORBIT COUPLING

The Green’s function in the presence of Rashba spin-orbit
interaction has a simple form in momentum space and can be
written as

Ĝ±�E� = − lim
�→0

1̂

Ĥ − E ± i�

= − lim
�→0

m*

�2���2 � dk�
�k��k��

�k��2 −
2m*�k���

�2 −
2m*E

�2 ± i�

��1̂ + �̂X cos��k�� − �̂Y sin��k���

− lim
�→0

m*

�2���2 � dk�
�k��k��

�k��2 +
2m*�k���

�2 −
2m*E

�2 ± i�

��1̂ − �̂X cos��k�� + �̂Y sin��k��� , �C1�
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where �k� is the angle k� makes with the respect to the Ŷ axis.
The form of the Green’s function in Eq. �C1� has been used
in numerous studies of spin dynamics in 2DEGS. The posi-
tion space representation of the Green’s function

Ĝ±�r�1 ,r�2 ,E�= r�1�Ĝ±�E��r�2�, however, has not been used to
the best of the authors’ knowledge. In the presence of a scat-
tering potential V�r�� the total wave function with energy E is

related to Ĝ±�r�1 ,r�2 ,E� and V�r�� by the Lipmann-Schwinger
equation

��R� � = ��R� � +� dr�Ĝ+�R� ,r�,E�V�r����r�� , �C2�

where ��R� � would be the wave function in the absence of
the scattering potential V�r��.

Before calculating Ĝ±�r�1 ,r�2 ,E�, it is worth noting that the

Rashba Hamiltonian Ĥ0 � Eq. �3�� is invariant to combined
rotations in spin and space about the ẑ axis:

Ĥ0 = M̂���Ĥ0M̂†��� , �C3�

M̂��� = exp	− i
�

�
L̂Z
exp	− i

�

2
�Z
 = R̂���Ẑ��� . �C4�

Due to the above symmetry, the Green’s function is also
invariant:

Ĝ±�E� = M̂���Ĝ±�E�M̂†��� . �C5�

From Eq. �C5�, it follows that

r�1�Ĝ±�E��r�2� = r�1�M̂†���M̂���Ĝ±�E�M̂†���M̂����r�2� = Ẑ†���R̂���r�1�Ĝ±�E��R̂���r�2�Ẑ��� . �C6�

Ĝ±�r�1 ,r�2 ,E� can be written as

Ĝ±�r�1,r�2,E� = lim
�→0

− m*

�2���2 � dk�� exp�k� · r��1̂

�k��2 +
2m*��k�

�2 −
2m*E

�2 ± i�

+
exp�k� · r��1̂

�k��2 −
2�m*�k�

�2 −
2m*E

�2 ± i�� + exp�k� · r��

�� �̂X cos��k�� − �̂Y sin��k��

�k��2 −
2m*��k�

�2 −
2m*E

�2 ± i�

−
�̂X cos��k�� − �̂Y sin��k��

�k��2 +
2�m*�k�

�2 −
2m*E

�2 ± i�� , �C7�

where r�=r�1−r�2. In evaluating Eq. �C7�, it is advantageous to take r� to be along say the Ŷ axis. If r�=r�cos���Ŷ +sin���X̂�, then

R̂����r��= �rŶ�. Therefore, using Eq. �C6�, Eq. �C7� can be written as

Ĝ±�r�1,r�2,E� = lim
�→0

− m*

�2���2�
0

2�

d��
0

�

dk	 k exp�ikr cos����1̂
�k − k1 ± i���k + k2�

+
k exp�ikr cos����1̂
�k + k1��k − k2 ± i��



− k	Z†�����̂X cos��� − �̂Y sin����Z���

�k − k1��k + k2 ± i��
−

Z†�����̂X cos��� − �̂Y sin����Z���
�k + k1 ± i���k − k2�


 , �C8�

where

k1 =
m*�

�2 +�	m*�

�2 
2

+
2m*E

�2 ,

k2 = −
m*�

�2 +�	m*�

�2 
2

+
2m*E

�2 . �C9�

The integrals in Eq. �C8� can be readily evaluated. The term in Ĝ±�r�1 ,r�2 ,E� proportional to the identity matrix is given by

lim
�→0

− m*

�2���2�
0

2�

d��
0

�

dk	 k exp�ikr cos����
�k − k1 ± i���k + k2�

+
k exp�ikr cos����

�k + k1��k − k2 ± i��
1̂

= lim
�→0

− m*

2��2�
0

�

dk
J0�kr�
k1 + k2

	 k1

k + k1
+

k1

k − k1 ± i�
+

k2

k + k2
+

k2

k − k2 ± i�

1̂ = −

im*

2�2	 k1

k1 + k2
H0

±�k1r� +
k2

k1 + k2
H0

±�k2r�
1̂

�C10�

which is just the weighted average of two free particle Green’s function with different wave vectors k1 and k2.
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Using the following two integrals:

�
0

2�

d� exp�ikr cos����sin��� = 0,

�
0

2�

d� exp�ikr cos����k cos��� = − i
�

�r
�

0

2�

d� exp�ikr cos���� = − i
�

�r
2�J0�kr� . �C11�

The terms in Eq. �C8� proportional to �̂X and �̂Y are given by

lim
�→0

− m*

�2���2�
0

2�

d��
0

�

dk
kZ†�����̂X cos��� − �̂Y sin����Z���

�k − k1��k + k2 ± i��
−

kZ†�����̂X cos��� − �̂Y sin����Z���
�k + k1 ± i���k − k2�

= lim
�→0

m*i

2��2 Ẑ†����̂XẐ���
�

�r
�

0

�

dk
J0�kr�
k1 + k2

	 1

k + k1
+

1

k − k1 ± i�
−

1

k + k2
−

1

k − k2 ± i�



=
− Ẑ†����̂XẐ���m*

2�k1 + k2��2

�

�r
�H0

±�k1r� − H0
±�k2r�� =

m*

2�2 ��̂X cos��� − �̂Y sin����	 k1

k1 + k2
H1

±�k1r� −
k2

k1 + k2
H1

±�k2r�
 . �C12�

The Green’s function Ĝ±�r�1 ,r�2 ,E� can finally be written as

Ĝ±�r�1,r�2,E� = − i
m*

2�2

k1

k1 + k2
	 H0

±�k1r� iH1
±�k1r�exp�i��

iH1
±�k1r�exp�− i�� H0

±�k1r�

 − i

m*

2�2

k2

k1 + k2
	 H0

±�k2r� − iH1
±�k2r�exp�i��

− iH1
±�k2r�exp�− i�� H0

±�k2r�

 .

�C13�

As noted earlier, Ĝ±�r�1 ,r�2 ,E� is similar in form to the Ĝ0
k�R� �

operator � Eq. �33�� found in the partial wave scattering
analysis given in the text. It is worth pointing out that, as was

the case for Ĝ0
k�R� �, Ĝ±�r�1 ,r�2 ,E�Ĝ±�r�2 ,r�1 ,E�� 1̂, i.e., no net

spin rotation is observed when the particle traverses no net
distance along a one-dimensional path.

Consider the experiment shown in Fig. 2 for the case
when the detector and the emitter are one and the same. With

the approximation to Ĝ0
k�R� � made in Eq. �39�, it was con-

cluded that Rashba spin-orbit coupling does not give rise to

modulations in the net current as a function of R� t � Eq. �56��.
It is worth pointing out that the conclusion reached by Eq.
�56� is valid, even if the approximation in Eq. �39� is not
made. Treating the emitter as a point source, the scattered
wave function at the detector/emitter is given by Eq. �32�:

��r�d� = �
k=1

N

Ĝ0
k�r�d���r�k� = �

k=1

N

Ĝ0
k�r�d�Ĝ+�r�k,r�d,E��̂ ,

�C14�

where �̂ represents the spin state of the injected electron �can
be taken to be either � 1

0
� or � 0

1
� or some linear combination of

the two�. It is easy to show, however, that Ĝ0
k�r�d�Ĝ+�r�k ,r�d ,E�

is not proportional to the identity matrix. For k̄rk,d�1,
Ĝ0

k�r�d�Ĝ+�r�k ,r�d ,E� can be written as

Ĝ0
k�r�d�Ĝ+�r�k,r�d,E� �

exp�i2k̄rk,d�
rk,d

�	 ak bk exp�i�d
k�

bk exp�− i�d
k� ak


 ,

�C15�

where

ak =�k2

k1
tk,0
1 +�k1

k2
tk,0
2 ,

bk =�k1

k2
tk,0
2 −�k2

k1
tk,0
1 . �C16�

Eq. �C15� indicates that the incident spin state, �̂, is modified
after following the effective 1D trajectory �although Eq.
�C15� does not represent a spin rotation since it is not uni-
tary�. However, the only distance dependent factor in Eq.
�C15� contains k̄rk,d and does not depend upon k�. Calcula-
tions of ���R� t� therefore will not possess any modulations
which depend upon the Rashba interaction k� supporting the
original conclusions made in Eq. �56�.
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