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scanning tunneling spectroscopy. Electrostatic potential computations permit evaluation of tip-induced band
bending, from which a correction to the energy scale of the observed spectra is made. Parameter values in the
computations are constrained by comparison of the observed spectrum with known spectral features, including
high-lying conduction band features derived from first-principles computations. The surface band gap, lying
between the bulk valence band maximum and the minimum of an adatom-induced surface band, is found to
have a width of 0.49±0.03 eV.
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I. INTRODUCTION

Although scanning tunneling spectroscopy �STS� has
been used to study the electronic states of many semiconduc-
tor surfaces, quantitative determination of the surface band
gap is rarely attempted. A significant limitation in this type of
work is the occurrence of tip-induced band bending, in
which part of the electric field in the vacuum extends into the
semiconductor sample itself, leading to uncertainty in the
precise energy scale of the observed spectra.1 This band
bending can be evaluated by electrostatic simulations based
on models for the vacuum tunnel junction.2 Such models
involve a minimum of three parameters, describing the probe
tip radius, sample-tip separation, and contact potential �work
function difference� between sample and tip, and if extrinsic
states �arising from defects and/or disorder� are present on
the surface then typically two additional parameters are
needed. In any quantitative evaluation of tunneling spectra it
is desirable to constrain the parameter values as much as
possible by matching to known quantities. Then, to evaluate
some unknown quantity of interest from the data, it is nec-
essary to vary the parameters over any remaining ranges of
uncertainty in their values.

In this work we consider the quantitative determination of
the band gap of the Ge�111�c�2�8� surface based on STS
data.3 This surface has been the subject of previous study by
a wide range of surface science probes. Its structure is known
to consist of an array of adatoms and rest-atoms.4 Equal
numbers of adatoms and rest-atoms occur on the surface, so
that charge transfer from the former to the latter leads to a
surface band gap, with empty surface states being localized
on the adatoms and filled states on the rest-atoms. Despite
this knowledge of the surface structure, however, the elec-
tronic properties of the surface are not so well understood.

The band of rest-atom-derived states is known from photo-
emission experiment to lie resonant with the valence band
�VB�, with peak energy at about 0.7 eV below the VB maxi-
mum �VBM�,5 but the position of the adatom-derived band is
less well known. One early work based on surface photovolt-
age revealed bands of empty states with threshold energies
near 0.4 and 0.45 eV above the VBM.6 A more recent work
utilizing low energy electron scattering indicated a maximum
in the empty-state density at 0.48 eV above the VBM,7 al-
though the identity of both this feature and various additional
features within the gap cannot be clearly identified in those
spectra. The empty states have also been observed by inverse
photoemission8 but the width of the surface band gap was
not determined in that work. Considering the recent interest
in the Ge�111�c�2�8� surface as a model system for studies
of both atomic manipulation and carrier transport,3,9,10 a
quantitative determination of the width of the surface band
gap is called for.

For clarity we point out that the term surface band gap
can be defined in two different ways for situations such as
the present one in which one band of surface states extends
into the bulk band gap but the other is totally degenerate with
bulk bands. The surface gap can be taken as either the dif-
ference between the extremal energy within the bulk gap of
the surface band relative to the opposing bulk band edge, or
between the energy extrema of the empty and filled surface
bands. Of course, when significant mixing of the resonant
surface band occurs with the bulk band �so that the bulk band
edge acquires significant surface character� then only the
former definition is tenable. In any case we are using the
former definition in this paper although, e.g., the latter has
been used in discussions of the Ge�111�2�1 surface.11,12

In addition to the determination of the Ge�111�c�2�8�
surface band gap a major motivation for this work is the
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development of a general theory for describing tunneling
spectra of semiconductor surfaces. One component of such a
theory, namely, the electrostatic simulations mentioned
above, has already been fully developed.2,3 Within those
models we further consider in this work the computation of
tunnel currents. Although many of the techniques for com-
puting tunnel current have been previously described,1,13,14

we bring those together in this work in a way that allows a
somewhat more general treatment of the problem than pre-
viously accomplished.

We have acquired tunneling spectra of the Ge�111�c�2
�8� surface over the temperature range 7–61 K. Adatom-
and rest-atom-derived features are clearly observed in the
data, with a surface band gap extending between the VBM
and the minimum of the adatom-derived states. In our prior
work we reported the observation of an apparent gap in the
spectra of about 0.60 V, and based on rather general consid-
erations we estimated a band bending correction in the range
0.0–0.2 eV yielding a surface gap value of 0.5±0.1 eV.3

That prior work was mainly concerned with investigating
high-current behavior of the tunneling spectra that appar-
ently involved nonequilibrium carrier occupation, whereas in
the present work we focus on low-current measurements for
which the band bending can be quantified using detailed
electrostatic computations. To constrain the parameter values
in the computation we compare the energy of several known
spectral features between experiment and theory. One of
these known quantities in particular is the location of an
observed linear-onset in conduction band �CB� state-density,
which on the basis of first-principles theory is found to be
associated with high-lying CB features of the Ge. With this
constrained set of band bending models we then determine a
range of band bending corrections that can be applied to the
observed surface band gap, yielding a final value for the
surface gap of 0.49±0.03 eV.

This paper is organized as follows: In Sec. II we summa-
rize the experimental results of our prior work. Section III
presents the first-principles theoretical work used to identify-
ing CB-related features in the surface state-density. In Sec.
IV we undertake an analysis of the data, comparing experi-
mentally determined band bending values with those ob-
tained from the electrostatic simulations. This analysis is per-
formed in Secs. IV A and IV B within a semiclassical
framework in which only values of the potential �not the
current� are needed. Then, in Sec. IV C we include quantum
effects, thereby requiring detailed computations of the tunnel
current. It turns out that the quantum effects are not large for
this system, typically about 10 meV, but nevertheless this
value cannot be obtained without explicit computation. In
Sec. IV D we determine our final value for the surface band
gap, taking into account the various sources of error in both
the experiment and the simulations. The paper is summarized
in Sec. V, including comments on the overall methodology of
the work.

II. EXPERIMENTAL RESULTS

The experimental work leading to the observed tunneling
spectra has been described previously,3 and will not be re-

peated in detail here. In brief, scanning tunneling spectros-
copy �STS� measurements were performed at temperature in
the range 7–61 K. A lock-in amplifier is used to measure the
conductance, with modulation voltage of 10–20 mV. The
Ge�111�c�2�8� surfaces were formed by cleaving a p-type
Ge sample with 2�1016 cm−3 doping concentration on a
�111� crystal face, and then annealing the sample at a tem-
perature of about 500 °C for a few minutes. Well-ordered
domains of c�2�8� structure were formed in this manner. A
typical diameter of the domains is 50 nm, with the edges of
the domains surrounded by disordered arrangements of ada-
toms and rest-atoms.15 These domain boundaries are ob-
served to introduce electronic states, which we refer to as
extrinsic states, that lie within the surface band gap separat-
ing the bulk VB maximum and the minimum of the band of
intrinsic adatom-derived states associated with the c�2�8�
structure.

A typical tunneling spectrum obtained from a well-
ordered region of a c�2�8� domain is shown in Fig. 1, ac-
quired at a temperature of 61 K. A number of features can be
readily identified in the spectrum: A band gap is visible ex-
tending from about −0.1 to +0.5 V. The surface Fermi-level
�0 V in the spectrum� is located near the bottom of the gap,
as expected for p-type material. A large spectral peak is seen
centered at about +0.7 V and it can be attributed to the
empty states associated with the surface adatoms.4,8,15 This
spectral peak appears to have two components, consistent
with the expectation of a splitting due to the two inequivalent
types of adatoms in the c�2�8� structure.16,17 In the filled
states, at about −1.0 V, a spectral feature deriving from the
surface rest-atoms is visible. This rest-atom band is resonant
with VB states,5 with the VBM seen in the spectrum at about
−0.1 V. Finally, above the adatom band, at voltages above
about +1.0 V, the current derives either from CB states or
possibly from higher-lying surface bands. The observed sur-
face gap is thus seen to be bounded by bulk VB states at its
lower edge and surface adatom-derived states at its upper
edge.

FIG. 1. Tunneling spectrum of the Ge�111�c�2�8� surface, ac-
quired at 61 K. Insets show fitting of the onsets of the valence band
and of the adatom surface band, to a function that assumes linear
onset behavior modified by effects of temperature and modulation
voltage.
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One additional feature occurs in the spectrum of Fig. 1, at
about −1.9 V and labeled “inv.” This feature arises from in-
version of the carrier occupation at the surface, due to tip-
induced band bending, with the bottom of the adatom band
becoming occupied by electrons. Voltage-dependent imaging
permits a definitive identification of this phenomenon,3 and
computations of inversion current in a spherical geometry
provide a reasonable agreement with experiment in terms of
the voltage at which the inversion occurs.

Curve fitting of the onsets of the VB and the adatom band
have been carried out as described previously.3 The func-
tional form used assumes that the normalized conductance
increases basically in a linear manner at the onsets, with
some additional modification of the linear behavior due to
the nonzero temperatures and the modulation voltage used in
the experiment. The Appendix provides some justification of
this functional form for the case of a bulk band �i.e., the VB
in the present case�, although for the adatom-derived surface
band we use this form only because it provides a reasonably
good fit to the data. The insets of Fig. 1 show the theoretical
fits for the two onsets. Derived values for the onsets, based
on the repeated measurements described in our prior work,3

are −0.111±0.011 V and 0.495±0.003 V for the VB and
adatom band, respectively, where the error values are the
standard deviation of the mean.

III. FIRST-PRINCIPLES THEORETICAL RESULTS

For the purpose of evaluating the effects of tip-induced
band bending on the observed spectra, it is necessary to have
one or more features in the spectra that have known energies.
With these, one can then use models of the band bending to
interpolate or extrapolate between the known features in or-
der to determine energies of other features �i.e., having un-
known energies�. In our observed spectrum of Fig. 1 there
are two features in the filled states �negative sample volt-
ages� that we can use for this purpose: the rest-atom peak
and the location of the inversion voltage. However, there are
no features on the empty states that can be immediately iden-
tified with electronic states of known energy. For the purpose
of quantifying the surface band gap it is most useful to have
a known energetic feature at positive sample voltage, since
such a feature will aid in the interpolation procedure. For that
reason we turn to a first-principles theoretical analysis of the
spectrum of electronic surface states. Of course, it is well
known that the computed energies of spectral features �par-
ticularly in the CB� can be substantially lower than the actual
energies, and for this reason we do not rely on absolute en-
ergies from the computations. Rather, we seek some feature
whose appearance can be matched between experiment and
theory, and we then use the energy of this feature as ex-
pressed relative to known positions of high-lying conduction
bands in the Ge.

Density-functional theory calculations were carried out
using the generalized gradient approximation for the
exchange-correlation potential18 and norm-conserving
pseudopotentials for the ionic potential.19 We simulate the
Ge�111�c�2�8� surface by a periodic slab geometry with a
computationally feasible 2�2 surface unit cell: Each slab

unit cell contains 18 layers of Ge atoms and a vacuum region
of six empty layers. The bottom side of the slab is passivated
by H atoms, and one Ge adatom is added on the top side,
thus maintaining the same population ratio of adatoms and
rest-atoms as the c�2�8� surface. The use of the reduced
2�2 surface representation is sufficient for the present sur-
face electronic-structure analysis since we are interested not
in absolute energy levels but only in the coupling of surface
and bulk states, as will be discussed shortly. The electronic
wave functions are expanded into plane waves with a cutoff
energy of 15 Ry. The k-space integration is done using a
24�24 k-point mesh in the 2�2 surface Brillouin zone.
Other computational details can be found elsewhere.20

Figure 2 shows the results of the bulk and surface elec-
tronic structure calculations. The calculated surface band
structure shown in Fig. 2�b� represents well the projected
bulk band structure and surface-derived electronic features:
the rest-atom-derived band at around −0.5 eV, the adatom-
derived band at around +0.5 eV, and high-lying resonance
states produced by the coupling between the adatom band
and the bulk conduction bands. These surface and resonance
states give rise to noticeable features in the calculated sur-
face density of states as shown in Fig. 2�c�.

Let us now compare the theoretical results with the ex-
perimental spectrum. Referring again to Fig. 1, we observe
above the adatom-derived surface band a linearly increasing
density of states. This feature is marked by a dashed line in
Fig. 1, with this line intersecting the horizontal axis at
1.01±0.03 V. In the theoretical state-density of Fig. 2�c� we
find a similar feature, also marked by a dashed line and with
the intersection of that line on the vertical axis being
0.63±0.04 eV. The origin of this linearly increasing feature
can be ascertained by careful consideration of the conduction
band structure of Ge. The CB minimum of bulk Ge occurs at
the L-point of the Brillouin zone, with energy at low-
temperatures of 0.744 eV relative to the VBM.21 Higher-
lying band extrema occur at the �-point and along the �
direction �near the X-point� with nearly identical energies of
0.90 eV. In addition, a second band passes through the
X-point with minimum �along the XK direction� very close to
that of the X-point energy of 1.16 eV.21

From the theoretical results of Fig. 2, it is clear that the
theoretical CB states associated with the �-valley minimum
are strongly perturbed by the formation of the �111� recon-
structed surface, i.e., those bulk states admix predominantly
into the adatom band of the reconstructed surface. The lin-
early increasing portion of the theoretical state-density is
seen to be composed primarily of states from the L-valley
and the two X-valleys, with the observed onset of this feature
in Fig. 2�c� lying midway between these bands. To determine
a location of this onset relative to the actual band energies
mentioned above, we note that the energies of the L-valley,
the � direction, and the X-point given by the theory are 0.38,
0.73, and 0.91 eV, respectively, which are shifted relative to
the above-mentioned actual values by 0.364, 0.17, and
0.25 eV, respectively. The average of these shifts is
0.261 eV, with a maximum spread of the shifts of about
±0.100 eV. We know from the theoretical results that all of
the three bands make substantial contribution to the linearly
increasing state density; assuming that their relative contri-
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butions agree to within a factor of 2 we derive an error on the
0.261 eV shift of ±0.042 eV. We shift the theoretical value
for the linearly increasing CB feature by the same amount,
arriving at a corrected value of 0.891±0.058 eV �computing
the error as the square root of the sum of the squares, as
appropriate for uncorrelated errors�.

IV. ANALYSIS

A. Tip-induced band bending

To relate the energies of spectral features to the sample-tip
voltage at which they are observed, we must consider the
effects of band bending within the semiconductor. We have
previously presented a three-dimensional electrostatic simu-
lation method whereby the potential distribution of the
semiconductor-vacuum-metal system can be computed.2 In
particular, we obtain the electrostatic potential energy �0 at a
point on the semiconductor surface directly opposite the tip
apex. This surface band bending is measured relative to the
potential energy at a point far inside the semiconductor. With
�0�0 we would have the usual relationship between energy
of a state E and the sample-tip voltage V, E−EF=eV, where
EF is the Fermi level in the sample. With nonzero band bend-
ing this equation must be modified by shifting the energies
by the surface band bending, as illustrated in Fig. 3�a�, so
that

E − EF = eV − �0. �1�

In our simulations �0 is a function of the electrostatic poten-
tial energy of the probe-tip relative to a point far inside the
semiconductor, �T, so that explicitly we have �0=�0��T�.
The quantity �T equals eV+��, where �� is the contact
potential defined as the work function of the tip minus that of
the sample. Hence we have �0=�0�eV+���.

Our electrostatic computations depend on a number of
parameters, including sample-tip separation, tip radius-of-

curvature, and contact potential. Additional parameters are
needed to describe this Ge�111�c�2�8� surface since it is
found that extrinsic states arising from disorder and/or de-
fects on the surface play an important role in the
electrostatics;3 we adopt a model for these states in which the
density per unit energy of such states is a constant. Above
some energy known as the charge-neutrality level the states
are assumed to be negative when filled and neutral when
empty, and below this energy they are neutral when filled
and positive when empty. In our prior work we cut off this
extrinsic distribution of states at the VBM, with the rationale
that below that energy the resonant states would be strongly
mixed with bulk states and hence not sustain significant sur-
face charge. In the present work however we allow the ex-
trinsic states to maintain their charge character even at ener-
gies below the VBM. A correct description lies between

FIG. 2. �a� Bulk band structure of Ge along the symmetry lines connecting L=2� /a�1/2 ,1 /2 ,1 /2�, X=2� /a�0,0 ,1�, and L�=2� /
a�−1/2 ,−1/2 , +1/2�. The bulk lattice constant, a, was calculated as 0.578 nm. �b� Surface band structure of Ge�111�2�2: Large and
medium open circles represent surface localized states containing more than 0.02% and 0.01%, respectively, of charge in the surface region
of 0.45–0.55 nm away from the ideal first layer. �c� Surface density of states of Ge�111�2�2 obtained by integrating the local density of
states over the surface region of 0.45–0.55 nm away from the ideal first layer. Arrows indicate the band-state origins of the state-density
peaks. All energies are given relative to the VBM.

FIG. 3. �a� Sketch of energy bands used for computations of the
electrostatic potential. The sample Fermi level is denoted by EF

with the tip Fermi level at EF+eV where V is the sample-tip volt-
age. The band bending at the surface is denoted by �0, with V and
�0 both being negative in this diagram. Quantum effects within the
semiconductor can produce shifts in the observed band edges, as
illustrated in �b� and �c� for localized state formation and for wave
function tailing through a depletion region, respectively.
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these two extremes, but the latter viewpoint is probably more
appropriate in the present situation since the resonant states
arise from dangling bonds which do maintain significant sur-
face character, at least for energies not too far below the
VBM.

Four quantities in the observed spectrum, Fig. 1, have
known energies that we can use to constrain our parameters.
First, the VB onset observed in the spectrum has, of course,
a known energy; measuring all energies relative to the VBM
this would be 0 eV. The band bending at this voltage of
−0.111±0.011 V would be thus be −0.101±0.011 eV using
a typical EF value of 10 meV above the VBM.22 The second
known feature is the rest-atom spectral peak. This peak is
observed to shift with tunnel current due to nonequilibrium
effects in the occupation of extrinsic states,3 but at low cur-
rents and relatively high temperatures these effects are small
and the peak position is found to be −0.97±0.05 V. In pho-
toemission the energy of this state, at the �-point, was found
to be about 0.85 eV below the VBM in some early work,23

but at 0.66±0.05 eV below the VBM in later work.5 We
consider the latter to be more reliable due to improved reso-
lution and sample preparation and hence we use that value,
yielding a band bending of −0.30±0.07 eV �propagating the
errors as the square root of the sum of the squares, as appro-
priate for these uncorrelated errors�.

The third known spectral feature derives from the ob-
served inversion voltage in Fig. 1 at −1.90±0.03 V. In order
for inversion of the Ge to occur the minimum magnitude
band bending would be the EF minus the surface gap, or
−0.49±0.11 eV using the estimated surface gap of
0.5±0.1 eV from our previous work. However, our prior
computations of inversion current indicate a delay in the on-
set of inversion since the inversion currents at this minimum
band bending are negligible; for inversion currents near 1 pA
and tip radii of about 30 nm this delay is 0.2±0.1 V, thus
yielding a band bending of −0.69±0.15 eV. Finally, the the-
oretical results of Sec. III yield a band bending of
0.13±0.11 eV at a voltage of 1.01±0.03 V. All of these data
points are pictured in the plot of Fig. 4.

We compute curves of the band bending vs. voltage,
matching these to the data points of Fig. 4. We find that a
best fit between the data and the simulations can be obtained
with a single, unique set of parameters, namely, a tip radius
of 30 nm, sample-tip separation of 0.9 nm �for relatively low
current setpoints of about 10 pA�, contact potential of
−0.4 eV, extrinsic state density of 4�1012 cm−2 eV−1, and
charge neutrality level of −0.083 eV relative to the VBM.
These values are listed in the first row of Table I. In the
following section we justify this set of parameter values and
we estimate error ranges for each of them. The solid line in
Fig. 4, labeled a, shows the band bending vs. voltage for
these best-fit parameter values. The band bending increases
linearly up to about 0.3 V, at which point accumulation of
holes in the Ge VB starts to occur and a corresponding de-
crease in slope of the curve is seen. Our goal is to determine
the band bending that occurs at the observed onset of the
adatom-band, at 0.495±0.003 V. We denote this quantity
�0,A, as indicated by the horizontal dashed lines in Fig. 4.

The band bending analysis shown in Fig. 4 provides a
very simple and direct illustration of the methodology of this

paper. Essentially, we interpolate between several known
band bending data points in order to determine the band
bending �0,A at the onset of the adatom band. We follow this
type of semiclassical analysis in the following section. How-
ever, we find that for a complete description of the problem

FIG. 4. Band bending in the semiconductor at a point opposite
the probe tip apex, as a function of sample-tip voltage. Data points
are shown for spectral features that have known energy such that
the band bending can be absolutely determined �VBM, valence
band maximum; RA, peak of rest-atom band; CB�, high lying con-
duction band feature; and INV, voltage at which inversion occurs�.
Theoretical curves interpolating between the data points are shown,
with the solid line giving a typical result and the dotted lines giving
maximal results consistent with the data. The vertical dashed line is
located at the position of the observed onset of the adatom band
�AA�, with the horizontal dashed lines then giving the band bending
at this voltage.

TABLE I. Various sets of values of the theoretical parameters,
assuming a sample-tip separation of 0.9 nm, that produce a match
between the simulations and the experimentally determined band
bending values: tip radius RT, density of extrinsic surface states �,
contact potential ��, and charge neutrality level EN relative to the
VBM. Values of EN are determined in the semiclassical analysis by
matching to a band bending of −0.101 V at the VB onset voltage of
−0.111 V, and in the quantum analysis values by matching to the
VB onset voltage itself. The resulting band bending at a voltage of
+0.495 V, corresponding to the onset of the adatom band, is listed
as �0,A.

RT

�nm�
�

�cm−2 eV−1�
��
�eV�

Semiclassical Quantum

EN

�eV�
�0,A

�meV�
EN

�eV�
�0,A

�meV�

30 4�1012 −0.4 −0.083 28 −0.004 21

10 4�1012 −0.4 −0.008 20 0.050 4

100 4�1012 −0.4 −0.186 38 −0.098 30

30 2�1012 −0.4 −0.233 32 −0.072 25

30 7�1012 −0.4 −0.018 23 0.029 11

30 4�1012 −0.2 0.028 43 0.082 35

30 4�1012 −0.6 −0.255 21 −0.111 5
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we must take into account quantum effects that occur in the
spectra, and those are discussed in Secs. IV C and IV D.

B. Variation of parameters

As described above, we have five parameters in our simu-
lation theory. By matching our simulation results to the band
bending at the VBM �which is quite accurately known� we
can eliminate one parameter from our theory; we choose this
to be the charge neutrality level. This parameter is highly
correlated with the contact potential; varying either of these
parameters produces primarily an upwards or downwards
shift of the band bending curves in Fig. 4 �i.e., affecting the
y intercept�. Alternatively varying the extrinsic charge den-
sity causes the slope of the band bending curves to change,
and varying the tip radius has a similar, though weaker, ef-
fect. The sample-tip separation affects both the slope and the
y intercept, and we find it convenient to discuss this param-
eter in relation to the contact potential. In the discussion
below we first focus on the values of tip radius and extrinsic
charge density, and we then turn to the contact potential and
sample-tip separation.

The values of tip radii consistent with experiment were
estimated in our prior work on the basis of the observed
inversion currents to be 10–100 nm,3 and we continue to use
this range for the present analysis. Using our best-fit values
of contact potential and extrinsic state density, we compute
the band bending that occurs for these extremal values of tip
radii. These curve are shown as b and c in Fig. 4, and the
parameter sets are listed in the second and third rows of
Table I with the fifth column giving the respective �0,A val-
ues. Considering the extrinsic state density, we use our best-
fit value for the tip radius of 30 nm and we evaluate the
maximal values of band bending that are consistent with the
data points of Fig. 4. The resulting band bending curves �not
shown� fall quite close to b and c in Fig. 4, and the respec-
tive parameters are listed in the fourth and fifth rows of Table
I.

With the ranges of tip radii and extrinsic state density
determined as above, and considering for the moment a fixed
sample-tip separation of 0.9 nm, the remaining parameter in
the theory is the contact potential. As mentioned above the
primary effect of the contact potential is to shift the band
bending curves of Fig. 4 up or down, but since we are match-
ing all of these to the observed VBM �i.e., by adjusting the
charge neutrality level� then this effect is cancelled. A sec-
ondary influence of the contact potential is to affect the turn-
over of the band bending curves into the accumulation re-
gime, and the resulting values of �0,A are thus affected. This
effect is not large, but nevertheless we must somehow estab-
lish a range of contact potentials that are consistent with the
experiment.

One means of constraining the values of contact potential
is to examine the dependence of the band bending on sepa-
ration, as determined in our prior work3 and shown in Fig. 5.
Some uncertainty in the zero of separation occurs for this
data; in our prior work we estimated that zero such that the
separation values were lower bounds on the actual values,
but in the present work it is more relevant to give upper

bounds on the separations. We thus shift our zero by 0.3 nm
compared to that shown in our prior work; it is possible that
the actual separations for the data shown in Fig. 5 are
0.1–0.2 nm less than that shown there but it is unlikely that
they are greater than those shown.

Figure 5 compares the experimental results with the simu-
lations for the separation dependence, using various contact
potential values and with our best-fit values for the tip radius
and extrinsic state density. The predicted onset voltages are
obtained by solving Eq. �1� for the appropriate sample volt-
age corresponding to a given energy of the band minimum
�0 eV for the VB, and for the adatom band the energies that,
using Table I, yield an onset of 0.495 V�. The solid lines in
Fig. 5 show the results for this semiclassical analysis. In Fig.
5�a� we see that, not surprisingly, positive contact potentials
produce a rather large dependence of the adatom band edge
on separation whereas values near −0.4eV yield little depen-
dence on separation, the latter case corresponding to nearly
flat band conditions at the voltage corresponding to the ada-
tom band edge. Comparing the simulation results with the
experiment we thus estimate a range of possible contact po-
tentials of about −0.4±0.2eV. For the VBM, Fig. 5�b�, there
is more scatter in the data due most likely to variations in the
density of extrinsic states across the surface. Also, for the
VBM onsets, quantum effects turn out to be quite significant
so we defer further analysis of Fig. 5�b� until after discussion
of those effects.

C. Tunneling current-voltage characteristics

Equation �1� of the preceding section is based on the
semiclassical notion of band bending. This type of analysis
should work well for surface states since they are localized
near the surface, but for bulk bands some additional quantum

FIG. 5. Dependence of the onsets of �a� the adatom band and �b�
the VB, as a function of the sample-tip separation. Data points show
experimental results with the error bars representing the precision
of curve fitting. Lines show simulated results for the contact poten-
tial values indicated, with solid lines showing semiclassical results
and dashed lines quantum results.
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effects must be considered. For tunneling into a bulk VB or
CB two types of quantum effects can shift a band onset away
from the position given by Eq. �1�. First, as shown in Fig.
3�b�, states that are localized in the direction perpendicular to
the surface can form, i.e., for band bending that is down-
wards for a CB or upwards for a VB. Such localized states
can potentially shift the observed onset of a band, e.g., by the
energy of the lowest localized state relative to the band mini-
mum at the surface. However, in the present system of inter-
est we need not be concerned with such effects since it is the
adatom-derived surface states that contribute to the onset of
the empty-state band in our observed spectra. We therefore
do not further consider this particular effect here.

The second type of quantum effect that can be important
in the tunneling spectra of semiconductor band onsets is pic-
tured in Fig. 3�c�, in which tailing of the wave functions
occurs through a barrier region of the semiconductor. This
phenomenon has been shown previously to have a large im-
pact on the form of the tunnel current near the onset of a bulk
band.1 We evaluate this effect here by explicit computations
of the voltage dependence of the tunnel current. Our starting
point for this computation is the WKB solution for the tunnel
current of a planar barrier, as given by1,24

J =
2e

h
�

−�

�

dE�f�E� − f�E − eV�� � d2k�

�2��2D�E,k�� , �2�

where f�E� and f�E−eV� are Fermi-Dirac occupation factors
for the sample and tip, respectively, k� is the parallel wave
vector, and D�E ,k�� is the tunneling transmission term
through the barrier. We assume that this formula can be ap-
plied to our case of a probe-tip in proximity to a flat surface,
for which we take the barrier to be described by the potential
along the central axis of our problem �any errors due to this
assumption are expected to be quite small since the potential
contours in the semiconductor have relatively large radius of
curvature for all cases of interest�.2,3 The integral over par-
allel wave vector in this equation is in general restricted by
the band structures of both the sample and the probe-tip.
However, for a usual metallic probe-tip with its band mini-
mum about 8 eV below the Fermi level, the restriction will
be determined by the band structure of the semiconducting
sample itself. For effective mass bands, the values of parallel
wave vector then extend from 0 to a maximum value of
�2m*�E−EC� /�2�1/2 for the conduction band �E	EC� or
�2m*�EV−E� /�2�1/2 for the valence band �E
EV�.

The transmission term in Eq. �2� is taken to be a product
of the transmission through the vacuum and that through any
barrier occurring in the semiconductor, D�E ,k��
=DV�E ,k��DS�E ,k��. Within the WKB approximation the
transmission factor for a trapezoidal barrier in the vacuum is
given by

DV�E,k�� = exp�− 2�s� , �3a�

where s is the sample-tip separation and with

� = �2m

�2 	�̄ + E − EF −
eV

2

 + k�

2�1/2

, �3b�

where �̄ is the average work function of the sample and tip.
The effect of wave function tailing through the potential bar-
rier in the semiconductor can be described by a transmission
term of the form1

DS�E,k�� = exp�− 2�
A

B 	2m*

�2 �Ei + ��z� − E� + k�
2
1/2

dz� ,

�4�

where A and B are turning points for the integral, Ei is the
energy of the relevant band edge, and ��z� is the electrostatic
potential energy in the semiconductor with ��z�→0 far in-
side the semiconductor.

In the formulation of Eqs. �2�–�4�, matching of the wave
functions at the interfaces has been neglected. For effective
mass bands and a planar barrier, and ignoring band bending
in the semiconductor for a moment, this matching yields an
additional term in the integrand of Eq. �2� given by25

16�2kSkM�

��2�2 + kS
2���2 + kM

2 �
, �5�

where kS and kM are perpendicular components of the wave
vectors of the semiconducting sample and metallic probe tip,
respectively, and �=m* /m0 is the ratio of effective mass to
free-electron mass. Evaluation of kM requires knowledge of
the location of the bottom of the conduction band for the
metal; we take this to be 8 eV below the Fermi level, a
typical value for a simple metal �Eq. �5� depends only
weakly on this value for the energies of interest�.

Equation �5� is inapplicable when a barrier in the semi-
conductor is present, and within the WKB approximation it
would be necessary to derive more complicated expressions
including matching across both the semiconductor propagat-
ing and barrier regions and the semiconductor and vacuum
barrier regions. A more direct method however, and one that
we utilize here, is to perform a numerical integration of the
Schrödinger equation along the entire length of the potential
variation,13,14 i.e., from deep inside the semiconductor all the
way to the probe tip, taking care to include the effective mass
of the semiconductor in the matching conditions at the
vacuum/semiconductor interface. We start with an outgoing
wave on one far side �denoted by subscript 2� of the tunnel
junction, and then integrate back through the junction to de-
termine the amplitude of the incoming wave on the other far
side �subscript 1�. Denoting the wave vectors, effective
masses, and amplitudes on either side as k1, m1, A1, and k2,
m2, A2, respectively, the transmission term appearing in Eq.
�2� is then given by �k2 /k1��m1 /m2��A2 /A1�2.

We make an explicit computation of the tunneling current,
for a potential profile ��z� obtained from a finite-element
computation of band bending. For illustrative purposes we
compare this result with that obtained by neglecting the wave
function tails, i.e., by taking the transmission to be zero
whenever a state encounters a nonzero barrier in the semi-
conductor. An example of such results are shown in Fig. 6,
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where we consider tunneling into the valence band of Ge
using heavy- and light-hole bands with effective masses of
0.34m0 and 0.043m0, respectively, and with our best-fit pa-
rameters as listed in the top row of Table I �with the EN value
being the semiclassical one�.

We see from Fig. 6 that the effect of the wave function
tails is to produce some additional tunnel current; in particu-
lar, for small voltages near the onset we find additional cur-
rent extending into the gap region. If we view the results in
terms of normalized conductance26 as shown in the lower
inset of Fig. 6, we find from fits to the band edges �using Eq.
�A6b� of the Appendix� onset voltages of −0.065V or
−0.106V for the cases when the transmission through the
semiconductor barrier is included or neglected, respectively.
The latter value is quite close to the predicted onset accord-
ing to Eq. �1� of −0.111V for these parameters, but the
former values differ from that by 0.046V. Such quantum
effects become even larger for contact potentials that are
more negative, since more downwards band bending occurs
in that case at the voltage corresponding to the VB onset.

Also shown in Fig. 6 is a comparison of the computed
conductance-voltage curve for the quantum computation
�solid line� with experimental data �open circles�, using the
same data as in Fig. 1 but in this case normalized to constant
sample-tip separation. It should be noted that the onset val-
ues obtained for these theoretical and experimental curves
agree to within 2 mV �that is, obtained by fitting
�dI /dV� / �I /V� for both theory and experiment but using the

same �I /V�, obtained from the experiment, in both cases as
described in the following paragraph�,27 so that this compari-
son is a meaningful one. The overall shape of the theory
curve agrees well with the experiment data for voltages as
low as about −0.4V, below which the contribution of the
rest-atom states to the conductance become important.

One technical issue arises in our use of the normalized
conductance for the present situation of the Ge�111�c�2
�8� surface. The spectrum for this surface contains a very
large adatom band with onset at about +0.5V, as seen in Fig.
1. When computing �I /V�, using a broadening of 1V, it turns
out that this adatom band makes a non-negligible contribu-
tion to the resulting �I /V� even at voltages as low as −0.1V.
This effect shifts the apparent onset in �dI /dV� / �I /V� of the
VB by about 10 mV compared to that obtained if the adatom
band is absent �i.e., if we only use a bulk Ge CB, as done
above�. To obtain the best comparison of the experimental
and simulated VB onset voltages it is thus desirable to use an
�I /V� in the simulations that matches the experimental quan-
tity. For this purpose we could attempt a detailed simulation
of the adatom band itself, but an easier approach is simply to
use the experimental �I /V� �i.e., from the data of Fig. 1� for
normalizing the computed dI /dV values. We follow this ap-
proach in all the results described in the following section.

The behavior of the potential profile shown in Fig. 6 is
relatively simple, decreasing monotonically as a function of
distance from far inside the semiconductor towards the sur-
face. More complicated behavior can occur for positive con-
tact potentials, in which ��z� initially decreases as one ap-
proaches the surface from far inside the semiconductor but
than increases near the surface. For contact potentials greater
than about 0.4 eV this behavior leads to localized states, i.e.,
accumulation states associated with the heavy hole band,
forming near the surface. Such states are not observed in our
experiments �even though the dynamic range of the measure-
ment is large and such localized states have been observed in
other situations such as for GaAs �Ref. 28��, and hence these
situations can be excluded from consideration. But, even for
smaller positive contact potentials that do not lead to local-
ized states but still have nonmonotonic behavior of the po-
tential, the predicted band onsets according to Eq. �1� will
still be in error, with the error having an opposite sign than
for the situation of Fig. 6. The full theory described above
utilizing numerical integration of the Schrödinger equation is
applicable for all such situations, and computations based on
that theory are made for each of the parameter sets consid-
ered below.

D. Determination of band gap

We now return to the analysis of Sec. IV B, but using for
the case of bulk bands the full current-voltage analysis of the
preceding section. Hence we match the observed onset of the
VB with that obtained from the current-voltage computation
�rather than matching the band bending values derived on the
basis of Eq. �1��. The next-to-last column of Table I lists the
resulting values of EN that yield a VB onset of −0.111 V. We
then evaluate the band bending �0,A at the voltage of
+0.495 V corresponding to the onset of the adatom band,

FIG. 6. Conductance at constant sample-tip separation for the
spectral region near the VBM, comparing simulated results with
�solid line� and without �dashed line� quantum effects, along with
experimental data �open circles�. The lower inset shows computed
�dI /dV� / �I /V� curve for the simulated results. The upper inset
shows the potential profile from the simulations at a sample-tip
voltage of −0.111 V, with the arrow indicating the transmission
through the semiconductor depletion region that is included in the
quantum simulations.

FEENSTRA et al. PHYSICAL REVIEW B 73, 035310 �2006�

035310-8



with the resulting values listed in the final column of Table I.
The quantum effect of wave function tailing through the

semiconductor barrier region affects the analysis in two
ways. First, in plots such as Fig. 4, the computed band bend-
ing for the VBM is shifted slightly below the data point due
to the difference between the semiclassical and quantum on-
set voltages. �A similar type of full current-voltage analysis
is in principle also necessary for the high lying CB onset at
1.01 V, but the uncertainty of this band bending value of this
feature is sufficiently large so as to render this analysis un-
necessary.� However these shifts amount to only about
20–30 meV, so that the ranges of tip radii and extrinsic state
density determined from the semiclassical analysis of Fig. 4
can still be used. But the second effect of the quantum analy-
sis is in the �0,A values themselves, in which case the quan-
tum results are noticeably shifted from the semiclassical
ones, as can be seen from Table I.

To restrict the contact potential values we return to the
separation-dependence of Fig. 5. The predicted VB onset
voltages are modified due to the quantum effects, with the
resulting dashed curves in Fig. 5�b� showing a significantly
reduced separation dependence compared to the semiclassi-
cal results. From Fig. 5�a� a best-fit value of contact potential
was found in Sec. IV B to be about −0.4±0.2 eV. This range
also appears to be consistent with the quantum results of Fig.
5�b�, although the scatter in that data prevents any further
discrimination of the value. We therefore use this range of
−0.4±0.2 eV for the contact potential, and the resulting pa-
rameter sets and �0,A values are listed in the final two rows
of Table I. We note that the values of charge neutrality level
for the semiclassical results in Table I fall substantially be-
low the VBM, a situation that we cannot exclude but seems
slightly unphysical, but in any case for the quantum analysis
the situation changes and these values are quite close to the
VBM.

Examining the entries in the final column of Table I, we
find a range of �0,A extending from 4 to 35 meV. We have
also considered variations in the values of more than one
parameter, but still maintaining an overall band bending
curve that falls within the range of curves b and c in Fig. 4.
In this way we find a slightly larger range of �0,A values that
are consistent with experiment, namely, −4 to 40 meV. Fi-
nally, we also consider the errors of ±0.010 V on the VBM
onset value and ±0.003 V on the 0.495 V adatom-band onset
that were used for matching; recomputing our results using
the extremal values of these quantities leads to a range of
�0,A value of −11 to 42 meV. Thus we arrive at a final value
for the surface gap of 0.490±0.027 eV, or in round figures,
0.49±0.03 eV.

V. CONCLUSIONS

In summary, we have used STS to determine the surface
band gap of the Ge�111�c�2�8� surface, i.e., the energy dif-
ference between the bulk VBM and the minimum of the
adatom-induced surface band. Measurements were per-
formed over a temperature range of 7–61 K, although the
data are averaged together �and no systematic variation with
temperature is observed� so that our result represents the gap

at 30 K. The surface gap is found to have a width of
0.49±0.03 eV.

In prior work, Büchel and Lüth used surface photovoltage
measurements to determine onsets at 0.4 and 0.45 eV with
the band associated with the first onset being apparently
much smaller than that for the second.6 More recently, Popik
et al. observed numerous features within the bulk gap using
low-energy electron backscattering, and one feature at 0.48
above the VBM was argued to correspond to a maximum in
the empty state density.7 Their discussion relied on compari-
sons with earlier works, although most of these �except for
the work of Büchel and Lüth just mentioned� actually in-
volved measurement on the Ge�111�2�1 surface rather than
the c�2�8� surface. We therefore consider the surface pho-
tovoltage onsets at 0.4 and 0.45 eV to be the most reliable
prior measurement of the surface gap.

The difference between the two previously observed on-
sets is somewhat smaller than the energy difference associ-
ated with the states of the two inequivalent Ge adatoms
�about 0.15 eV in STS �Ref. 3� or 0.2 eV from theory17�, and
additionally the band associated with the first onset appears
to be very much smaller than that associated with the second.
For that type of optical experiment it must also be kept in
mind that excitonic effects can produce a gap lowering; for
the surface gap of Ge�111�2�1 surface this exciton binding
amounts to about 0.2 eV, although it should be realized that
the exciton in that case forms between bonding and anti-
bonding state of similar nature �i.e., associated with
�-bonded chains11� as opposed to the present case of a tran-
sition from a bulklike VB state to an adatom-derived surface
state. In any case, we tentatively associate the lower onset at
0.4 eV with defect-induced states on the surface, i.e., the
same as the extrinsic states seen in our STS and STM work,
the presence of which is inherent to the formation of the
c�2�8� reconstruction from the cleaved 2�1 surface.15 We
further associate the 0.45 eV value with the surface gap, with
the small difference between that result and our value of
0.49±0.03 eV possibly involving an excitonic effect.

We close with several comments on the methodology of
this work. We have pursued here an analysis based in large
part on the semiclassical notion of band bending, i.e., using
Eq. �1�. This type of analysis could be called an energy
alignment method, and its utilization is quite simple since
only values of the potential �not the tunneling current� are
required. On the other hand, quantum effects are certainly
present in the real physical situation; in the present case these
are found to be quite small, but in other situations they may
be larger. For example, in a recent reanalysis of STS data
from InGaP/GaAs heterojunctions29 it has been found that
due to the large values of contact potential and the relatively
restricted voltage-range of the spectra that the quantum ef-
fects dominate the band onsets, and consequently an energy
alignment type of analysis fails. In that case one must com-
pute tunneling current-voltage characteristics over the entire
spectrum and match those to the observed spectra, in a type
of line shape analysis. The theory presented in this work
enables that type of analysis.

Our theory for computation of tunnel currents has focused
on bulk bands, but it can also be extended in a straightfor-
ward way to the case of surface bands using some model for
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the surface state dispersion �e.g., as in Ref. 30, but with the
energies of the surface states shifted by �0�. Of course, in
reality, resonant bands have mixed surface and bulk charac-
ter, but in the absence of a detailed local-state-density com-
putation one would not know the precise nature of each
given state. Hence, in a typical simulation of the type de-
scribed here one must assume that a given band has either
surface or bulk character. For our present computations we
have assumed the states associated with the VB feature in the
spectra to have bulk character, although some prior experi-
ments have shown it to have partial surface character �i.e., as
expected through mixing with rest-atom derived states�.5
This assumption does however not lead to any additional
uncertainty in our derived surface gap, since even for the
extreme opposite assumption of full surface character for the
VB feature the resulting analysis would just proceed utilizing
Eq. �1�, with the results being the semiclassical ones listed in
Table I. Those results do not differ significantly from the
quantum ones within the error range of our final result, al-
though the former do tend to favor gap values in the lower
part of that range.

Finally, we note that the analysis of this work has pro-
ceeded with the assumption that the extrinsic states on the
surface can be treated as spatially uniform, whereas we know
that they primarily originate from c�2�8� domain bound-
aries that are located 10–20 nm from the point at which
spectra are acquired. To evaluate the consequence of this
assumption we have redone our analysis using a model in
which there are no extrinsic states for a radius of 10 nm from
the central axis of the problem, and for larger radii we as-
sume a density that is an order-of-magnitude larger than 4
�1012 cm−2 eV−1 such that the computed band bending
curves are very similar to those of Fig. 4. The charge neu-
trality levels needed to match the VB onset then shift slightly
compared to those of Table I, and the resulting �0,A values
are about 9 meV less than those listed in the table. This
effect is thus small, and does not significantly impact our
final result for the surface gap. The same conclusion also
applies to the assumed energy uniformity of the spectrum of
extrinsic states: We know experimentally that these states are
reasonably well distributed over the gap;3 this observation,
coupled with the fact that the tip-induced band bending var-
ies with distance from the tip �so that at any particular volt-
age the surface Fermi-level intersects the spectrum of extrin-
sic states at a different energy for each distance�, again leads
to a negligible sensitivity of our final result on the energy
nonuniformity of the extrinsic states.

APPENDIX: BAND EDGE DETERMINATION USING
NORMALIZED SPECTRA

In the past, our spectroscopic normalization was used pri-
marily as a qualitative means of analysis, enabling the spec-
tra to be viewed on a linear �rather than logarithmic� scale. In
the present work, however, we have used the normalized
conductance in a more quantitative way in order to determine
band edge energies. For this purpose, a careful reexamination
of the analysis procedure is needed. We accomplish that here
by using simulated current and conductance characteristics,

using the formulas described in Sec. IV C for tunneling from
a metal probe-tip into a semiconductor effective-mass band,
and neglecting tip-induced band bending � Eq. �4��. Near a
band edge, the vacuum transmission term of Eq. �3� can be
approximated as being independent of energy. Neglecting the
boundary matching term of Eq. �5�, the integral of Eq. �2� is
then easily evaluated to yield a quadratic voltage dependence
of the current and hence a linear voltage dependence for the
conductance. Including Eq. �5� however yields a voltage on-
set of the conductance varying with a 3/2 power;31 this be-
havior persists to higher voltages, and comparing with ex-
perimental data1,33 we find better agreement with the theory
when this term is included. In Fig. 7�a� we plot such an
onset, computed using a temperature of 10 K, sample-tip
separation of 0.9 nm, effective mass of 0.1m0, conduction
band onset of +0.5 V, and assuming a tunnel junction area of
1 nm2. The rather nonlinear behavior of the onset is clearly
seen in the figure.

Let us now consider use of the normalized conductance
�dI /dV� / �I /V� rather than simply dI /dV. Phenomenologi-
cally, this normalized conductance has been found to pro-
duce what appear to be well-defined band edges with linear
onset behavior.32,33 In this normalization, �I /V� is formed by
broadening of �I /V� through convolution with some suitable
function �this broadening is necessary since, near a band
edge, the current approaches zero faster than the conductance
and in the absence of any broadening the ratio �dI /dV� / �I /V�
diverges at a band edge�. We examine the normalization pro-
cedure in detail here, using various methods to accomplish it.

FIG. 7. Comparison of various methods for spectroscopic nor-
malization: �a� Simulated curve of dI /dV based on tunneling at a
temperature of 10 K into an effective-mass band with onset at
+0.5 V. �b� Normalization performed by convolution of I /V with
exponential function, for the values of a� and �V� indicated. �c�
Normalization performed by convolution of I /V with function com-
posed of sine and cosine integrals, for the values of a� and �V
indicated. �d� Normalization performed by addition of a constant to
I /V, for the values of  indicated.
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We first consider broadening using an exponential convolu-
tion function, exp�−�V� /�V�� / �2�V��, where �V� is the
broadening parameter. As described in Ref. 33 we include a
scaling function exp�−a��V�� multiplying �I /V� such that the
convolution, at some voltage V, weights voltages above and
below V approximately equally. An appropriate value of a� is
given by the voltage dependence of the tunnel barrier trans-
mission term,14 exp�−2s�2m��̄−e�V� /2��1/2 /��. Equating this

form to exp�−2s�2m�̄�1/2 /��exp�a��V�� yields, to lowest or-

der in V, a�es�m / �2�̄��1/2 /�1 V−1. The complete for-
mula for �I /V� is then given by

�I/V� = exp�a��V��
1

2�V�
�

−�

�

�I�V��/V��

�exp	 �V − V��
�V�


exp�− a��V���dV�. �A1�

Normalized spectra computed using this method are shown
in Fig. 7�b�, with various values of �V� and using the simu-
lated conductance vs voltage curve of Fig. 7�a�. For the pur-
pose of the normalization it is necessary to assume a valence
band �at negative voltages�, which we take to have an effec-
tive mass of 0.1m0 and onset of −0.5 V.

We take this opportunity to point out a significant differ-
ence between the convolution method discussed in Ref. 33
and the analysis method that was actually used in that work.
The difference between the methods is most easily described
in terms of Fourier analysis, which in practice is how we
compute the convolutions.32 The Fourier transform of the
scaled �I /V� is multiplied by the Fourier transform of the
convolution function, and an inverse transform is then made
of this product, which after inverse scaling yields �I /V�. Let
us denote by f the frequency variable conjugate to voltage.
The Fourier transform of the exponential convolution func-
tion is given by

1

1 + f2/f0
2 �A2a�

with

f0 =
1

2��V�
. �A2b�

Although this exponential broadening method was explicitly
discussed in Ref. 33 we have recently realized that the
method actually implemented in the computer program used
there is not given by Eq. �A2�. Rather we have used �in Ref.
33 and in all subsequent works� the following form:

1

1 + �f �/f0
�A3a�

with

f0 =
1

�V
. �A3b�

There are two discrepancies in this form compared to Eq.
�A2�—the power of 2 on the frequency in Eq. �A2a� is only

a linear power in Eq. �A3a�, and the factor of 2� in the
denominator of Eq. �A2b� is absent in Eq. �A3b�. This sec-
ond discrepancy can be easily accommodated simply by tak-
ing �V to be 2��V�. The first discrepancy is potentially
more significant, but we find from a comparison of normal-
ized spectra computed using Eqs. �A2� and �A3� that the
methods produce very similar results so long as the f0 pa-
rameter in the latter case is about 2 times greater then that of
the former. Combined with the previous factor of 2�, we find
that the normalization methods expressed by Eqs. �A2� or
�A3� are nearly equivalent so long as �V3�V�.

For completeness, we derive the convolution-function
corresponding to Eq. �A3�. This is given by its inverse Fou-
rier transform, which we evaluate to be 2g�2��V� /�V� /�V
where g�x� is an auxiliary function to the sine and cosine
integrals Si�x� and Ci�x�, given by g�x�=−�sin�x�si�x�
+cos�x�Ci�x�� with si�x�=Si�x�− �� /2�.34 Efficient algo-
rithms for evaluating g�x� are known.34 The function g�x� for
x	0 decreases monotonically with x. It diverges logarithmi-
cally as x→0, and it decreases relatively rapidly with x up
until x1.2 where it is comparable in magnitude to
exp�−x�. For larger values of x it decreases relatively slowly,
varying asymptotically as 1/x2. The median values for g�x�
and exp�−x� for x	0 are comparable, being x0.62 for the
former and x=0.693 for the latter. With this form for the
convolution function, the formula for �I /V� computed ac-
cording to this second normalization method is given by

�I/V� = exp�a��V��
2

�V
�

−�

�

�I�V��/V��g	2��V − V��
�V



�exp�− a��V���dV�. �A4�

Normalized spectra obtained using this method are shown in
Fig. 7�c�. We see that the results of Figs. 7�b� and 7�c� are
nearly identical, so long as one includes the factor of 3 be-
tween their respective broadening parameters.

We also show in Fig. 7�d� the results for a third type of
normalization, in which we compute simply �dI /dV� /
��I /V�+� where  is a parameter. Again, very similar results
are obtained as with the other normalization methods, for
appropriate values of the parameters. The methods of Figs.
7�b� and 7�c� each have two parameters as compared with a
single parameter for the method of Fig. 7�d�, which is an
apparent advantage of the latter. However, as discussed in
Ref. 33, the former two methods can be applied in combina-
tion with the acquisition method of variable sample-tip sepa-
ration such that the analysis involves only a single parameter.
Also, these two methods can be applied to any data set using
nearly invariant parameter values, whereas the method of
adding  to the denominator requires a different parameter
value for different ranges of the conductance. In any case
there is no large difference between the results of the various
methods; for consistency with our past results we continue
our use of Eq. �A3� for normalization of our spectra.

Referring again to Fig. 7, it is apparent that a good choice
of parameter values in the normalization is that which pro-
duces the solid lines in each of Figs. 7�b�–7�d�, i.e., in which

BAND GAP OF THE Ge�111�c�2�8� SURFACE BY… PHYSICAL REVIEW B 73, 035310 �2006�

035310-11



the edge of the band is quite sharp and linear but for which
no significant overshoot occurs at the edge. It is thus seen
how the normalization produces some linearization of the
band edge. Having found this behavior, we seek a simple
functional form, which includes temperature dependence, to
describe such an onset. To derive this we first write the tun-
nel current in a very approximate manner as

I � �
−�

�

�f�E� − f�E − eV���S�E�dE , �A5�

where �S�E� is an effective state density for the sample which
includes the effect of the vacuum transmission factor in se-
lecting states over a certain range of k� values �we are assum-
ing a constant tip state density here�. To obtain a linear de-
pendence of conductance on voltage we then use a linearly
increasing sample state density, �S�E�� �E−EF−eV0���E
−EF−eV0� where eV0 is the onset energy of the band relative
to the sample Fermi level, and ��E� is a step function. As-
suming that the band onset is well separated from the sample
Fermi level, the resulting form for the conductance is found
to be

G�V� = C�
eV0

� dE

1 + e�E−eV�/kT �A6a�

=C��V − V0� + � ln�1 + e−�V−V0�/��� ,

�A6b�

where ��kT /e and with C being a parameter. These equa-
tions are suitable for a conduction band extending over E
−EF	eV0; the appropriate form for a valence band extend-
ing over E−EF
eV0 can be obtained by replacing both oc-
currences of �V−V0� in Eq. �A6b� by �V0−V�. As discussed
above, we perform fits to the normalized conductance rather
than to dI /dV itself, since it is the former that has the most
linear behavior near a band edge.

We show in Fig. 8 results of fitting this functional form to
the simulated curves of the normalized conductance �the nor-
malization being performed using Eqs. �A3�, with a�
=1 V−1 and �V=1 V�. We perform the fits over values of
normalized conductance values over the range 0 to 2.0. For
the simulated spectra at temperatures of 10, 100, 200, and
300 K, respectively, the results for the V0 parameter of the
fits are 0.508, 0.506, 0.502, and 0.493 V for the +0.5 eV
onset and −0.509, −0.508, −0.507, and −0.505 V for the
−0.5 eV onset. The discrepancy between the fit results and
the actual onsets are thus less than 10 mV in all cases. In
contrast, if we simply fit the T=0 form to the 300 K results
we obtain for the +0.5 eV onset an error of 38 mV. These
results are fairly independent of the parameters a� and �V
used for the normalization; varying either of these values by
a factor of two produces only small changes �5 mV at 10 K,
and 15 mV at 300 K� to the fit results.

To fully describe the observed band onsets we also con-
sider the additional broadening effect of the modulation volt-
age used for the data acquisition. The measured conductance

is obtained from the input signal, I�V�, according to the ac-
tions of the demodulator and integrator in the lock-in ampli-
fier as given by

dI

dV
= �

0

2� sin �d�

�2Vrms�
I�V + �2Vrms sin �� , �A7�

where Vrms is the rms modulation voltage used in the mea-
surement. We therefore perform simulations using this form
for dI /dV rather than the numerical derivative of I�V� as
done for the simulations in Fig. 8. The results �not shown� do
indeed display additional broadening at the onset. We fit the
simulated results using the form given by Eq. �A6b�, but
with a modified value for � which we take to be

� = ��kT/e�2 + �cVrms�2�1/2, �A8�

where c is a parameter. We choose a value for c such that the
fits based on Eq. �A6b� accurately reproduce the simulated
normalized conductance. Considering temperatures in the
range 10–300 K and for Vrms values as large as 50 mV, we
find an optimal value for c of about 0.4. The errors in the
onset voltages V0 thus obtained have magnitude of about
0.15Vrms over and above that from the temperature depen-
dence alone. In contrast, if no accommodation is made for
the modulation voltage then this additional error is about
0.5Vrms.

FIG. 8. Simulation of tunneling spectra for tunneling into effec-
tive mass bands, with onsets at ±0.5 V. The computed spectra are
displayed as �a� conductance at constant sample-tip separation �one
decade per division� and �b� normalized conductance on a linear
scale, and results are shown for temperatures of 10 K �dotted lines�
and 300 K �solid lines�. The insets in �b� show an expanded view of
the band onsets, with circles indicating a fit to the 300 K onset
using a functional form that includes the temperature dependence of
the normalized conductance.
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