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The electronic structures of defects �vacancies and donor-vacancy pair� in CdTe and ZnTe are studied with
a full-potential linearized augmented Slater-type orbital �LASTO� code. A symmetrized basis is constructed,
which improves the computation efficiency of the LASTO code by two orders of magnitude when applied to
large supercells with high point symmetry. Thus, we can model defects in CdTe via a large supercell �up to 128
atoms� with only modest computation effort. The lattice relaxation, the formation energy, and the energy
position of defect levels for various charged states are determined. The theoretical results are compared with
available experimental data and previous theoretical studies.
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I. INTRODUCTION

Cd1−xZnxTe �CZT� is an important material for radiation
detectors.1 One of the extrinsic factors that degrades the use-
fulness of the material is the carrier trapping by native de-
fects which are present during the growth. The most domi-
nant defects in CZT are believed to be Cd vacancies,
interstitials, and the related defect complexes such as
halogen-vacancy pairs. Thus, it is highly desirable to have a
better understanding of the electronic properties of these de-
fects. Extensive experimental studies of defects in CdTe have
been reported.2–8 There also exist a number of theoretical
studies.9–14 Berding et al. performed linear-muffin-tin-orbital
�LMTO� calculations of the formation energy of Cd vacan-
cies in CdTe.6,7 Meijer et al.11 examined the energy levels of
neutral as well as charged Cd vacancies with an empirical
tight-binding model. Biernacki et al.12 studied the Cd-
vacancy—Cl pair in CdTe also with a tight-binding model.
Wei and Zhang studied the chemical trend of defect forma-
tion and doping limit in CdTe within the linearized
augmented-plane-wave �LAPW� method.13 However, many
important details such as the effects of atomic relaxation and
the spin-orbit interaction on various charge states of the de-
fect remain largely unexplored. In this paper, we perform ab
initio calculations of the electronic structures of Cd vacan-
cies and Cd-Cl pair in CdTe and Zn vacancies in ZnTe with
a full-potential linearized augmented Slater-type orbital
�LASTO� method,14–16 taking into account the effects of
atomic relaxation and the spin-orbit interaction on the defect
levels. Our studies provide some insight into the nature of
various defect-induced states. For large supercells �e.g., 128
atoms�, only one k point is sufficient for determining the
total energy. With the choice of k=0, the system is invariant
under the full point-group of the crystal. Thus, the applica-
tion of point group theory can drastically reduce the compu-
tation effort. The idea of using symmetrized basis to study
defects was adopted by Kirton et al.18 They have applied this
scheme to vacancies in GaP and ZnSe with a plane-wave
pseudopotential method with good success. In this paper we

describe the implementation of symmetrized basis for the
full potential LASTO code and apply this method to determine
the energy positions of the defect levels associated with Cd
and Zn vacancies by using supercells of 54 and 128 atoms.
We find that this implementation improves the computation
efficiency by two orders of magnitude for supercells with
size larger than 32 atoms.

II. THEORETICAL METHOD

Our ab initio calculations of the electronic structures of
defects in CdTe and ZnTe are based on the full potential
linearized augmented Slater-type orbital method developed
by Davenport and co-workers.14–17 The local density ap-
proximation �LDA� is used. To study the defect levels, we
adopt a “supercell model,” in which the system is viewed as
a three-dimensional crystal �superlattice� with a large unit
cell �supercell�. The defect �Cd vacancy or interstitial� is
placed at the center �an atomic or interstitial site� of a super-
cell, which contains 54, 64, or 128 atoms. The 64-atom su-
percell is a simple cube with the length of each side being 2a
�a is the lattice constant of the host semiconductor�. The 54-
and 128-atom supercells have a shape of a rhombic dodeca-
hedron �Wigner-Seitz cell of a fcc lattice� as shown in Fig. 1.
The intervacancy distance is�4.5a, 2a, and �8a, for the 54-,
64-, and 128-atom supercells, respectively. It is worth noting
that the intervacancy distance in the 54-atom supercell is
larger than that in the 64-atom supercell, even though the
number of atoms enclosed is smaller. Thus, it is more advan-
tageous to use the 54-atom supercell over the 64-atom super-
cell for modeling defects. The self-consistent calculation is
first performed without the spin-orbit interaction to obtain
the initial atomic relaxation and charge density. The self-
consistent calculation including the spin-orbit interaction is
then performed to fine-tune the relaxed positions of atoms
surrounding the vacancy and the corrections to the energy
levels are investigated. For a large supercell, the interaction
between defects of two adjacent supercells becomes negli-
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gible, and the effect of band dispersion of the defect-related
states of the superlattice can be ignored. Thus, we only need
to consider the zone-center states �i.e., k=0�. In this case, the
point-group symmetry of the system is preserved, and we
can substantially reduce the computation effort by using
symmetrized basis functions which transform according to
the irreducible representations of of point group. For doubly
charged Cd vacancies, the dangling bonds are fully occupied.
Thus, there is no Jahn-Teller distortion, and the point group
remains the same as the host crystal, which is Td. For neutral
and singly charged Cd vacancies and for Cd-Cl pair, trigonal,
or tetragonal Jahn-Teller distortions are possible, and the cor-
responding point groups reduce to C3v and D2d.

The LASTO method was first introduced by Davenport and

co-workers.14–16 A full potential version was later imple-
mented by Fernando et al.17 Here we only give a brief ac-
count of the theory. A LASTO basis function at a given site
�taken as the origin� is defined as

�N�r� = rn−1e−�nlrYlm�r̂� �1�

for r outside muffin-tin �MT� spheres and

�N�r� = �
Ñ

��NÑgl̃�rĩ� + �NÑġl̃�rĩ��Yl̃m̃�r̂ĩ� �2�

for r inside the MT sphere, where N is a composite index for
the LASTO orbitals, which includes the site index i and orbital

index �nlm�, while Ñ is a composite index for �ĩ , l̃ , m̃�, which
labels the spherical harmonics expansion of the basis func-

tion at site ĩ. �nl denotes the exponents for the Slater-type
functions, rĩ= 	r−Rĩ	, and Ylm�r̂ĩ� is the spherical harmonics
centered at site Rĩ. gl̃�rĩ� is the numerical solutions to the
Kohn-Sham equation within the MT sphere at site Rĩ and
ġl̃�rĩ�= �d /d��gl̃�rĩ� denotes the energy derivative of gl̃. �NÑ

and �NÑ are structure coefficients that are determined by re-
quiring the basis functions, and their derivatives are continu-
ous across all MT-sphere boundaries including the tail con-
tributions from LASTO basis functions from all other unit
cells.

The most time consuming part of the LASTO code is the
evaluation of the structure coefficients �� and �� and the
overlap �S� and Hamiltonian �H� matrices, which involve
double summation over the reciprocal lattice vectors G and
G�.15 For k=0 these matrices are given by

SN,N� = �
Ñ

��
NÑ

*
�N�Ñ + �

NÑ

*
�N�Ñ
ġl̃	ġl̃�� +

1

vs
�
G

�N
* �G��N��G�

−
1

vs
2 �

G,G�

�N
* �G��N��G���

Ñ

ei�G�−G�·Rĩ f�	G� − G	� , �3�

HN,N� = ��
Ñ

��
NÑ

*
�N�Ñ + �

NÑ

*
�N�Ñ
ġl̃	ġl̃�� +

1

vs
�
G

�N
* �G��	G	2

+ V0��N��G� +
1

2
Rs

2�
Ñ

�g
l̃
�ġl̃��NÑ

*
�N�Ñ + �

NÑ

*
�N�Ñ�

+ gl̃gl̃
��

NÑ

*
�N�Ñ + ġ

l̃
�ġl̃�NÑ

*
�N�Ñ�

−
1

vs
2 �

G,G�

�N
* �G��N��G���

Ñ

ei�G�−G�·Rĩ�G · G�

+ V0�f�	G� − G	� , �4�

where f�	G	� is the Fourier transform of the step function
��rs− 	r	�, vs is the supercell volume, and �N�G� is the Fou-
rier transform of the LASTO orbital, �N�r−ri�. V0 is the
muffin-tin zero. gl̃, ġl̃, and g

l̃
��dgl̃ /dr appearing above are

evaluated at r=Rs �the muffin-tin radius�. 
ġl̃ 	 ġl̃�
�drr2ġl̃�r�ġl̃�r�. To improve the computation efficiency we
redefined the LASTO basis functions in terms of real spherical
harmonics, Ylm. We define a real LASTO basis function as

FIG. 1. �a� Wigner-Seitz cell of a 128-atom supercell. The solid
squares indicate the positions of cations in the irreducible segment
of the Wigner-Seitz cell. The coordinates are in units of a /4. �b�
Wigner-Seitz cell of a 54-atom supercell. The solid circles indicate
the positions of anions in the irreducible segment of the Wigner-
Seitz cell. The open circles indicate the positions of anions outside
the irreducible segment of the 54-atom supercell but within the
irreducible segment of the 128-atom supercell.
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�N�r� = rn−1e−�nlrYlm�r̂� , �5�

where

Ylm�r̂� = �2ReYlm�r̂� for m � 0, �6�

Ylm�r̂� = �2ImYlm�r̂� for m 	 0, �7�

and Yl0�r̂�=Yl0�r̂�. Because �N�r� is real, its Fourier trans-
form satisfies the relation �N�−q�=�N

* �q�. �NÑ and �NÑ are
determined by the equations

�NÑgl̃ + �NÑġl̃,

=�
G

il̃F�Gr�Yl̃m̃�Ĝ��N�G�e−iG·rĩ � �
G

FÑ�G��N�G� ,

�8�

and the corresponding equation for the energy derivative,
where

F�Gr� =
Nc

v s4
jl̃�Gr� , �9�

and Nc is a normalization constant. Using the symmetry
property of the spherical harmonics,

Yl̃m̃�− Ĝ� = �− 1�l̃Yl̃m̃�Ĝ� , �10�

we have

FÑ�− G� = F
Ñ

* �G� . �11�

Thus, �NÑ and �NÑ are real. We can therefore rewrite the
right-hand side of Eq. �8� as

�NÑgl̃ + �NÑġl̃ = Re�
G

h

w�G�FÑ�G��N�G� , �12�

where the superscript h means that the summation over G is
carried out in the half space of G. w�G� is a weighting factor,
which equals to 1 for G=0 and 2 otherwise.

The double G sums appearing in Eqs. �3� and �4� contain
terms like

Tn�G,rN�� � �
G�

�N��G��Sn�G�,G� , �13�

where

Sn�G�,G� = �
Ñ

ei�G�−G�·rĩ f�	G� − G	��G� · G�n, �14�

with n=0 or 1. It can be shown that Tn�−G�=Tn
*�G�. Thus,

we have

�
G

�N
* �G�Tn�G� = Re�

G

h

w�G��N
* �G�Tn�G� . �15�

A. Symmetrized basis according to point-group operations

Next, we consider the symmetrization which utilizes the
point-group operations. We take linear combinations of the

basis functions �N�r−ri� for all ri linked by the point-group
operations such that it transforms like the �th partner of the
irreducible representation � of the point group. We write

��,s
� �r� = �

N

C�,s
� �N��N�r − ri� , �16�

where ri runs through all atoms in a given shell, � labels the
degenerate partner functions, and C�,s

� �N� denotes the sym-
metrization coefficient, which can be generated using the
group theory. The numerical procedures for obtaining C�

��N�
are described in the Appendix . We shall call ��,s

� �r� the shell
orbitals. The extra index s labels different shell orbitals of
the same symmetry type ����. The corresponding Fourier
transform is denoted

��,s
� �G� = �

N

C�,s
� �N��N�G� , �17�

which shall replace �N�G� in Eqs. �8�–�15�. Similarly, we
define

F�,s̃
� �G� = �

N

C�,s̃
� �N�FN�G� . �18�

Equation �8� reduces to

�s,s̃gl̃ + �s,s̃ġl̃ = Re�


�
G

r

�w�G�/n����,s
� �G�F�,s̃

� �G� ,

�19�

where we have divided the half space of G into irreducible
segments, which are related to one another by the point-
group operations labeled by . Here the superscript r indi-
cates that the summation is carried out in the irreducible
segment of the Brillouin zone only. Using the symmetry
transformation

��,s
� �G� = �

��

��,�������,s
� �G� , �20�

and similarly for F�,s̃
� �G�, where ��,���� are the matrix

elements of the irreducible representation � for the group
element , we obtain

�s,s̃gl̃ + �s,s̃ġl̃ = Re�
��

�
G

r

�n�G*�/n�����,s
� �G�F��,s̃

� �G� ,

�21�

where n�G*� is the number of G vectors in the star of G. In
deriving the above relation, we have used the grand orthogo-
nality theorem

�


��,������,���� = nh��,��. �22�

Here nh is the order of the point group.
Because states of different symmetry types do not couple,

S and H are block diagonalized, each block being associated
with one symmetry type. Both indices N and N� in Eqs. �3�
and �4� are now replaced by indices s and s� for shell orbit-
als. We have
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T�,s�
� �G� = �

G�

��,s�
� �G��Sn�G�,G� �23�

and

�
G

���,s
� �G��*T�,s�

� �G� = Re�
G

h

���,s
� �G��*T�,s�

� �G�

= Re�


�
G

r

w�G�

����,s
� �G��*T�,s�

� �G� . �24�

Due to point-group symmetry, we only have to evaluate
T�,s

� �G� for G within the irreducible segment of the Brillouin
zone, and the rest can be obtained via the symmetry trans-
formation

T�,s
� �G� = �

��

��,����T�,s
� �G� . �25�

Finally, we have

�
G

��s
��G��*Ts�

� �G� = �
��

�
G

r

�n�G*�/n������,s
� �G��*T��,s�

� �G� .

�26�

The computation time of S and H scales according to N2L for
terms involving � and � and according to N2M for other
terms, where N denotes the total number of orbitals, L de-
notes the number of orbitals needed in the expansion be-
tween two different centers, and M denotes the number of G
vectors needed to describe the Fourier transform of the wave
function. With block diagonalization through symmetriza-
tion, the computation time is reduced by a factor �nh. In
addition the reduction from summation over the full G space
to the summation over the irreducible segment leads to an-
other factor �nh. Thus, the total saving in computing S and
H is a factor �nh

2, which is quite significant for high-
symmetry systems.

B. Effect of spin-orbit interaction

The inclusion of spin-orbit interaction typically takes
much more computation effort, since the number of basis
functions are doubled. In the LASTO code, the most time-
consuming part occurs at the evaluation of the matrix ele-
ments of the spin-orbit term Vso between LASTO basis func-
tions. Since Vso, which takes the form �dV /dr�S ·L, is
appreciable only within the MT spheres, we have


�N��	Vso	�N����� = �
Ñ

�
n=0,±1

BNN��Ñ,n�
l̃m̃;1/2,�	S · L	l̃m̃

+ n;1/2,� − n���,��+n, �27�

where �� denotes the electron spinor with �=1/2 ,−1/2,

BNN��Ñ,n� � �
NÑ

*
�N�Ñ+n�l̃ + �

NÑ

*
�N�Ñ+n�̇l̃

+ ��
NÑ

*
�N�Ñ+n + �

NÑ

*
�N�Ñ+n��̃l̃. �28�

Here Ñ+n is an abbreviation for �ĩ , l̃ , m̃+n�; n=0,−1,1 and


l̃m̃ ;1 /2 ,�	S ·L	l̃m̃+n ;1 /2 ,�−n� denote the nonvanishing
angular momentum coupling coefficients:

�l �� dr
dV

dr
	gl�r�	2, �29�

�̇l �� dr
dV

dr
	ġl�r�	2, �30�

and

�̃l �� dr
dV

dr
gl�r�ġl�r� . �31�

For large supercells, the evaluation of this matrix plus the
related steps to obtain the charge density �including the spin-
orbit coupling� takes up about 90% of CPU time, since it
scales like MN3, where M is number of spherical harmonics
used in the expansion divided by the number of basis func-
tions per site and N is the total number of LASTO orbitals for
the supercell. Fortunately, we can adopt the symmetrization
procedure as described above with the use of double-group
representations, and it reduces the CPU time by one order of
magnitude for high-symmetry cases �such as Td and D2d
point groups�. Namely, we use the product of the symme-
trized LASTO orbitals described above and the electron spinor
� to form symmetrized spin-orbit coupled basis functions
that transform according to double-group representations of
the point group. Within this symmetrized basis, the above Vso
is block diagonalized with all Kramer’s degenerate pairs be-
ing decoupled. For the Td point group, the matrix is decom-
posed into eight diagonal blocks �two each for the �6 and �7
representations and four for the �8 representation�. Only
three out of the eight blocks need to be evaluated, since
degenerate states will lead to the same contribution to the
total density. Thus we achieved a reduction of approximately
20-fold with this approach. For D2d and C3v groups the re-
duction is about eightfold and fourfold, respectively.

III. RESULTS AND DISCUSSIONS

To find the optimum values for the exponents ��� used in
the LASTO basis functions for the present study, we first mini-
mize the total energy of bulk CdTe and ZnTe against the
variation of � values. The Hedin-Lundqvist exchange-
correlation potential has been used. The MT sphere radius
used is 2.59 a.u. for both Cd and Te and 2.4 a.u. for Zn. We
use three � values for s-like and p-like orbitals and two �
values for the d-like orbital of each atom. To improve the
total energy, we put empty MT spheres with radius rs
=2.4 a.u. at the interstitial sites. The optimized � values for
the basis functions at interstitial sites are listed in the row
labeled V in Table I. The lattice constants for CdTe and ZnTe
obtained with the optimum set are 6.45 Å and 6.10 Å, re-
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spectively, which are in close agreement with the low-
temperature experimental values of 6.48 Å and 6.10 Å.19

The band structures for CdTe and ZnTe calculated with these
parameters with and without including the spin-orbit cou-
pling self-consistently are shown as solid and dotted lines in
Figs. 2 and 3, respectively. The calculated spin-orbit splitting
for the valence bands at the zone center is 0.862 eV for CdTe
and 0.888 eV for ZnTe, which agree well with the full po-
tential LAPW results13 and experimental values.20,21

We also calculate the cohesive energies by taking the dif-
ference in total energy between the bulk and isolated atoms
�both with spin-orbit interaction�. The cohesive energies ob-
tained this way for CdTe and ZnTe are 4.05 eV and 4.30 eV,
which are reasonably close to the corresponding experimen-
tal values �4.4 eV and 4.7 eV, respectively�,22 considering
that we have used the local density approximation and a
small set of basis functions. Note that the total energies of
free atoms are also calculated within the LDA. It is known
that the LDA tends to predict artificially lower total energies
in comparison with the presumably more accurate general-
ized gradient approximation �GGA�.6,24 However, since we
are taking the difference between two calculations both done
within the LDA, the errors caused by the LDA tend to cancel
out. Thus, the most significant error in the cohesive energy

so calculated is likely due to the incompleteness of the basis
used. The band gaps obtained �including spin-orbit interac-
tion� are 0.25 and 0.72 eV for CdTe and ZnTe, respectively,
which are lower than the experimental values of 1.6 and 2.2
eV considerably. This is a common problem with the LDA
calculations.23 This may cause serious error in the determi-
nation of the energy position of the defect levels, if the defect
states contain strong admixture of the valence-band and con-
duction states. Fortunately, for CdTe and ZnTe, the defect
states of interest are derived mostly from the valence band
states. Thus, their energy positions relative to the valence-
band maximum �VBM� may still be determined with reason-
ably accuracy, even though the band gaps are greatly under-
estimated. To examine the effect of number of k points used
in the zone integration, we have compared results obtained
with 60 special points and 10 special points within the irre-
ducible segment of the fcc Brillouin zone by using the
Monkhorst-Pack scheme.25 It is worth noting that the bulk
calculation with 10 special k points is equivalent to that of a
128-atom supercell calculation with one sampling point at
k=0. We found that the band gaps obtained in these two
cases differ by 0.06 eV for CdTe and 0.15 eV for ZnTe,
while the spin-orbit splittings obtained in these two cases are
almost the same �with difference less than 0.01 eV�. These
differences indicate the size of error introduced by using the
one-point sampling on the relative single-particle energy lev-
els. Of course, the size of error can be reduced if a larger
supercell is used. If we compare the total energies obtained
in these two cases, we find a difference of 0.38 eV for CdTe
and 0.50 eV for ZnTe. Thus, the total energy obtained by
using a 128-atom supercell with k=0 has a more noticeable
error in absolute total energy. However, we expect such an
error to be mostly cancelled out when we calculate the dif-
ference of two systems �e.g., one with vacancy and one with-
out� by using the same size of supercell for both calculations.

TABLE I. Optimized � values for Zn, Cd, Te, and Cl.

Cd : �4s=1.7, 1.3 �4p=1.6, 1.2 �4d=2.3

�5s=2.5 �5p=2.5 �5d=1.0

Zn : �3s=1.3, 0.9 �3p=1.0, 0.6 �3d=1.7

�4s=1.5 �4p=1.4 �3d=1.0

Te : �4s=1.7, 1.3 �4p=1.6, 1.2 �5d=1.2

�4s=2.1 �4p=2.0 �5d=0.5

V : �1s=1.6, 1.1 �2p=1.5, 1.1 �3d=1.4, 2.0

Cl : �2s=2.15, 1.7 �2p=2.05, 1.6 �3d=0.8

FIG. 2. Band structures of bulk CdTe obtained by the present
full-potential method. Solid lines: with spin-orbit interaction. Dot-
ted lines: without spin-orbit interaction.

FIG. 3. Band structures of bulk ZnTe obtained by the present
full-potential method. Solid lines: with spin-orbit interaction. Dot-
ted lines: without spin-orbit interaction.
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A. Cd vacany in CdTe

We now minimize the total energy of a supercell system
with a Cd vacancy at the center. We consider both the neutral
and charged cases. The creation of a Cd vacancy generates
four dangling bonds from the neighboring Te sites, which
can accommodate eight electrons with six contributed from
the neighboring Te atoms. Thus, it requires two additional
electrons to fully occupy these four dangling bond, which
renders the vacancy doubly charged. For neutral and singly
charged vacancies, these dangling bonds are only partially
occupied, which can lead to a possible Jahn-Teller distortion
with either C3v or D2d symmetry.18,26 We first consider the
case with Td symmetry for neutral and charged vacancies and
later consider the possibility of Jahn-Teller distortion �for
neutral and singly charged vacancy�. The charge states are
calculated by adding a uniform positively charged back-
ground, so the whole system remains charge neutral. This is
a common practice used in all supercell simulation of defect
levels. To reduce computation time for large supercell calcu-
lations, we use only two leading � values for s-like and
p-like orbitals and one � value for the d-like orbital of each
atom �as listed in the first row for each element in Table I�.
Furthermore, the basis function associated with empty
spheres at interstitial sties is ignored. These additional orbit-
als were used in the bulk calculation in order to improve the
accuracy on the predicted cohesive energy. However, they
will not have a significant effect on the defect energy levels
of interest here. On the vacancy site, we put an empty MT
sphere with radius rs=2.0 a.u. �for Cd� and 1.7 a.u. �for Zn�.
Five LASTO basis functions �two 1s like, two 2p like, and one
3d like� are used for the “vacancy” atom �denoted V�. The 4
nearest-neighbor Te atoms and the 12 second-neighbor atoms
surrounding the Cd vacancy are allowed to relax symmetri-
cally toward the center. The fractional change of vacancy-Te
distance ��d1� and vacancy-Cd distance ��d2� and the energy
lowered due to relaxation ��E� for neutral �V0�, singly
charged �V−1�, and doubly charged Cd vacancies �V−2� in
CdTe, calculated with supercells of 54 and 128 atoms, are
listed in Table II. Results with and without a spin-orbit inter-
action are both presented. We find that the system is most
stable �with minimum total energy� when the second-
neighbor atoms contract slightly �about 2%� and the nearest-

neighbor Te atoms contract about 10% toward the Cd va-
cancy site. The relaxed geometry is not very sensitive to the
size of supercell used as long as it contains at least 54 atoms.
The energy gained due to relaxation ranges between 0.1 and
0.4 eV, depending on the charge of the vacancy �with more
negatively charged state having the lower energy�.

The energies of the defect levels relative to the VBM of
bulk CdTe for neutral and charged vacancies are listed in
Table III. When the Td symmetry is preserved, there are two
defect levels, characterized by the �1 �or A1� and �5 �or T2�
symmetry when the spin-orbit interaction is ignored. These
levels are identified by examining their wave functions. The
A1 level lies inside the valence band �a resonance state�,
while the T2 level lies above the valence-band maximum of
bulk CdTe �in the band gap�. Our result for the single-
particle energy of the T2 level �0.068 eV� for VCd

0 is consis-
tent with the result 0.06 eV obtained by the LAPW
calculation.13 We find significant differences between the re-
sults obtained from 54-atom and 128-atom supercells, espe-
cially for the A1 level, which is about 0.5 eV too deep as
predicted by the 54-atom supercell. Such a discrepancy is
expected, since the resonance state is strongly mixed with
the bulklike states and it has a large dispersion when the size
of supercell is small. Namely, the intervacancy coupling is
still quite sizable for the resonance states calculated by the
54-atom supercell. For the midgap states, the wave function
is localized, and the difference becomes much smaller �less
than 0.03 eV�.

The modified Mulliken populations �as defined in Ref. 16�
of the defect levels obtained from the 128-atom supercell are
shown in Tables IV and V. Here shell �lmn� contains atomic
site �l ,m ,n�a /4 and all other sites linked by the point-group
operations. The shells with odd indices contain Te atoms,
while those with even indices contain Cd atoms. The leading
atom of each shell is within the irreducible segment of the
Wigner-Seitz cell of the system and is indicated by a square
�for cation� or circle �for anion� in Fig. 1. The population at
the vacancy site is always less than 1% and is omitted here.
For the T2 level, the Mulliken population listed here contain
predominantly Te p character with only less than 2% popu-
lation in the s-like orbitals. This suggests that the T2 level is
mostly derived from the valence-band states, and the energy
position relative to VBM as predicted here should not be
influenced much by the many-body self-energy
correction,23,27 which may be added to get the band gap in

TABLE II. Relaxation parameters ��d1 and �d2� and energy
lowered due to relaxation ��E� for neutral �V0�, singly charged
�V−1�, and doubly charged �V−2� Cd vacancies in CdTe calculated
via 54- and 128- atom supercells. All energies are in eV. The values
outside �inside� parentheses are results obtained with �without� the
inclusion of the spin-orbit interaction.

N V0 V−1 V−2

54

�d1 −0.091�−0.080� −0.094�−0.091� −0.094�−0.092�
�d2 −0.020�−0.019� −0.022�−0.021� −0.023�−0.022�
�E 0.265 �0.112� 0.295 �0.254� 0.333 �0.346�
�d1 −0.094�−0.084� −0.094�−0.096� −0.101�−0.097�

128 �d2 −0.021�−0.021� −0.023�−0.023� −0.026�−0.026�
�E 0.318 �0.275� 0.371 �0.313� 0.411 �0.413�

TABLE III. Energies �relative to the valence-band maximum of
bulk CdTe� of the defect-induced states for Cd vacancy in CdTe
calculated via the use of a 128-atom supercell. The results obtained
with the 54-atom supercell are also included in parentheses for
comparison. All energies are in eV.

State V0 V−1 V−2

A1 −1.438�−1.955� −1.440�−1.922� −1.287�−1.759�
T2 0.068 �0.042� 0.099 �0.081� 0.201 �0.180�
�6 −1.857�−2.328� −1.815�−2.290� −1.778�−2.219�
�7 −0.460�−0.585� −0.401�−0.522� −0.306�−0.426�
�8 0.049 �0.033� 0.067 �0.052� 0.111 �0.093�
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close agreement with experiment. We find that all defect-
induced midgap states are well localized within the first five
shells except for the neutral vacancy, where about 20% popu-
lation of the state falls outside the fifth shell.

When the spin-orbit interaction is included, the A1 level
becomes a �6 level �with twofold Kramers degeneracy�,
while the T2 level splits into a twofold �7 level and a four-
fold �8 level. Throughout the paper, we adopt the notation of
Ref. 28 for the double-group representations. Their corre-
sponding energies are listed in the lower half of Table III.
The �7 level moves into the valence-band, while the �8 level
remains in the gap �less than 0.1 eV above the valence-band
maximum�. This �8 level will paly an important role in
determining the capture cross section of holes in CdTe.

The T2 level is fully occupied �with six electrons� for the
doubly charged vacancy and partially occupied for singly
charged and neutral vacancies, which may lead to a Jahn-
Teller distortion. For neutral and singly charged vacancies,
both trigonal �with C3v symmetry� and tetragonal �with D2d
symmetry� Jahn-Teller distortions are considered. The start-
ing positions of the four Te atoms are taken to be the relaxed
atomic positions obtained above �which preserves the Td
symmetry�. For the trigonal distortion, the Te atom along the
�111� axis moves away from the center, while the other three
Te atoms move toward the center. The change in vacancy-Te
distance along �111� ��a� and for other three bonds ��b� is
varied to minimize the total energy. For the tetragonal distor-
tion, the two Te atoms at �1,1,1� and �−1,−1,1� sites move
toward each other along the �110� direction, while the two Te
atoms at �1,−1,−1� and �−1,1,−1� sites move toward each
other along the �1-10� direction. A 54-atom supercell is used
for this calculation, because the intervacancy distance is
larger than that in the 64-atom supercell, and the reduction in
symmetry requires much more computational effort, which
makes the 128-atom supercell impractical to use. We find
that for both neutral and singly charged vacancies the opti-
mized geometry with Td symmetry remains to be the most
stable against either trigonal or tetragonal distortion.

For the neutral vacancy, we can estimate the formation
energy for zero chemical potential by taking the difference in
total energy between the supercell with a vacancy plus an
isolated Cd atom and that without the vacancy �the bulk
equivalent�. We obtain a formation energy �including the
spin-orbit interaction� of 2.79 eV �with 128-atom supercell�
and 2.41 eV �with 54-atom supercell�. This is compared with
the result of 2.67 eV obtained by the LAPW method with
32-atom supercell and an energy cutoff of 8.5 Ry.13

B. Cd-vacancy—Cl pair in CdTe

The Cd vacancy is usually accompanied by a shallow
halogen donor such as Cl in an n-type doped sample. Many
experimental studies on the Cd-vacancy—Cl pair �also
known as the A center� have been reported. Theoreti-
cally, only an empirical tight-binding study for the ideal con-
figuration �and without the spin-orbit interaction� is
available.11 Here we calculate the electronic structures of the
neutral ��V−Cl�0� and singly charged Cd-vacancy—Cl pair
��V−Cl�−� via the full-potential ab initio method with a 54-
atom super-cell. In our calculation, we simply replace one Te
atom next to the Cd vacancy by a Cl atom. The Cl and the
three Te atoms are allowed to relax �with the three Te atoms
assumed to move symmetrically along the direction of dan-

TABLE IV. Modified Mulliken populations of the defect-
induced states for Cd vacancy in CdTe �without spin-orbit
interaction�.

V0 V−1 V−2

Shell A1 T2 A1 T2 A1 T2

�111� 0.628 0.326 0.629 0.382 0.643 0.480

�220� 0.073 0.030 0.074 0.039 0.087 0.058

�131� 0.008 0.137 0.008 0.122 0.003 0.086

�040� 0.004 0.001 0.004 0.001 0.003 0.001

�331� 0.200 0.258 0.200 0.261 0.184 0.258

�242� 0.014 0.004 0.014 0.005 0.013 0.005

�2̄4̄2̄� 0.009 0.004 0.010 0.004 0.010 0.005

�151� 0.008 0.058 0.008 0.039 0.006 0.014

�333� 0.002 0.024 0.002 0.018 0.001 0.009

�440� 0.020 0.006 0.020 0.006 0.018 0.017

�444� 0.000 0.001 0.000 0.000 0.000 0.000

�4̄4̄4̄� 0.000 0.000 0.000 0.001 0.000 0.001

�351� 0.012 0.077 0.012 0.060 0.011 0.033

�260� 0.002 0.001 0.002 0.001 0.001 0.000

�353� 0.018 0.058 0.018 0.053 0.017 0.022

�171� 0.001 0.014 0.001 0.008 0.001 0.003

�080� 0.000 0.000 0.000 0.000 0.000 0.000

TABLE V. Modified Mulliken populations of the defect-induced
states for Cd vacancy in CdTe �with spin-orbit interaction�.

V0 V−2

Shell �6 �7 �8 �6 �7 �8

�111� 0.499 0.608 0.247 0.316 0.618 0.349

�220� 0.076 0.080 0.021 0.075 0.091 0.037

�131� 0.048 0.022 0.163 0.089 0.022 0.134

�040� 0.016 0.001 0.001 0.017 0.001 0.001

�331� 0.197 0.231 0.247 0.159 0.218 0.265

�242� 0.022 0.007 0.004 0.024 0.007 0.004

�2̄4̄2̄� 0.012 0.003 0.004 0.032 0.003 0.005

�151� 0.040 0.002 0.084 0.084 0.001 0.044

�333� 0.010 0.002 0.032 0.026 0.001 0.018

�440� 0.031 0.010 0.005 0.045 0.009 0.006

�444� 0.000 0.001 0.000 0.000 0.001 0.000

�4̄4̄4̄� 0.000 0.001 0.001 0.000 0.001 0.000

�351� 0.029 0.008 0.108 0.098 0.008 0.071

�260� 0.005 0.001 0.001 0.015 0.001 0.001

�353� 0.012 0.023 0.060 0.007 0.019 0.054

�171� 0.004 0.000 0.022 0.013 0.000 0.009

�080� 0.000 0.000 0.000 0.000 0.000 0.000
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gling bonds�. The � values for Cl are determined by mini-
mizing the total energy of a AgCl crystal with the same lat-
tice structure as CdTe. Note that Ag has the same core as Cd,
so the � values for Ag are assumed to be the same as Cd. The
optimized � values are listed in Table I. Note that two 2s-like
and two 2p-like orbitals are used to describe the 3s and 3p
orbitals of Cl for the same reason as discussed above for
CdTe. Minimization of the total energy reveals that the three
Te atoms move toward the Cd vacancy by 8% and the Cl
atom move away from the vacancy by 20% for both neutral
and charged cases �with the second-neighbor atoms sur-
rounding the three Te atoms relaxing inward by 2%�. With
this relaxation the energy is lowered by 0.33 eV and 0.37 eV
�relative to the ideal geometry� for �V−Cl�0 and �V−Cl�−1,
respectively. The details of the relaxation parameters and en-
ergy gained due to relation for �V−Cl�0 and �V−Cl�−1 are
given in Table VI. The formation energy of �V−Cl�0 is found
to be 1.74 eV. This is lower than the formation energy of
VCd

0 , indicating the tendency to form a vacancy-Cl complex
when the Cl dopant is present. The energies of the defect
levels are identified by examining the wave functions. Two
defect levels with A1 and E symmetry are found. They are
mainly derived from the three dangling bonds associated
with the Te atoms surrounding the vacancy. The energy po-
sitions relative to the bulk valence-band maximum for these
defect levels and the corresponding modified Mulliken popu-
lations are listed in Table VII. The A1 level is below the bulk
valence-band maximum, while the twofold E level fall into
the band gap. Assuming that the finite-size effect on the A1
level is similar to the case for Cd vacancy, then the energy
positions for A1 levels obtained by the 54-atom supercell
should be shifted up by about 0.5 eV. The E-symmetry level
here corresponds to the T2 level of the Cd vacancy discussed
above, so it is much less affected by the finite size of the
supercell. When the spin-orbit interaction is included, the
twofold E-symmetry level �which is fourfold with spin�
splits into a �4 and �5 level �both with twofold Kramers
degeneracy�. Their energy positions relative to the bulk
valence-band maximum and the corresponding modified
Mulliken populations are listed in Table VIII. We note that
for �V-Cl�0, both of these levels move into the valence band,
while for �V-Cl�−1, one level �with �5 symmetry� remains
above the valence-band maximum by about 0.05 eV.

Experimental studies on charged Cd vacancy levels are
still inconclusive. Many levels in the fundamental gap of

CdTe have been reported, but they have not been associated
with a specific vacancy. Most experimental studies indicate
these midgap states are associated with defect complexes.
For Cl-doped CdTe samples, a zero-phonon line at 1.473 eV
was observed in the recombination luminescence, which sug-
gests that the defect level lies around 0.12 eV above the
valence-band maximum.9 Thus, our theoretical prediction for
the �5-symmetry level of �V-Cl�−1 �which lies at 0.05 eV
above the VBM� is in reasonable agreement with this obser-
vation, considering that the uncertainty of our theoretical

TABLE VI. Fraction change of distance from the vacancy site for the first five shells ��d�lmn�� for defect
complexes �V-Cl�0 and �V-Cl�− in CdTe calculated via a 54-atom supercell. The relaxation parameter for the

fifth shell ��d�02̄2̄�� is assumed to be the same as that for the fourth shell ��d�02̄2��. The energy lowered due
to relaxation, �E �in eV�, is also shown. The values outside �inside� parentheses are results obtained with
�without� the inclusion of the spin-orbit interaction.

Complex �d�111� �d�11̄1̄� �d�022� �d�02̄2� �E

�V-Cl�0 0.206 −0.085 0.010 −0.020 0.332

�0.200� �−0.076� �0.010� �−0.018� �0.318�
�V-Cl�− 0.198 −0.085 0.010 −0.020 0.374

�0.200� �−0.074� �0.012� �−0.020� �0.393�

TABLE VII. Modified Mulliken populations of the defect-
induced states for the Cd-vacancy—Cl pair in CdTe �without spin-
orbit interaction�. The energies �in eV� of the defect levels relative
to the bulk valence-band maximum are given in the parentheses
following the symmetry label.

�V-Cl�0 �V-Cl�−

Shell A1 E A1 E

�−1.479� �0.046� �−1.349� �0.160�

�111� 0.030 0.045 0.012 0.004

�11̄1̄� 0.383 0.421 0.512 0.544

�022� 0.016 0.005 0.008 0.005

�02̄2� 0.089 0.032 0.118 0.048

�02̄2̄� 0.010 0.148 0.012 0.023

�3̄1̄1̄� 0.057 0.434 0.040 0.015

�3̄11� 0.037 0.092 0.041 0.018

�31̄1� 0.085 0.042 0.063 0.000

�004� 0.000 0.000 0.006 0.001

�004̄� 0.014 0.001 0.010 0.066

�13̄3̄� 0.059 0.091 0.047 0.201

�1̄3̄3� 0.020 0.194 0.026 0.000

�4̄2̄2̄� 0.001 0.001 0.001 0.000

�4̄2̄2� 0.003 0.003 0.009 0.003

�4̄22� 0.022 0.001 0.006 0.001

�422̄� 0.024 0.000 0.014 0.000

�5̄1̄1� 0.024 0.040 0.009 0.012

�51̄1̄� 0.007 0.006 0.002 0.002

�3̄3̄3̄� 0.116 0.008 0.065 0.002
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procedure for determining the defect level is on the order of
0.1 eV.

C. Zn vacancy in ZnTe

The behavior of Zn vacancies in ZnTe is similar to that of
Cd vacancies in CdTe. The main difference here is that the
Zn atom is much smaller than Cd; thus, the degree of relax-
ation is much reduced. Relaxation parameters ��d1 and �d2�
and energy lowered due to relaxation ��E� for neutral �V0�,
singly charged �V−1� and doubly charged �V−2� Zn vacancies
in ZnTe with Td symmetry are shown in Table IX. Because
the second-neighbor Zn atoms surrounding the vacancy site
have a tendency to contract more than the first-neighbor Te
atoms, here we need to use a slightly smaller radius �2.31
a.u.� for Zn MT spheres in order to leave enough room for
the relaxation. The formation energy for neutral vacancy is
found to 2.83 eV �with 128-atom supercell� and 2.34 eV
�with 54-atom supercell�. We have also studied the possible
Jahn-Teller distortion for neutral and singly charged Zn va-
cancies in ZnTe, and again we find that the geometry with Td
symmetry remains to be the most stable against either trigo-
nal or tetragonal distortion. Energies �relative to the valence-

band maximum of bulk CdTe� of the defect-induced states
for Zn vacancies in ZnTe calculated via the use of 54- and
128-atom supercells are listed in Table X. Comparing Table
X with Table III for Cd vacancies, we note that the energies
of defect levels for Zn vacancies are consistently higher than
the corresponding Cd vacancies by approximately 0.05 eV.
This allows us to provide a rough estimate of the energy
position of cation vacancy level in CdZnTe via a linear in-
terpolation scheme. For example, our calculation predicts
that the energy level of the doubly charged cation vacancy to
increase by about 12 meV �relative to VBM� from CdTe to
Cd0.8Zn0.2Te.

IV. SUMMARY

We have implemented a symmetrized basis scheme for
the linearized augmented Slater-type orbital method, which
allows efficient calculation of a system with large unit cell
with high symmetry. This approach reduces the memory re-
quirement by one order of magnitude and the computation
time by two orders of magnitude. We have applied this
method to calculate various charged states of Cd vacancy
and vacancy-Cl pair in CdTe and ZnTe. The atomic relax-
ation and effect of spin-orbit interaction are properly taken
into account. The relaxation of atoms surrounding the defect,
the formation energy, and energy levels of defect-induced
states are calculated. It is found that the relaxed geometry for

TABLE VIII. Modified Mulliken populations of the defect-
induced states for the Cd-vacancy—Cl pair in CdTe �with spin-orbit
interaction�. The energies �in eV� of the defect levels relative to the
bulk valence-band maximum are given in the parentheses following
the symmetry label.

�V−Cl�0 �V−Cl�−

Shell �4 �5 �4 �5

�−0.125� �−0.017� �−0.119� �0.053�

�111� 0.006 0.004 0.006 0.003

�11̄1̄� 0.178 0.356 0.268 0.436

�022� 0.009 0.006 0.012 0.005

�02̄2� 0.013 0.027 0.022 0.035

�02̄2̄� 0.005 0.012 0.010 0.017

�3̄1̄1̄� 0.108 0.054 0.089 0.032

�3̄11� 0.109 0.119 0.095 0.105

�31̄1� 0.186 0.053 0.154 0.035

�004� 0.002 0.000 0.001 0.000

�004̄� 0.003 0.001 0.003 0.001

�13̄3̄� 0.079 0.093 0.081 0.074

�1̄3̄3� 0.128 0.199 0.142 0.212

�4̄2̄2̄� 0.001 0.001 0.001 0.001

�4̄2̄2� 0.004 0.003 0.004 0.003

�4̄22� 0.001 0.002 0.001 0.002

�422̄� 0.004 0.000 0.005 0.000

�5̄1̄1� 0.099 0.052 0.071 0.029

�51̄1̄� 0.030 0.009 0.022 0.004

�3̄3̄3̄� 0.035 0.010 0.024 0.005

TABLE IX. Relaxation parameters ��d1 and �d2� and energy
lowered due to relaxation ��E� for neutral �V0�, singly charged
�V−1�, and doubly charged �V−2� Zn vacancies in ZnTe calculated
via a 128-atom supercell. All energies are in eV. The values outside
�inside� parentheses are results obtained with �without� the inclu-
sion of spin-orbit interaction.

N V0 V−1 V−2

54

�d1 0.000 �0.009� −0.003 � 0.000� −0.023�−0.011�
�d2 −0.005�−0.004� −0.006�−0.006� −0.010�−0.006�
�E 0.035 �0.029� 0.049 �0.044� 0.095 �0.068�

128

�d1 −0.030�−0.025� −0.030�−0.030� −0.043�−0.039�
�d2 −0.012�−0.010� −0.014�−0.012� −0.017�−0.016�
�E 0.090 �0.067� 0.129 �0.092� 0.167 �0.166�

TABLE X. Energies �relative to the valence-band maximum of
bulk ZnTe� of the defect-induced states for Zn vacancy in ZnTe
calculated via the use of a 128-atom supercell. The results obtained
with the 54-atom supercell are also included in parentheses for
comparison. All energies are in eV.

State V0 V−1 V−2

�1 −1.485�−1.884� −1.399�−1.770� −1.255�−1.634�
�5 0.087 �0.102� 0.149 �0.185� 0.290 �0.341�
�6 −1.667�−2.120� −1.640�−2.130� −1.586�−2.009�
�7 −0.421�−0.430� −0.347�−0.386� −0.220�−0.191�
�8 0.073 �0.114� 0.102 �0.136� 0.173 �0.264�
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these defects are rather insensitive to the size of supercell
used, as long as it is larger than 54 atoms, while the energy
levels of the defect-induced states are somewhat sensitive to
the size of the supercell. We determine the energy position of
the defect levels for systems with Td symmetry via a 128-
atom supercell and that with C3v symmetry via a 54-atom
supercell. We find a defect level in the band gap with an
energy above the valence-band maximum by about 0.03–0.1
eV for Cd vacancies in CdTe and 0.1–0.2 eV for Zn vacan-
cies in ZnTe. We also examined the possibility of Jahn-Teller
distortion for neutral and singly charged vacancies in CdTe
and ZnTe with the use of a 54-atom supercell. We find that
the system with Td symmetry remains stable against either
trigonal or tetragonal distortion. The results presented in the
paper can be affected by the following. First, we cannot rule
out the possibility of a Jahn-Teller distortion in the charge
states when an even larger supercell is used and atoms are
allowed to relax beyond the third-neighbor distance. Second,
the self-energy correction due to many-body effects should
be considered in order to obtain reliable defect level ener-
gies, although for states derived mostly from valence bands
such an effect is likely to be small. Finally, the introduction
of a uniform positively charged background may not repre-
sent the realistic situation accurately and it can lead to errors
in the predicted positions of defect levels relative to the
valence-band maximum. Such a constraint can be removed
in a Green’s function approach with a large perturbation do-
main. The implementation of such a scheme can be done
with the LASTO basis functions by carrying out the computa-
tion of matrix elements all in real space and will be consid-
ered in the future.
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APPENDIX: SYMMETRIZATION COEFFICIENTS

To obtain the symmetrization coefficients C�i , lm�, we
first construct the lattice harmonics at each site j. The lattice

harmonics is the linear combination of spherical harmonics
of the same l that transforms like a basis function �labeled ��
associated with an irreducible representation �labeled �� of a
point group. We define

Kl
���G� = �

m

Clm
��Ylm�G� . �A1�

In general, these coefficients can be obtained via the use of
projection operator. We have

Clm
�� =

n���
h

�


��,���Dm,m�
�l� �� , �A2�

where n��� is the dimension of irreducible representation �,
h is the order of the point group,  denotes a group opera-
tion, and D

m,m�
�l� ���d�Ylm

* ���Ylm��
−1��, which can be

evaluated efficiently via the Gaussian quadrature method.
Next we construct the symmetrized site functions for each

shell s defined as

Ss
�� = �

m

Cs
���j�eiG·rj . �A3�

Using the projection operator, we obtain

Cs
���j� =

n���
h

�


��,���D j,j�
�s� �� , �A4�

where D
j,j�
�s� ����GeiG·�rj−−1rj� which is 1 if �r j −−1r j� is a

lattice vector of the “superlattice” and zero otherwise. Fi-
nally, we use the direct products of cubic harmonics and the
symmetrized site functions to obtain the fully symmetrized
states. We have

�ls
�� = �

��,����

V�
����,�����Kl

��Ss
����, �A5�

where V�
���� ,����� are the vector coupling coefficients,

which are readily available in Ref. 28.
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