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The formula derived by Meir and Wingreen �Phys. Rev. Lett. 68, 2512 �1992�� for the electron current
through a confined, central region containing interactions is generalized to the case of a nonorthogonal basis
set. As the original work, the present derivation is based on the nonequilibrium Keldysh formalism. By
replacing the basis functions of the central region by the corresponding elements of the dual basis the lead and
central region subspaces become mutually orthogonal. The current formula is then derived in this new basis,
using a generalized version of second quantization and Green’s function theory to handle the nonorthogonality
within each of the regions. Finally, the appropriate nonorthogonal form of the perturbation series for the
Green’s function is established for the case of electron-electron and electron-phonon interactions in the central
region.
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I. INTRODUCTION

Electron transport in nanoscale contacts is a highly active
research area. During the past decade it has become possible
to create two-terminal junctions where atomic-sized conduc-
tors are contacted by macroscopic metal electrodes using
scanning tunnelling microscopes,1,2 mechanically controlled
break junctions,3,4 or electromigration techniques.5 In this
way I-V characteristics have been obtained for a variety of
different nano-contacts including carbon nanotubes,6 metal-
lic point contacts,7 atomic wires,8 as well as individual mol-
ecules ranging from large organic compounds1,4 down to a
single hydrogen molecule.9

The quantitative modeling of the electrical properties of a
nanoscale contact represents a great theoretical challenge in-
volving a detailed description of both the atomic- and elec-
tronic structure of a current-carrying system out of equilib-
rium. At present, the most popular approach to the problem
combines a nonequilibrium Green’s function �NEGF� for-
malism with ab initio electronic structure theory. A corner-
stone of this approach is a formula giving the current through
the system in terms of the Green’s function of a spatial re-
gion containing the contact �the central region�. When inter-
actions are limited to the central region, the current formula
is an exact result, however, in practice some approximation
for the full interacting Green’s function must be invoked. For
example, in the commonly used NEGF-DFT approximation
the exact Green’s function is replaced by the noninteracting
Kohn-Sham Green’s function defined within density func-
tional theory.10,11

Application of the NEGF theory to electronic transport in
quantum wires was introduced as an alternative to the
Landauer-Büttiker formalism to treat electronic interactions.
In 1991 Hershfield and co-workers12 derived an expression
for the current through a single interacting level �an Ander-
son impurity�, and the following year Meir and Wingreen13

generalized the current formula to the case of an arbitrary
number of states in the central region � Eq. �6� of Ref. 13�. In
these studies the system, i.e., the conductor, was partitioned
into three parts �the leads plus the central region�, and the
basis of the single-particle Hilbert space was taken as an

orthonormal set of functions each belonging to one of the
three regions. In practical ab initio calculations, however, the
requirement of localized basis functions, which is essential
for the partitioning, is difficult to combine with
orthogonality.14,15 It is therefore of great practical importance
to generalize the current formula to nonorthogonal basis sets.

In this paper, a rigorous operational framework for apply-
ing second quantization and Green’s function methods in a
nonorthogonal basis is presented and used derive a general-
ized current formula which is valid for nonorthogonal basis
sets. The main problem in deriving the current formula in the
general case is the lack of orthogonality between basis func-
tions in the central region and basis functions in the leads
�due to the assumption of localized basis functions, we can
take basis functions belonging to different leads to be non-
overlapping and thus orthogonal�. We solve this problem by
replacing the basis functions of the central region by the
so-called dual basis functions which, by construction, are
orthogonal to the basis functions of the leads. The nonor-
thogonality of the basis within each of the three regions is
handled by applying a generalized version of second quanti-
zation and Green’s function theory.

For noninteracting electrons, the NEGF current formula
takes a particularly simple form � Eq. �7� of Ref. 13�. This
version of the formula, which is equivalent to the well-
known Landauer-Büttiker formula, has been applied exten-
sively over the past years and forms the basis of most nu-
merical schemes addressing phase-coherent transport in
nano-scale structures. In the special case of no interactions,
Xue et al. have derived the form of the current formula in a
nonorthogonal basis.10 Xue et al. take a route which is less
direct than the one by Meir and Wingreen as it involves
transformations between the basis and real space representa-
tions. In contrast, the derivation given here follows the origi-
nal work closely and is formulated entirely within the basis
set representation. More importantly, the derivation of Xue et
al. cannot be extended to the interacting case since it relies
on a spectral representation of the Green’s function in terms
of single-particle eigenstates. Emberly and Kirczenow16 have
addressed the problem of nonorthogonality within the
Landauer-Büttiker formalism. Here the current due to nonin-
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teracting electrons is obtained directly from the single-
particle scattering states which are evaluated in a Hilbert
space with an energy-dependent inner product. Finally,
Fransson et al. have studied the effects of nonorthogonality
within the tunnelling formalism.17,18 Using the Kadanoff-
Baym approach and the Hubbard operator technique, they
derived an expression for the current through a single inter-
acting level �Anderson model� in the weak coupling limit,
taking the finite overlap of the tunnelling wave functions into
account.18 In contrast, the derivation presented here makes
no assumptions about the type of interactions and is not lim-
ited to the case of weak coupling between the leads and the
central region. Moreover, the use of the dual basis in the
central region simplifies the formalism significantly and
avoids many technical problems otherwise arising from the
nonorthogonality between the lead and central region states.

The paper is organized as follows: In Sec. II the general
theory of second quantization and Green’s functions in a
nonorthogonal basis is reviewed, and the concept of the dual
basis is introduced. In Sec. III these results are used to derive
the current formula in a nonorthogonal basis, both in the
interacting and the noninteracting case.

II. NONORTHOGONAL BASIS SETS

In this section we generalize the second quantization for-
malism and elements of the Green’s function theory to the
case of nonorthogonal basis sets. To avoid mathematical
problems with convergence, we assume that our single-
particle Hilbert space, H, is finite dimensional. While this
assumption might seem unsatisfactory from a fundamental
point of view, it will always be satisfied in practical applica-
tions.

A. Second quantization of one- and two-body operators

Throughout this section let ��i� denote a—not necessarily
orthonormal—basis of the single-particle Hilbert space, H.
The corresponding creation and annihilation operators,19 ci

†

and ci, acting on the fermionic Fock space fulfill the canoni-
cal anticommutation relations20

�ci
†,cj

†� = 0, �1�

�ci,cj� = 0, �2�

�ci,cj
†� = Sij , �3�

where Sij = ��i �� j	 is the overlap matrix.

To any one-body operator, Â�1�, acting on H, we associate

the matrix Aij = ��i � Â�1� �� j	. We have the following represen-

tation of Â�1� in terms of the basis vectors ��i�,

Â�1� = 

ij

Aij��i	�� j� , �4�

where we have used Dirac’s bra-ket notation and introduced
the matrix A=S−1AS−1. This matrix transform will appear
often throughout the text, and we shall reserve the Gothic
font for matrices that results from such a transformation. The

validity of the representation �4� is easily checked by evalu-

ating the inner products ��n � Â�1� ��m	 on both sides of the

equation. The second quantized form of Â�1�, which we de-

note by Â, is

Â = 

ij

Aijci
†cj . �5�

The easiest way to derive this expression is to start from the

well known form of Â in terms of some orthonormal basis,
��n�, and corresponding creation and annihilation operators
dn

† ,dn and then expand these in terms of the original ci
† ,ci.

The explicit form of this expansion reads �n
=
ij�S−1�ij�� j ��n	��i	, which follows from Eq. �4� applied to
the identity operator.

We now turn to a general two-body operator, B̂�2�, defined
on the two-particle Hilbert space H�2�=H � H. A basis for
H�2� is provided by the tensor products ��i � � j�. We define
the corresponding overlap matrix Sij,kl

�2� = ��i � � j ��k � �l	
=SikSjl, as well as the matrix Bij,kl= ��i � � j�B̂�2���k � �l	. As
for the one-body operators we have the first quantized rep-
resentation

B̂�2� = 

i,j,k,l

Bij,kl��i � � j	��k � �l� , �6�

where the matrix B is defined by B= �S�2��−1B�S�2��−1. For
later use we note that

�S�2��ij,kl
−1 = �S−1�ik�S−1� jl, �7�

which can be directly verified by multiplication with S�2�.
Finally, the following expression for the second quantized

version of B̂�2� can be derived using the same technique as
for the one-body operator,

B̂ =
1

2 

i,j,k,l

Bij,klci
†cj

†clck. �8�

B. Single-particle Green’s functions

In order to fix notation we start with some well known
definitions. Given two single-particle orbitals �i and � j �not
necessarily normalized or orthogonal� the retarded and ad-
vanced single-particle Green’s functions �GFs� are defined
by

Gij
r �t,t�� = − i��t − t����ci�t�,cj

†�t���	 , �9�

Gij
a �t,t�� = i��t� − t���ci�t�,cj

†�t���	 . �10�

Here the brackets � 	 denote an expectation value with re-
spect to the equilibrium state of the system. The greater and
lesser GFs are defined by

Gij
��t,t�� = i�cj

†�t��ci�t�	 �11�

Gij
��t,t�� = − i�ci�t�cj

†�t��	 . �12�

In fact all of these GFs can be derived from the contour-
ordered GF which is defined by
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Gij��,��� = − i�TC�ci���cj
†�����	 . �13�

Here �= �t ,�� is a collection of the time variable t and a
branch index, �, and TC is the contour-ordering operator.
Note that ci����ci�t� and cj

†�����cj
†�t��, while the branch

indices merely serve to determine the ordering of the opera-
tors. For more comprehensive introductions to the general
GF theory the reader is referred to Refs. 21–23.

We consider first the case where both the expectation
value and the time-evolution of the creation and annihilation
operators entering the GF is governed by a time-independent,

quadratic Hamiltonian, ĥ. Expressing ĥ as in Eq. �5�, using

that �tci�t�= i�ĥ ,ci��t�, and Fourier transforming with respect
to the time difference t− t�, we obtain the equation of motion
for the retarded GF matrix in the basis ��i�:

�S−1	+ − S−1hS−1�Gr�	� = I . �14�

Here hij = ��i � ĥ�1� �� j	 where ĥ�1� is the first-quantized ver-

sion of ĥ, and 	+= �	+ i
� with 
 a small positive number
ensuring proper convergence of the Fourier integral. The
same equation holds for Ga�	� when 
→−
. It is useful to
introduce another matrix quantity related to the GF and de-
fined by

Gx = S−1GxS−1. �15�

As indicated by the superscript x the definition applies to any
of the GFs introduced above. To have a name we shall refer
to G as the overlap GF. Its retarded variant clearly fulfills the
following matrix equation:

�S	+ − h�Gr�	� = I . �16�

Next, we ask about the form of the perturbation series of
the GF in a nonorthogonal basis. We thus consider a quantum

system with a Hamiltonian Ĥ= ĥ0+ V̂, where ĥ0 is a simple

quadratic Hamiltonian, while V̂ is a complicated one- or two-
body perturbation. In the perturbation expansion of the
contour-ordered Green’s function, Gij�� ,���, we encounter
the usual terms �generating diagrams with two external ver-
tices�:

� d�1 ¯ d�n�TC�ĉi,h0
���ĉj,h0

† ����V̂h0
��1� ¯ V̂h0

��n��	0.

�17�

In this expression both the average and the time evolution is

governed by ĥ0, i.e., X̂h0
���=exp�itĥ0�X̂ exp�−itĥ0� and �X̂	0

=Tr�X̂ exp�−�ĥ0�� /Tr�exp�−�ĥ0��, with �=1/kT. When V̂ is
represented in terms of a nonorthogonal basis as in Eqs. �5�
or �8�, the term �17� will generate unperturbed �n+1�-particle

GFs �or �2n+1�-particle GFs if V̂ is a two-body operator�
involving creation and annihilation operators of the nonor-
thogonal orbitals �i. As usual this �n+1�-or �2n+1�-particle
GF can be broken down into unperturbed single-particle GFs
using Wick’s theorem.21,22 Although Wick’s theorem is nor-
mally proved for orthonormal states, its validity for nonor-
thogonal states can be readily verified by expanding each

creation or annihilation operator entering the �n+1�-or �2n
+1�-particle GF in terms of a fixed orthonormal basis.
Wick’s theorem can then be applied to each term in this
expansion, which now involves only orthonormal states, and
finally the original basis functions can be reintroduced. The
perturbation series for the matrix Gij�� ,��� in terms of the
nonorthogonal basis, ��i�, should therefore be constructed
according the usual Feynman rules, using Gij

0 �� ,��� as free
propagator and Vij �or Vij,kl� as the coupling strengths enter-
ing at the vertices. Equivalently, the perturbation series for
the overlap GF, Gij�� ,���, is obtained by evaluating each
diagram using Gij

0 �� ,��� as free propagator and Vij �or Vij,kl�
as coupling. In the case where V̂ is a two-body operator the
latter statement follows from Eq. �7�.

C. Dual basis

Below we introduce the concept of a dual basis. The dual
basis will be used in the next section for orthogonalizing the
central region to the leads in the derivation of the current
formula. Given a general basis set, ��i�, �which we refer to
as the direct basis� for the finite dimensional Hilbert space,
H, there exists a dual basis, ��ī�, with the property

��i�� j̄	 = �ij . �18�

The vectors of the dual basis can be represented explicitly in
terms of the direct basis,

�ī = 

j

�S−1� ji� j . �19�

We shall make the general convention that indices marked
with a bar refer to the dual basis. From the expansion �19� it
follows that the overlap matrix of the dual basis is simply the
inverse of S, i.e.,

Sīj̄ = ��ī�� j̄	 = �S−1�ij . �20�

Here it is natural to make a connection with the work of
Fransson et al., who introduce a set of creation or annihila-
tion operators fulfilling the anti-commutation relations
�ci ,cj

†�= �S−1�ij �this should be contrasted with Eq. �3��. How-
ever, as can be seen from Eq. �1� of Ref. 18 these are simply
the creation/annihilation operators of the dual basis, and thus
the formalism of Fransson et al. is consistent with the one
presented here.

As a final observation we note that the following relation
holds for any of the single-particle GFs

G
īj̄

x
= Gij

x . �21�

That is, the GF matrix in the dual basis equals the overlap
GF in the direct basis.

III. CURRENT FORMULA

In this section we derive a formula for the electron current
through a spatially confined region possibly containing inter-
actions. The derivation follows the original work of Meir and
Wingreen,13 but is here extended to the case of a nonorthogo-
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nal basis set. Atomic units will be used throughout.
We consider the transport of electrons through a system

which can be divided into three regions �see Fig. 1�: A left
lead �L�, a right lead �R�, and a central region �C�. For times
t� t0 the three regions are uncoupled, and the leads are in
thermal equilibrium with chemical potentials L and R, re-
spectively. When the leads, which we assume to be macro-
scopic yet finite in size, are coupled to the central region a
current will start to flow as the system approaches a common
equilibrium. The macroscopic size of the leads ensures that a
steady state with a constant dc current will exist for a con-
siderable time before the system reaches equilibrium and the
current dies out. It is the determination of this steady state
current that we address in the following.

As a basis of the single-particle Hilbert space, we take a
set of localized functions each of which can be assigned to
exactly one of the three regions, e.g., by the center position.
We denote the elements of this basis by ��i, where �
� �L ,C ,R� specifies the region and i enumerates the basis
function within the region. Since the ��i are all localized, we
can safely assume that there is no overlap between two basis
functions belonging to different leads. Indeed, the central
region can always be enlarged by part of the leads until this
condition is fulfilled. We thus have SLi,Rj =0 and SRi,Lj =0 for
all i , j, which we write compactly as SLR=SRL=0.

The main difficulty in the derivation of the current for-
mula is caused by the nonorthogonality of the basis functions
in the central region and those in the leads. To overcome this
problem, we replace the basis functions in the central region
by the corresponding functions of the dual basis, i.e., �Ci
→�Ci. The original basis functions are maintained in the
leads. We shall refer to the resulting basis,
���Li� , ��Ci� , ��Ri��, simply as the new basis. The introduc-
tion of the new basis amounts to a redefinition of the sub-
space associated with the central region, such that all three
subspaces become orthogonal. It should be stressed that this

is merely a basis change, and thus the full Hilbert space as
well as any calculated physical quantity remains unaffected.
The nonorthogonality of basis functions within a given re-
gion presents no serious problem, and can be handled by the
techniques of the previous section. In the following all ma-
trix quantities referring to the new basis will be denoted by a
tilde.

The electronic Hamiltonian, Ĥ, consists of a noninteract-

ing part, ĥ, and a part containing interactions, V̂int. The physi-
cal nature of the interactions is not important, however, we

assume that V̂int only affects electrons located in the central
region. In terms of the new basis, the matrix associated with
the noninteracting part of the Hamiltonian has the generic
shape:

h̃ = hLL hLC̄ 0

hC̄L hC̄C̄ hC̄R

0 hRC̄ hRR
� . �22�

Here, for example, the matrix element h̃Ci,Lj = �hC̄L�ij is given
by �in the coordinate representation�,

h̃Ci,Lj =� dr �Ci
* �r��−

1

2
�r + v�r���Lj�r� , �23�

where v�r� is the sum of all external potentials acting on the
electron system. We shall not be concerned about the specific
form of v�r�, as this has no importance for the general treat-

ment presented here. The noninteracting ĥ is further divided

into the two terms, ĥ0 and ĥcoup:

Ĥ = ĥ0 + ĥcoup + V̂int, �24�

where

ĥ0 = ĥ0
L + ĥ0

R + ĥ0
C �25�

= 

���L,R�,i,j

h̃�i,�jc�i
† c�j + 


i,j
h̃Ci,CjcCi

† cCj , �26�

describes each of the regions separately, and

ĥcoup = 

���L,R�,i,j

h̃Ci,�jcCi
† c�j + H.c. �27�

provides the coupling. As described in Sec. II A, the matrix h̃

is given by h̃= S̃−1h̃S̃−1, where S̃ is the overlap matrix in the
new basis,

S̃ = SLL 0 0

0 �S−1�CC 0

0 0 SRR
� . �28�

The form of S̃ within the central region follows from Eq.
�20�. Note that in the new basis there is no overlap between
basis functions belonging to different regions of the system,
i.e., the three subspaces are orthogonal. As a consequence, all
creation or annihilation operators of a given region commute
with all creation or annihilation operators of the other re-

FIG. 1. Schematic diagram of the system used to derive the
current formula. Before the coupling between the three regions is
established, the leads are in equilibrium with chemical potentials L

and R, respectively. Upon coupling a current, I, starts to flow as
the system approaches a common equilibrium. Interactions are al-
lowed inside the central region �C�.
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gions. This property of the new basis is crucial for what
follows.

For times t� t0 the three regions are decoupled and the
state of the system is described by the density operator

�0 =
1

Z0
�0

L�0
C�0

R
� �ext, �29�

where �0
�=e−�N̂��ĥ0

�−�N̂�� and Z0=Tr��L
0�C

0 �R
0

� �ext�, while
�ext describes the state of possible external degrees of free-
dom such as phonons or magnetic impurities. Notice that the
order of the density operators in Eq. �29� plays no role since
they all commute due to the properties of the new basis.

After the coupling has been switched on at time t0, the
state �0 will evolve according to the full Hamiltonian of Eq.
�24�. At the later time t1 the system has reached equilibrium
and the current has died out. We assume that there is a time
interval �t0+�t ; t1−�t� during which the current through the
system stays constant, i.e., the system is in a steady state. In
the following we consider times t for which the system is in
the steady state.

The particle current from the left region into the central
region at time t is given by the time derivative of the particle
number in lead L21

IL�t� =
d

dt
�N̂L�t�	 = i��Ĥ,N̂L��t�	 . �30�

The second quantized form of N̂L follows from Eqs. �4� and

�5� when Â�1� is the orthogonal projection onto the subspace
spanned by the basis functions of lead L,

N̂L = 

ij

�SLL
−1�ijcLi

† cLj . �31�

Note that only basis functions of the left lead occur in the

expression for N̂L. If we had used the original basis, the
expression would also contain creation or annihilation opera-

tors of the regions C and R. Since the interaction, V̂int, by
assumption contains creation or annihilation operators of the
central region only, the commutator in Eq. �30� vanishes for

all terms in Ĥ except those coupling L and C, i.e.,

IL = i

i,j

�h̃Li,Cj�cLi
† �t�cCj�t�	 − h̃Ci,Lj�cCi

† �t�cLj�t�	�

=
1

2�
� Tr�h̃LCG̃CL

� �	� − G̃LC
� �	�h̃CL�d	 , �32�

where the commutation relations Eqs. �1�–�3� have been used
and the lesser GF defined in Eq. �11� has been introduced. In
the second line we have assumed that in the steady state the
GFs depend only on the time difference t− t�, and moreover
that the steady state exists for sufficiently long that boundary
effects associated with the switching on of the coupling and
leveling out of the current can be neglected when performing
the Fourier transform. These conditions can always be ful-
filled by increasing the size of the leads. In the following,
explicit reference to the 	 dependence will sometimes be
omitted to simplify the notation.

The lesser GF can be obtained from its contour-ordered
counter parts via analytic continuation as described in Ref.

21. Treating ĥcoup and V̂int perturbatively, the rules for pertur-
bation theory in a nonorthogonal basis �see Sec. II B� lead to
the following Dyson equations for the lesser GF matrix

G̃CL
� = G̃CC

r
h̃CLg̃LL

0,� + G̃CC
�

h̃CLg̃LL
0,a, �33�

G̃LC
� = g̃LL

0,r
h̃LCG̃CC

� + g̃LL
0,�

h̃LCG̃CC
a , �34�

where g̃LL
0 is the GF of the uncoupled left lead, i.e., the GF

defined by ĥ0 and �0. Here it is important to realize that this
is not an equilibrium GF, since �0 involves different chemi-
cal potentials and therefore is not an equilibrium state. How-
ever, since the cLi ,cLi

† commute with the corresponding op-
erators of region C and R �due to the properties of the new

basis�, g̃LL
0 is in fact equal to the GF defined by ĥ0

L and �0
L.

Since the latter describes a system in equilibrium the
fluctuation-dissipation theorem provides the relation

g̃LL
0,��	� = − fL�	��g̃LL

0,r�	� − g̃LL
0,a�	�� , �35�

where fL�	� is the Fermi distribution function of the left
lead. The relation �35� introduces the equilibrium distribution
of the lead into the current formula. Since the strict validity
of this relation, as explained above, relies on the orthogonal-
ity of the three regions, we again see the importance of work-
ing in new basis.

For the contour-ordered GF matrix of the central region
we have the Dyson equation

G̃CC = G̃CC
0 + G̃CC

0 ��̃L + �̃R + �̃int�G̃CC, �36�

where �̃int and �̃� are self-energies due to the interactions
and the coupling to lead �, respectively. Note that the former
also contains contributions from the coupling since a com-
plete separation of the diagrams related to the two perturba-
tions is not possible. The contour-ordered self-energy matrix
due to the coupling to lead � is given by

�̃� = h̃C�g̃��
0

h̃�C. �37�

It is useful to introduce the coupling strength due to lead �,

�̃��	� = i��̃�
r �	� − �̃�

a�	�� . �38�

Inserting G̃CL
� and G̃LC

� from Eqs. �33� and �34� into the ex-
pression for the current, Eq. �32�, and symmetrizing, I= �IL

− IR� /2, we arrive, after some algebra, to the desired current
formula

I =
i

4�
� Tr���̃L − �̃R�G̃CC

� + „fL�	��̃L − fR�	��̃R…�G̃CC
r

− G̃CC
a ��d	 . �39�

Equation �39� is formally equivalent to the corresponding
formula valid in an orthonormal basis,13 and indeed it re-
duces to it when the basis is orthonormal. However, it should
be remembered that all quantities entering Eq. �39� refer to
the new basis �as indicated by the tildes�, and that the cou-
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pling strengths, �̃L and �̃R, involve h̃ instead of h̃.
As the dual basis in most cases is not explicitly known it

is desirable to reexpress Eq. �39� in terms of the original
basis, that is, in terms of untilted quantities. For the GFs of
the central region we have the simple relation

G̃CC
x �	� � G

C̄C̄

x �	� = GCC
x �	� , �40�

where the second equality follows directly from Eq. �21�. As
for the �s we note that this relation holds in particular when

V̂int=0. In this case Eq. �16� establishes that GCC
r = ��	+S

−h�−1�CC. On the other hand G̃CC
r can be obtained from the

Dyson equation �36� using that G̃CC
0,r = �	+S̃CC

−1

− S̃CC
−1 h̃CCS̃CC

−1 �−1 which in turn follows from Eq. �14�. In terms
of self-energies we thus have

GCC
r = �	+SCC − hCC − �L

r − �R
r �−1, �41�

G̃CC
r = �	+S̃CC

−1 − S̃CC
−1 h̃CCS̃CC

−1 − �̃L
r − �̃R

r �−1, �42�

where24

��
r = �	+SC� − hC���	+S�� − h���−1�	+S�C − h�C� .

�43�

By equating Eqs. �41� and �42�, it follows after some matrix
algebra, that

�̃� = i���
r − ��

a� − 2i
SC�S��
−1 S�C → �� as 
 → 0, �44�

where ��= i���
r −��

a� and i
 is the imaginary part of 	+.
Equation �44� holds, of course, also when interactions are
present.

With Eqs. �40� and �44� we can state our main result,
namely an expression for the current in terms of quantities
which are all evaluated in terms of the original nonorthogo-
nal basis:

I =
i

4�
� Tr���L − �R�GCC

� + �fL�	��L − fR�	��R��GCC
r

− GCC
a ��d	 . �45�

A. Noninteracting electrons

In the special case of noninteracting electrons the Keldysh
equation21 for the lesser GF of the central region in combi-
nation with Eqs. �35�, �37�, and �38� yields

G̃CC
� = G̃CC

r ��̃L
� + �̃R

��G̃CC
a �46�

=G̃CC
r �fL�	��̃L + fR�	��̃R�G̃CC

a . �47�

�The Keldysh equation relies only on the temporal properties
of the various GFs and is therefore valid in any single-
particle basis.� Substituting this relation into Eq. �39� and
using the general result Gr−Ga=G�−G�, we obtain the fol-
lowing Landauer-type formula for the current,

I =
1

2�
� �fL�	� − fR�	��Tr�G̃CC

r �̃LG̃CC
a �̃R�d	 . �48�

By virtue of the identities �40� and �44� we can again reex-
press Eq. �48� in terms of quantities of the original basis:

I =
1

2�
� �fL�	� − fR�	��Tr�GCC

r �LGCC
a �R�d	 . �49�

This is the celebrated “trace-formula” which has been widely
used for numerical calculations of coherent transport. The
same formula has previously been derived by Xue et al. us-
ing a somewhat different approach involving transformations
to a real space representation.

B. Interactions

In the presence of interactions in the central region, the
current formulas �39� and �45� are exact provided the full

interacting Green’s function, G̃CC�=GCC�, is known. In this
section we address the evaluation of the interacting GF
within perturbation theory given a nonorthogonal basis. To
avoid any confusion we denote the GFs evaluated in the
presence of the coupling to the leads, but without the inter-
action, by the superscript “ni.” In the following we use the
idea of the “new basis” introduced in the beginning of Sec.
III without further explanations.

1. Electron-electron interactions

Assume that the electrons located in the central region can

interact through a two-body potential, V̂�2�. The direct basis
of H�2� consists of the tensor products ���i � ��j�, where
� ,�� �L ,C ,R�, while the new basis is obtained by replacing
�Ci by its dual �Ci. The limitation of interactions to the cen-
tral region means mathematically that the matrix element

V�i�j,�k�l= ���i � ��j�V̂�2����k � ��l	 is nonzero only when all
� ,� ,� ,�=S. Since the single-particle basis functions used in
the lead regions are the same in the new and the original

basis, the same holds for the matrix Ṽ, as well as for the

matrix Ṽ= �S̃�2��−1Ṽ�S̃�2��−1. The first claim can be verified by
expanding �Ci in terms of the direct basis
���Li� , ��Ci� , ��Ri�� according to Eq. �19�, and the second
then follows from direct calculation using Eqs. �7� and �28�.

As described in Sec. II A, the second quantized version of

V̂�2� in the new basis reads

V̂int =
1

2

ijkl

ṼCiCj,CkClcCi
† cCj

† cClcCk. �50�

By direct calculation it can be shown that Ṽ=V, and thus

V̂int =
1

2

ijkl

VCiCj,CkClcCi
† cCj

† cClcCk. �51�

Treating V̂int as a perturbation to the noninteracting Hamil-

tonian, ĥ= ĥ0+ ĥcoup, the corrections �diagrams� to the nonin-
teracting GF of the central region should thus be evaluated
according to the usual Feynman rules using V as the coupling
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matrix and G̃CC
ni as the free propagator, see last paragraph of

Sec. II B. From Eq. �40� we get that G̃CC
ni =GCC

ni , and conse-
quently we have established the perturbation series for the

central object of the current formula, G̃CC, in terms of V and
GCC

ni , i.e., quantities referring to the original basis.

2. Electron-phonon interactions

The interaction between the electron system and a single
vibrational mode is, to first order in the ion displacements,
described by an operator of the generic form:

V̂int = v�1��r��b + b†� . �52�

Here b† ,b are creation and annihilation operators acting on
the phonon system, and v�1��r� is a one-body potential acting
on the electrons. v�1� is obtained by differentiating the
electron-ion potential, Vel-ion�r ,R�, with respect to the ion
coordinates in the direction of the vibration under consider-
ation; see, e.g., Ref. 22. The restriction of interactions to the
central region implies that v�i,�j = ���i�v�1����j	 is nonzero
only when � ,�=C. Physically this means that the vibration
does not distort the potential felt by an electron outside the
central region. According to Eq. �5�, the matrix that is rel-
evant for the second quantized form of v�1� in the new basis,

is ṽ= S̃−1ṽS̃−1. Using the expansion �19� and the block diag-

onal form of S̃ �see Eq. �28��, it is straightforward to estab-
lish that ṽ=v. The second quantized version of Eq. �52� thus
reads

V̂int = 

ij

vCi,CjcCi
† cCj�b + b†� . �53�

Considering V̂int as a perturbation to the noninteracting
Hamiltonian, ĥ= ĥ0+ ĥcoup, the diagrams generated by the in-
teraction should thus be evaluated using v as the coupling
matrix and G̃CC

ni �=GCC
ni � as the free propagator; see the last

paragraph of Sec. II B.

IV. SUMMARY

The use of localized basis sets in electronic structure cal-
culations calls for general formulations of applied physical
theories taking the nonorthogonality of the basis into ac-
count. In this paper, I have presented a general form of the
second quantization formalism and Green’s function theory
which is valid in a nonorthogonal basis, and used it to obtain
a nonorthogonal version of Eqs. �6� and �7� in Ref. 13 for the
current through an interacting electron region. The main
problem in deriving the generalized current formula, namely
that the lead subspaces are not orthogonal to the central re-
gion subspace, was solved by replacing the basis functions of
the central region by the corresponding elements of the dual
basis. This simply amounts to a basis change, under which
the central region subspace becomes orthogonal to the leads.
The nonorthogonality of the basis functions within each of
the regions was handled by applying the generalized form of
the second quantization and Green’s function formalisms. Fi-
nally, the appropriate nonorthogonal form of the perturbation
expansion for the Green’s function was established for the
case of electron-electron and electron-phonon interactions in
the central region.
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