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The dynamics in a GaAs-type quantum dot induced by excitation with Gaussian laser pulses of arbitrary
duration are calculated in the density matrix formalism using the correlation expansion. In particular the
back-action of nonequilibrium phonons, i.e., the coherent phonon amplitude and the nonequilibrium phonon
occupation, on the electronic two-level system are studied. We find that especially for long pulses and low
temperatures nonequilibrium phonons play an important role and cannot be neglected.
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I. INTRODUCTION

Semiconductor quantum dots �QDs�, sometimes also
called artificial atoms, combine useful properties of atoms
and semiconductors. They have a discrete level structure
similar to the former and provide for the possibility to be
implemented into electronic devices based on semiconductor
materials. Therefore they are attractive candidates for opto-
electronic applications such as new types of lasers,1 single
photon sources,2 quantum encryption devices,3 or qubits in
quantum computers.4,5

Most of these applications require quantum mechanical
coherence, e.g., to coherently control a qubit by field-
induced Rabi oscillations. One of the various conceivable
realizations of a qubit is to consider the presence or absence
of an exciton as the two level states. Encouragingly, Rabi
oscillations of excitons have already been observed
experimentally.6–12 However, there are several mechanisms
that may cause decoherence. Some of them are related to the
specific experimental set up, e.g., tunnel couplings if currents
in photodiodes are measured9 or the decay to the exciton
ground state if excited state Rabi oscillations are
studied.8,11,13 Other sources of setup related decoherence are
inhomogeneous broadening due to the distribution of dipole
moments in QD ensembles10 or strong coupling to the radia-
tion field for QDs created by interface fluctuations caused by
their large dipole moments.6 Further processes that lead to
relaxation are radiative decay,14–16 anharmonic phonon
couplings,17,18 charge fluctuations in the surrounding
environment,19 or off-resonant excitation of wetting layer
states.20 In this paper we will study Rabi oscillations in the
exciton system focussing on decoherence and unitary correc-
tions caused by carrier coupling to the lattice modes which
may become the dominant mechanism in typical self-
assembled QDs. Although phonon-mediated real transitions
are suppressed in QDs due to their discrete level structure,
elastic scattering with the phonons, so-called “pure dephas-
ing,” may lead to the loss of the phase relation between the
levels. It thus can impede coherent control. Pure dephasing
has been studied in various theoretical works21–29 and good
agreement with experiments26 shows that it describes very
well the initial dephasing after excitation by ultrashort
pulses. This initial decoherence evolves on much shorter
time scales than the other relaxation processes listed above.

It is of exclusively quantum mechanical and non-Markovian
nature. The latter manifests itself in physically interesting
properties such as a non monotonous temperature
dependence26 and a nonexponential time dependence25,26,28,30

of the initial decay, correlated to non-Lorentzian spectra.25,29

A full understanding of the processes going on between
the carriers and the phonon system on short time scales re-
quires insight not only into the carrier but also into the pho-
non dynamics. While nonequilibrium phonons have been
subject to extensive studies in extended semiconductors,31–38

to the best of our knowledge the back action of nonequilib-
rium phonons on the carrier dynamics in a QD has not been
investigated so far. Many studies of the carrier-phonon dy-
namics in QDs have concentrated on ultrafast �� pulse�
excitations.25,27–29,39 However, since in the pure dephasing
model the electron density can only be affected during the
pulse, it is impossible to examine how the nonequilibrium
phonons, which are generated by the charge modifications in
the dot, act back on the carrier dynamics in the case of a �
pulse. Whenever longer pulses have been considered the role
of nonequilibrium phonons has either not been adressed23,24

or they have been neglected.21,22

In this paper we will present a study on the back action of
nonequilibrium phonons on the optical induced dynamics of
a QD during excitation by Gaussian pulses of arbitrary
length. For the coupling to phonons we will concentrate on
pure dephasing processes which are described by the inde-
pendent Boson model, disregarding the relaxation mecha-
nisms that evolve on longer time scales. In the case of ul-
trafast excitation the coupled carrier-light carrier-phonon
model even provides analytical solutions. For finite pulse
durations, however, approximation schemes have to be ap-
plied. We treat the dynamics in the density matrix formalism.
To truncate the infinite hierarchy of phonon-assisted density
matrices we will resort to the correlation expansion40 where
we account for all single and double assisted density matri-
ces as well as for coherent phonon amplitudes and nonequi-
librium phonon occupations and correlations. Density matri-
ces involving only phonon operators describe the
nonequilibrium properties of the phonon system. By compar-
ing calculations where these variables are set to their thermal
equilibrium values with results where the full nonequilibrium
dynamics is kept we can identify the influence of the non-
equilibrium phonons.
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The paper is organized as follows. In Sec. II we will in-
troduce the dynamical variables and derive the equations of
motion in the correlation expansion. After this we will briefly
compare the approximative result with the exact analytical
solution in the case of a �-pulse excitation in Sec. III A.
Section III B is then devoted to calculations of Rabi oscilla-
tions of the electron density. The paper ends with a summary
and conclusions.

II. THEORY

We consider a QD with well separated sublevels such that
we can concentrate on the optical transitions from the upper-
most level in the valence band to the lowest conduction band
state. Our Hamiltonian is the standard Hamiltonian for pure
dephasing as already introduced in Refs. 25, 28, 29, and 41:

H = ��c†c − �M · E�+�c†d† + M* · E�−�dc� + �
q

��qbq
†bq

+ �c†c�
q

�gqbq + H.c.� . �1�

Here the Fermi operators c†, c�d† ,d� create or annihilate an
electron �hole�. The gap energy �� may also include exci-
tonic renormalizations.39,42 The interaction of the carriers
with an external laser field is considered in dipole and rotat-
ing wave approximation and we denote the dipole matrix
element by M and the positive �negative� frequency compo-
nent of the electric field by E�+� �E�−��. The Bose operator
bq

†�bq� creates �annihilates� a phonon with wave vector q and
energy ��q. We have made use of the fact that, if we start
with an initially empty dot, electron and hole numbers are
always equal, so that c†c=d†d, which allows us to write the
carrier-phonon coupling in a compact form by introducing
the coupling element gq=gq

e −gq
h. The matrix elements gq

e/h

for a spherical QD with Gaussian wave functions for the
electron/hole are given explicitly in Ref. 28. We will concen-
trate on the deformation potential coupling to longitudinal
acoustic phonons as it is known to cause the main contribu-
tion to the dephasing in typical III–V QDs without strong
electron-hole separation on the time scales which will be
studied here.21,25,26,29,39 Especially the polar coupling to LO
phonons in our system is very weak already in the � pulse
limit.29 For finite pulses it will decline even more since the
LO-phonon sidebands will no longer be excited by a spec-
trally sharper pulse. The dispersion relation of the LA
phonons is assumed to be linear, �q=cLq, where cL is the
longitudinal sound velocity and q denotes the modulus of the
wave vector q. Deviations from the linear dispersion are
known to be of minor importance for the decoherence of
typical QDs.29 Also refinements like the assumption of more
realistic carrier wave functions only lead to small quantita-
tive deviations of the result.39 We estimate that including
confined phonon modes in dots as described, e.g., in Ref. 43
would not alter much of the results. In contrast to the case of
LO phonons effects due to size quantization for the LA-
phonon modes are pronounced only if the elastic properties
of the embedding material differ considerably from those of
the dot44,45 which is not the case here. Within this simple

model good agreement with experiments has been
achieved.26

In our calculations the material parameters are the same
as in Ref. 28, apart from the deformation potential constant
De/h for electrons/holes and the localization lengths of the
electron/hole ae/h. Here we use De=7.0 eV and Dh

=−3.5 eV as in Ref. 26; the localization length of the elec-
tron has been chosen ae=3 nm which corresponds to a full
width of half maximum of the electron density of about
5 nm. The ratio ah /ae=0.87 results from the assumption of
equal potential shapes for electrons and holes.29

We shall use the correlation expansion within the density
matrix approach to calculate the dynamical variables of the
electronic subsystem. These are the electron density f
= �c†c� and the interband polarization p= �dc�, which is re-
lated to the complex polarization vector by P=M*p. Due to
the coupling to the phonons we will have to deal with a
hierarchy of phononic and phonon-assisted density
matrices.46,47 For the phonons, since there is no number con-
servation, the lowest order density matrix is the coherent
phonon amplitude Bq=gq�bq�. For convenience the coupling
matrix element has been included in the last definition.
Within the correlation expansion all higher order dynamical
variables are then constructed from the respective higher or-
der density matrices by subtracting all possible factorizations
into lower order density matrices, e.g., for the two-phonon
correlation

nq,q� = gq
*gq��bq

†bq�� − Bq
*Bq� = gq

*gq���bq
†bq�� . �2�

The equations of motion for the already introduced quan-
tities read

d

dt
f = −

i

�
�M* · E�−�p − M · E�+�p*� , �3�

d

dt
p = − i�� + 2�

q
Re�Bq��p + i

M · E�+�

�
�1 − 2f�

− i�
q

�tq
�+� + tq

�−�� , �4�

d

dt
Bq = − i�qBq − i�gq�2f , �5�

d

dt
nq,q� = i��q − �q��nq,q� + i�gq�2sq� − i�gq��

2�sq�*, �6�

where Re�¯� denotes the real part. Obviously this set of
equations is not closed, but as a result of the above men-
tioned hierarchy problem the equations for p and nq,q� con-
tain phonon-assisted correlations

tq
�+� = gq�dcbq� − pBq = gq��dcbq� ,

tq
�−�=gq

*��dcbq
†� and sq=gq��c†cbq�. The truncation of this hi-

erarchy is now based on the expectation that the correlations
become less important with increasing number of involved
particles, i.e., increasing number of operators involved in the
correlation.
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In the second order of the correlation expansion which is
often employed for higher dimensional systems we would
neglect all four-operator entities, which corresponds to the
second order Born approximation. However, it turns out to
be necessary for our purposes to proceed one step further in
the correlation expansion.21,22 In addition to the variables
already introduced, we thus have to include the following
dynamical variables: a second phonon coherence containing
two phonon operators

nq,q�
�+� = gqgq���bqbq��

as well as the two-phonon assisted correlations

Tq,q� = gq
*gq���dcb†

qbq��, Sq,q� = gq
*gq���c†cbq

†bq�� ,

Tq,q�
�+� = gqgq���dcbqbq��, Sq,q�

�+� = gqgq���c†cbqbq�� ,

Tq,q�
�−� = gq

*gq�
* ��dcbq

†bq�
† � .

Finally there are the coherences and correlations of three
phonon operators

Nq,q�,q�
�+� = gqgq�gq���bqbq�bq�� ,

Nq,q�,q�
�−� = gq

*gq�gq���b†
qbq�bq�� .

The remaining equations of motion are given in the appen-
dix. In principle also the four-phonon correlations should be
included. However, on the present level they do not couple
back to the other variables and therefore they are not calcu-
lated. In addition we have checked that the influence of the
three-phonon variables Nq,q�,q�

�±� on the carrier dynamics for
all parameters used is negligible. Therefore they are not in-
cluded in the calculations shown in this paper.

The system of equations of motion now is complete up to
third order in the correlation expansion and without any ex-
plicit approximations made with respect to the carrier-field
interaction. Thus, the light field coupling is treated nonper-
turbativly and all one- and two-phonon processes are in-
cluded exactly. In contrast to strict perturbation theory with
respect to the carrier-phonon coupling also all sequences of
one- and two-phonon processes are fully included. These de-
scribe repeated one- or two-phonon scattering events �for a
comparison of results obtained by applying either the corre-
lation expansion or the perturbation theory see Ref. 41�. The
level of truncation applied here was also employed in the
calculations in Refs. 21 and 22 where the validity of the
expansion has been checked by comparison with the known
analytical solution for the linear response after a �-pulse ex-
citation, i.e., without nonequilibrium phonons.

Our calculations always start with an unexcited electronic
system and the lattice at thermal equilibrium. Initially, the
only nonvanishing variable is thus nq,q�= �gq�2nq

0�q,q� with
nq

0= 	exp���q /kBT�−1
−1, where kB is Boltzmann’s constant.
Neglecting nonequilibrium phonons then means that we keep
all pure phonon variables, i.e., Bq, nq,q�, and nq,q�

�+� , at their
initial thermal values. By comparing such calculations with
the full solution of the equations of motion, we can clearly

identify the role of nonequilibrium phonons in the numerical
results presented in the following sections. We want to re-
mark that it makes a difference whether one leaves out the
non equilibrium phonons already in the definition of the cor-
related dynamical variables �such that tq

�+�=��dcbq�= �dcbq��
or after having setup the equations of motion. This is because
the factorized parts consisting of nonequilibrium phonon
variables lead to source terms in the equations of motion of
other correlations and not all of these source terms vanish
after setting the non equilibrium phonon variables to zero.
For example the term −ip�gq�2f in Eq. �A2�, which stems
from the equation of motion of the coherent phonon ampli-
tude, would not be present if Bq had been neglected already
in the definition of tq

�−�.

III. RESULTS

A. Ultrafast excitation: Comparison with exact results

In the case of excitation by a single �-shaped pulse or a
series of �-shaped pulses the exact analytical solutions for all
electronic, phononic, and phonon-assisted density matrices
are known.25 Therefore we first tested the influence of the
nonequilibrium phonons by applying �-pulse excitations and
taking the exact solution as a reference. The results are
shown in Fig. 1 where we have plotted the absolute square of
the polarization after a � pulse, normalized to its maximum
value at t=0 ps, for different rotation angles, i.e., for differ-
ent final electron densities, and different temperatures.

Figures 1�a� and 1�b� show the polarization at temperature
T=0 K, in �c� and �d� the polarization is taken at T=77 K. In
Figs. 1�b� and 1�d� nonequilibrium phonons are included
whereas in Figs. 1�a� and 1�c� they are left out.

Interestingly, at low temperatures the polarization calcu-
lated without nonequilibrium phonons 	Fig. 1�a�
 turns out to
be strongly dependent on the rotation angle. This, however,
is an artifact, as the exact result for the normalized polariza-
tion �dash-dotted line� is known to be independent of the
rotation angle. Including the nonequilibrium phonons 	Fig.

FIG. 1. Normalized polarization after a �-pulse excitation for
different rotation angles �. Left column: calculations without non-
equilibrium phonons; right column: full calculations. �a� and �b�
temperature T=0 K, �c� and �d� T=77 K. Solid line: � /2-pulse;
dashed line: � /4-pulse; dotted line: � /10-pulse; dash-dotted line:
exact result.
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1�b�
 gives a far better approximation of the exact result.
Here the dependence on the rotation angle is only very weak.

The difference between Figs. 1�a� and 1�b� is exclusively
and in almost equal parts due to nonequilibrium phonon cor-
relations and coherences, nq,q� and nq,q�

�+� , whereas the coher-
ent phonon amplitude Bq does not play any role for the po-
larization after a � pulse excitation. In the following it will
not be necessary to distinguish between nq,q� and nq,q�

�+� and
we will refer to both entities as nonequilibrium occupations.

At higher temperatures the difference between the right
and the left column disappears. The effect of the nonequilib-
rium phonons has been washed out by thermal phonons.
Thus, we have seen that indeed on the present level the cor-
relation expansion agrees well with the exact results. How-
ever, at low temperatures it is essential to include nonequi-
librium phonons. This holds even for weaker electron-
phonon coupling �larger QDs� which does not change the
results shown in Fig. 1 in a qualitative way.

It turns out that also for finite pulse durations nonequilib-
rium phonons are less important at T=77 K. Therefore, in
the following we will restrict ourselves to the case of low
temperatures, i.e., T=0 K.

B. Rabi oscillations

While the exact solution for the dynamical variables is
only known for �-pulse excitations, the correlation expansion
provides the possibility to study also pulses of longer dura-
tion. Here we will model the light field by Gaussian laser
pulses

E�+��t� = E�−�*�t� = Ẽ�t�e−i�t, �7�

Ẽ�t� = E0 exp�−
1

2
� t

�0
�2� . �8�

In the following the laser pulses will be characterized by
their full width at half maximum of the intensity �, which is
related to �0 by �=2
ln 2�0.

Again we will analyze the differences between calcula-
tions including nonequilibrium phonons and those without
them. But in this section we will concentrate on their effect
on the electron density f .

In Fig. 2 we have plotted the real time dynamics of the
electron density during an �=4�-pulse of duration �=1 ps,
where � is defined as the nominal rotation angle

� =
2

�
�

−	

	

dt�M · Ẽ�t�� . �9�

The solid lines show the results obtained where nonequilib-
rium phonons were included, the dashed lines those where
they were left out. The dotted lines refer to a calculation
without carrier-phonon coupling. In Fig. 2�a� the central laser
frequency has been chosen to be

� = �̄ = � − �
q

�gq�2

�q
, �10�

i.e., the polaron shifted transition frequency, whereas Fig.
2�b� shows the dynamics during a pulse of central frequency

�=�, i.e., at the bare electron �exciton� energy. The polaron

shifted frequency �̄ determines the position of the resonance
in the linear absorption, while � indicates where this reso-
nance would be if it were possible to switch off the carrier-
phonon interaction.

Without the coupling to the phonon system, the electron
occupation undergoes a perfect 4� rotation �dotted line�.
However, the interaction with the lattice modes induces a
dephasing and thus inhibits a fully coherent control, so the
density cannot be driven back to the initial value zero. The
comparison in Fig. 2�a� shows that the amount of the phonon
induced decoherence is only very slightly increased by in-
cluding nonequilibrium phonons in the calculation. The ad-
ditional dephasing again is due to the nonequilibrium phonon
occupations, while the coherent phonon amplitudes do not
produce any effect.

Figure 2�b�, where the excitation has been tuned to the
bare electron energy �, shows almost the same result as Fig.
2�a�. For the present case of a 1 ps pulse this has to be
expected since its spectral width is larger than the small po-

laron shift of ���−�̄��0.18 meV.
But let us now come to longer pulses. Figure 3 shows the

real time dynamics of the electron occupation during a �
=12 ps pulse. Again in Fig. 3�a� the laser frequency is �

=�̄ and in �b� the system is excited with �=�. Now there
are clearly visible differences. In the upper figure the Rabi
rotations including nonequilibrium phonons �solid line� are
typical of a resonant excitation. During the first Rabi flop the
electron occupation comes even closer to the values zero and
one than during the 1 ps pulse. An explanation for this is that
because of the slower charge modification the lattice can
follow almost adiabatically whereas a pulse duration of 1 ps
is close to the characteristic time scale of the phonon
dynamics,24 which is about a few picoseconds, and so the

FIG. 2. Rabi oscillation during a nominal 4� pulse with �

=1 ps at temperature T=0 K. �a� Excitation at �=�̄; �b� excitation
at �=�. Solid line: nonequilibrium phonons �NEP� included;
dashed line: without nonequilibrium phonons; dotted line: ideal
Rabi oscillations for resonant excitation without phonon coupling.
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interaction is enhanced. It should be noticed that although �
has been chosen to be 4�, the electron occupation seems to
perform a rotation of an effective angle �eff
�. Such a de-
viation from the nominal rotation angle is already known
from earlier studies,21,23,41 where it was found to be intensity
dependent.

The calculation without nonequilibrium phonons �dashed
line� exhibits diminished amplitudes, however, the system
here also seems to suffer only little decoherence since the
amplitudes do not decrease. Furthermore we observe that the
Rabi frequency is increased in comparison to the nominal
one, as the occupation seems to undergo a 4.5� rotation.
Such behavior would have been expected for off-resonant
excitation. In particular, for the case of monochromatic exci-
tation of an isolated two-level-system it is possible to give an
explicit formula for the electron density. Assuming f�0�=0 it
reads48

f�t� =
�R

2

�̃2
sin2 �̃t �11�

with �R=M · Ẽ /� and

�̃ =
�R
2 + ���

2
�2

, �12�

where �� is the deviation from the resonance frequency.
Obviously, Eq. �11� predicts a shift of the Rabi frequency
given by Eq. �12� as well as a reduction of the amplitude
of the rotations, similar to what we find numerically in
Fig. 3�a�.

Figure 3�b� looks quite complementary to Fig. 3�a�, where
the laser frequency is �=�. Here, the full calculation with
nonequilibrium phonons �solid line� only leads to off reso-
nant Rabi oscillations of reduced amplitude but increased

Rabi frequency �̄ 	compared to Fig. 3�a�
. In addition the
curve is slightly shifted upwards. This can be explained by

the fact that above the frequency �̄ there is a continuum of
possible phonon-assisted excitations.

The curve calculated without nonequilibrium phonons
�dashed line�, on the other hand, seems to be much better in
resonance as the density nearly reaches the value one. The
rotation angle, however, is effectively only about 3� instead
of the nominal value 4�. The different resonance behavior
for calculations with or without nonequilibrium phonons is
surprising, because the polaron shift is already inherent in
the linear absorption spectrum where the nonequilibrium
phonons do not enter. Therefore in both calculations the lin-
ear absorption has its resonance at the phonon shifted fre-

quency �̄.
To see the effect of the intensity-dependent rotation angle

more clearly, and also because it is experimentally better
accessible, we show in Fig. 4 the final electron occupation
after a 12 ps pulse as a function of the nominal pulse area �,
again for the two different excitation frequencies. In Fig. 4�a�
the occupation calculated with nonequilibrium phonons in-
cluded exhibits rather good Rabi oscillations, although with
increasing pulse area a stronger decoherence becomes vis-
ible. Also the extrema deviate increasingly from their nomi-
nal positions at integer multiples of � which confirms again
that �eff is intensity dependent.

The graph looks totally different calculated without non-
equilibrium phonons. Here the amplitudes of the oscillations
do not exceed the value 0.5 and, although the system is ex-
cited at the linear absorption energy, the Rabi frequency is
evidently increased as it would be expected for off-resonant
excitation. Note that for higher field intensity the occupation
number even reaches unphysical negative values at the
minima, which is a clear indication of the inconsistency of
the model if nonequilibrium phonons are neglected. A similar

FIG. 3. Rabi oscillation during a nominal 4� pulse with �

=12 ps at temperature T=0 K. �a� Excitation at �=�̄; �b� excita-
tion at �=�. Solid line: nonequilibrium �NEP� phonons included;
dashed line: without nonequilibrium phonons; dotted line: ideal
Rabi oscillations for resonant excitation without phonon coupling.

FIG. 4. Occupation of the upper level vs pulse area after a �

=12 ps pulse at T=0 K. �a� Excitation at �=�̄; �b� excitation at
�=�. Solid line: nonequilibrium phonons included; dashed line:
without nonequilibrium phonons.
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unphysical behavior has been reported for calculations in-
volving a single optical phonon mode when nonequilibrium
phonons were neglected.49

In Fig. 4�b�, where the excitation frequency is �=�, the
calculation without nonequilibrium phonons seems to un-
dergo resonant Rabi oscillations, since the occupation
reaches the value one, though the rotation angle is consider-
ably shifted. In contrast, the full calculation exhibits clearly
an off resonant behavior. The amplitude of the oscillations is
strongly reduced and for stronger fields there is a significant
electron density due to phonon assisted excitation.

Let us now take a look at the equations of motion to see
where the differences might stem from. We notice that the
coherent phonon amplitudes only occur in combination with
the bare gap energy �. Namely, in the homogeneous part of
Eq. �4� and all other equations of motion for phonon assisted
density matrices containing the operator dc. In these terms
the sum over the real parts of the coherent phonon ampli-
tudes �1/���=2�qRe�Bq� modifies � in an electron density
and time dependent manner. Physically the coherent phonon
amplitudes can be related to a relative volume change27

which is experimentally observable.50

Figure 5 shows the real-time dynamics of � for a pulse
duration of 1 ps �a� and for 12 ps �b�. From Eq. �5� it is clear
that the coherent amplitudes follow the electron occupation
similar to a driven harmonic oscillator, only with the oppo-
site sign. But as the laser pulse in Fig. 5�a� is short compared
to the characteristic times of the phonon coupling, the dy-
namics are retarded with respect to f . The minima are not
distributed symmetrically around t=0 ps, but they are de-
layed by about half a picosecond and they are of different
heights. This retardation reflects that the phonon system has
a memory which turns the phonon expectation values on
these time scales into independent variables. For the long
pulse in Fig. 5�b�, however, this delay is negligible and �
reflects almost exactly the electron dynamics. The coherent
phonon amplitudes thus seem to compensate the effect of the
charge modification on the transition frequency and to keep
it stable at the polaron shift, in contrast to the calculation
without nonequilibrium phonons. From Eqs. �5� and �10� we
estimate that in the adiabatic limit for integer multiples of
�=2� and resonant excitation, where the average electron
density is one half, the average of � should be given by the

polaron shift ���̄−�� �here about 0.18 meV� which agrees
pretty well with the average value of the solid line in
Fig. 5�b�.

For long pulses mainly the coherent phonon amplitude
turns out to be responsible for the different results for calcu-
lations with or without nonequilibrium phonons. In this limit
the nonequilibrium phonon occupations are almost negli-
gible. On the contrary, for short pulses the coherent phonon
amplitudes do not play a role, as already stated before, since
they exclusively contribute to the transition frequency. The
resulting changes of the resonance, however, can only be
resolved in the case of sufficiently long pulses corresponding
to sharp pulse spectra.

For larger QDs the effects due to the coherent phonon
amplitudes are much less pronounced for the pulse durations
we are here dealing with, though still clearly perceptible at
least at low temperatures. This reflects the weaker carrier-
phonon coupling strength for larger dots. It would thus need
longer pulses to spectrally distinguish the energies ��̄ and
�� and see the effects as clearly as for a 3 nm QD.

Figure 6 shows Rabi oscillations as a function of the
nominal pulse area � for excitation with four different pulse
durations at the correct transition frequency �=�̄. For a very
short pulse 	0.2 ps in Fig. 6�a�
 we find almost perfect oscil-
lations since the pulse duration is too short for the phonon
system to react and after the pulse the occupation cannot be
changed anymore. Intermediate pulse lengths 	1.0 and 3.0 ps
in Figs. 6�b� and 6�c�
 lead to increased decoherence as these
durations are in the range of the phonon-induced time scales.
By enlarging the pulse duration 	12 ps in Fig. 6�d�
 the qual-
ity of the oscillation gets better again, because the phonon
system is now able to follow the carrier dynamics adiabati-
cally. This nonmonotonous dependence on the pulse duration
reflects the non-Markovian character of the carrier-phonon
interaction. Similar results were also found in Refs. 21 and
22. The calculations there were done for larger dots and at
T=77 K. In agreement with our findings the authors have
noted that nonequilibrium phonons are of minor importance
for the cases studied there. However, this does not hold for
lower temperatures.

It is instructive to take a look at the total number of
phonons 	see Eq. �2�


N = �
q

�bq
†bq� = �

q

1

�gq�2
�nq,q + �Bq�2� .

We have plotted N in Fig. 7 as a function of the rotation
angle � for times long after the pulse so that f and p have

FIG. 5. Real-time dynamics of � for excitation with �=�̄ �solid
line� and �=� �dashed line�: �a� �=1.0 ps, �b� �=12.0 ps at tem-
perature T=0 K.

FIG. 6. Occupation of the upper level vs pulse area for different

pulse lengths after an excitation at �=�̄ for temperature T=0 K.
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reached their final value. The solid lines refer to the excita-
tion at �=�̄ whereas excitation with �=� is plotted with
dashed lines. The pulse durations are the same as in Fig. 6.
There is a clear correlation between the quality of the Rabi
oscillations in Fig. 6 and the behavior of the corresponding
total phonon number �solid lines�. The short pulse limit in
Fig. 7�a� can be understood by the analytical results obtained
for �-pulse excitation:25 the number of generated phonons is
strictly related to the electron density and therefore exhibits
nearly perfect oscillations; one half of the generated phonons
stays in the dot region and builds up the polaron complex,
the other half leaves the dot in form of a phonon wave
packet. Of course, these dynamics cannot have any impact
on the electron occupation, because the phonons are gener-
ated after the pulse when f can no longer be changed by pure
dephasing processes. We would like to remark that emission
of phonon wave packets from optically excited quantum dots
has already been observed in bolometric experiments.51,52 In
Fig. 7�b�, i.e., for �=1 ps, where the corresponding electron
occupation already suffers some decoherence, we see that the
total phonon number first takes the same rise as in �a�. But
while for a delta pulse the phonon generation must be sym-
metric around �=�, for longer pulses memory processes
come into play so there is phonon production during and
after the charge rotation. The phonons that are not involved
in the building of the polaron leave the dot and cannot be
removed anymore.25,39,53

Similar to Fig. 7�b� we observe in Fig. 7�c� that the pho-
non production is no longer strictly related to the electron
dynamics due to memory effects and the generation of leav-
ing wave packets. The phononic expectation values become
independent variables. However, for the 3 ps pulse the in-
crease of the total phonon number with the pulse area is first
weaker and then stronger than for the 1 ps pulse. Further-
more we note that the system is more frequency selective.

The difference between excitation at �=�̄ �solid line� and
excitation at �=� �dashed line� is much more pronounced
than in Fig. 7�b�. In both situations the off-resonant excita-

tion at �=���̄ �dashed line� leads to phonon assisted ex-
citations and thus to an enhanced phonon generation.

In the case of the �=12 ps pulse in Fig. 7�d� the maxi-

mum value for excitation at �=�̄ �solid line� is only half the

maximum value from Fig. 7�a� indicating adiabatic dynamics
where only the polaron is built up. Similar to the polaron the
total phonon number exhibits oscillatory dependence on the
pulse area. For excitation at �=�, however, the shape rather
resembles a parabola, i.e., it is essentially proportional to the
total pulse intensity. Here the excitation energy lies in the
continuum of the phonon sideband and the phonons are cre-
ated in the phonon-assisted optical transition.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a study on the back action
of nonequilibrium phonons, i.e., the nonequilibrium correla-
tions and coherences and the coherent phonon amplitudes, on
the carrier dynamics in a GaAs quantum dot for excitation by
a Gaussian laser pulse of arbitrary duration. The role of these
nonequilibrium phonons in the case of excitation with pulses
of finite duration has not been addressed previously. Working
in the density matrix formalism we employed the correlation
expansion to truncate the hierarchy of density matrices in a
systematic manner. By comparison with the exact analytical
result known for �-pulse excitation we determined the re-
quired level of truncation. It turned out that for low tempera-
tures it is vital to include the nonequilibrium phonons, be-
cause neglecting the nonequilibrium phonon occupation
leads to an artificial dependence on the pulse area. For el-
evated temperatures, however, thermal phonons dominate the
phonon occupations and therefore this effect is washed out
and the difference between the calculations with or without
the nonequilibrium phonons vanishes.

For finite pulses we studied the influence of the nonequi-
librium phonons on the dynamics of the electron density. The
nonequilibrium phonon occupations mainly contribute to the
relaxation dynamics of the polarization after the pulse, when
processes of pure dephasing cannot change the electron oc-
cupation anymore. Thus they have only a minor impact on
the electron density. The coherent phonon amplitudes enter
the equations of motion only as a renormalization of the
transition frequency. Therefore in the case of short laser
pulses their impact can hardly be seen. However, with in-
creasing pulse duration and hence increasing spectral sharp-
ness the role of the coherent phonon amplitudes becomes
important. It stabilizes the position of the transition energy at
the polaron shift by following the dynamics of the charge
density during the Rabi oscillations. Calculations without
nonequilibrium phonons, in particular without coherent pho-
non amplitudes, exhibit off resonant behavior for excitation
at the polaron shifted frequency. This is clearly unphysical,
since the polaron shift constitutes the resonance in the linear
absorption spectrum and thus the excitation is in resonance.
In addition even unphysical negative values are reached. The
full calculation, in contrast, shows neither the latter incorrect
features nor such a strong density dependence of the polar-
ization for �-pulse excitation 	Fig. 1�b�
, but provides sen-
sible results over a wide parameter range with respect to the
dot size as well as to temperature.

These findings underline that in general it is inconsistent
and therefore not justified to disregard the nonequilibrium
phonons in the systematic correlation expansion, though for

FIG. 7. Total phonon number vs pulse area for different pulse

lengths after excitation at �=�̄ �solid lines� and excitation at �
=� �dashed lines� for temperature T=0 K and t→	.
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larger QDs and higher temperatures these deviations from
the full calculation may be less pronounced and sometimes
even negligible.21,22 In addition, the study of the purely
phononic density matrices gives an interesting insight into
how the lattice acts back on the carrier dynamics.
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APPENDIX A: EQUATIONS OF MOTION

For completeness we show here all the equations of mo-
tion which are not given explicitly in Sec. II. For the phonon
assisted density matrices we have

d

dt
tq
�+� = − i�� + �q + 2�

q�

Re�Bq���tq
�+� − ip��gq�2�1 − f�

+ �
q�

�nq,q�
�+� + nq�,q�� − i�

q�

�Tq,q�
�+� + Tq�,q�

− 2i
M · E�+�

�
sq, �A1�

d

dt
tq
�−� = − i�� − �q + 2�

q�

Re�Bq���tq
�−� − ip��gq�2f

+ �
q�

gq�	nq,q� + �nq,q�
�+� �*
� − i�

q�

�Tq,q� + Tq,q�
�−� �

− 2i
M · E�+�

�
sq

* , �A2�

d

dt
sq = − i�qsq − i

M

�
	E�−�tq

�+� − E�+��tq
�−��*
 − i�gq�2f�1 − f� .

�A3�

The equation of motion for the two-phonon correlation nq,q�
�+�

reads

d

dt
nq,q�

�+� = − i��q + �q��nq,q�
�+� − i�gq�2sq� − i�gq��

2sq. �A4�

Furthermore we have the equations of motion for the two-
phonon assisted correlations Tq,q�, Tq,q�

�+� , Tq,q�
�−� , Sq,q�, and

Sq,q�
�+� which are given by

d

dt
Tq,q� = − i�� − �q + �q� + 2�

q�

Re�Bq���Tq,q� − i��gq��
2�1 − f� + �

q�

	nq�,q�
�+� + nq�,q�
�tq

�−� − i��gq�2f + �
q�

	nq,q� + �nq,q�
�+� �*
�tq�

�+�

− 2i
M · E�+�

�
Sq,q� + i	�gq��

2�sq�* − �gq�2sq�
p − ip�
q�

	Nq,q�,q�
�−� + �Nq�,q,q�

�−� �*
 , �A5�

d

dt
Tq,q�

�+� = − i�� + �q + �q� + 2�
q�

Re�Bq���Tq,q�
�+� − i��gq��

2�1 − f� + �
q�

�nq�,q�
�+� + nq�,q���tq

�+� − i��gq�2�1 − f� + �
q�

�nq,q�
�+�

+ nq�,q��tq�
�+� − 2i

M · E�+�

�
Sq,q�

�+� + i	�gq��
2sq + �gq�2sq�
p − ip�

q�

�Nq,q�,q�
�+� + Nq�,q,q�

�−� � , �A6�

d

dt
Tq,q�

�−� = − i�� − �q − �q� + 2�
q�

Re�Bq���Tq,q�
�−� − i��gq��

2f + �
q�

	nq�,q� + �nq�,q�
�+� �*
�tq

�−� − i��gq�2f + �
q�

	nq,q� + �nq�,q
�+� �*
�tq�

�−�

− 2i
M · E�+�

�
�Sq,q�

�+� �* − i	�gq��
2�sq�* + �gq�2�sq��

*
p − ip�
q�

	�Nq�,q�,q
�−� �* + �Nq,q�,q�

�+� �*
 , �A7�

and finally

d

dt
Sq,q� = i��q − �q��Sq,q� − i

M

�
	E�−�Tq,q� − �Tq�,q�*E�+�
 + i�1 − 2f�	�gq�2sq� − �gq��

2�sq�*
 , �A8�

d

dt
Sq,q�

�+� = − i��q + �q��Sq,q�
�+� − i

M

�
	E�−�Tq,q�

�+� − �Tq�,q
�−� �*E�+�
 − i�1 − 2f�	�gq�2sq� + �gq��

2sq
 . �A9�
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