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The power spectral densities of both current and voltage noise due to generation-recombination fluctuations
in finite-length semiconductors are calculated taking into account space-charge interactions through the Pois-
son equation and the dynamics of both charge carriers and trap levels through their coupled continuity equa-
tions in the drift-diffusion approximation. Proper boundary conditions for the charge-carrier density include the
effects of the finite length of the semiconductor sample. The frequency dependence of the power spectral
density, the asymptotic behavior of the current noise for high and low applied voltages, and the dependence of
the voltage noise from the sample length are studied in detail.
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I. INTRODUCTION

Spontaneous random transitions of charge carriers be-
tween different energy levels in semiconductors are the
sources of generation-recombination noise that modulates
the electrical conductivity of the material and can be mea-
sured as fluctuations in the electric current flowing through
the sample or in the voltage at its electrical terminals. Al-
though several experimental and theoretical studies1–8 have
investigated the subject, analytical expressions for the power
spectral density of generation-recombination noise have been
derived only by assuming some remarkable simplifications
of the physical model, such as for example, neglecting space-
charge interactions or diffusion currents or ignoring the ef-
fects of boundary conditions at the electrical terminals of
finite-length semiconductor samples. More recently the low
frequency value of the power spectral density of the current
noise due to generation-recombination fluctuations has been
calculated by Gomila and Reggiani9 in a more complete
model that takes into account all of the physical effects men-
tioned above in the drift-diffusion approximation. However,
since the approach in Ref. 9 neglects the time derivatives of
the electron and trap densities, it only allows for the calcu-
lation of the zero-frequency value of the power spectrum of
the current noise.

Much less attention has been drawn on the theoretical
analysis of the voltage noise across a semiconductor sample
due to generation-recombination fluctuations. It should be
noted that the power spectral density of the voltage noise is
not simply obtained by multiplying the current spectral den-
sity by the square of the sample resistance since the resis-
tance itself is fluctuating as a result of the fluctuation of the
carrier density. Instead, the voltage noise must be indepen-
dently determined by taking into account the actual electrical
boundary conditions with which a voltage measurement
would be performed.

In the present paper, the power spectral density of both
current and voltage noise in finite-length semiconductors is
calculated at all frequencies in the framework of a model that
includes space-charge interactions through the Poisson equa-
tion and the dynamics of both charge carriers and trap levels

through their coupled continuity equations in the drift-
diffusion approximation. The details of the theoretical model
for the calculation of charge fluctuations are described in
Sec. II. In particular, the model equations are linearized in
the assumption of small fluctuations, which amounts to ne-
glecting Coulomb interactions between charge carriers. The
power spectral density of the current and the voltage noise
are derived and studied in Secs. III and IV, respectively. In
particular, the asymptotic behavior of the current noise for
high and low applied voltages and the dependence of the
voltage noise from the sample length are studied in detail.

II. CHARGE FLUCTUATIONS IN THE DRIFT-DIFFUSION
APPROXIMATION

Assuming a one-dimensional geometry in the x direction,
we consider a uniform n-doped semiconductor of length L in
steady state conditions, ideally terminated by two metallic
ohmic contacts at x=0 and x=L. We further suppose that the
free electron density N�x , t� in the semiconductor is con-
trolled by a single trap level through stochastic generation
and recombination rates g�N ,NT� and r�N ,NT� per unit
length and time. Both g�N ,NT� and r�N ,NT� are assumed to
be explicitly independent from both position and time but
dependent on N�x , t� and on the ionized trap density NT�x , t�.
When an electric field E�x , t� is applied to the semiconductor,
the free electron density N�x , t� and the ionized trap density
NT�x , t� are obtained as solutions of the coupled continuity
equations that, in the drift-diffusion approximation,6,9,10 are
given by

�N�x,t�
�t

= D
�2N�x,t�

�x2 + �
�„E�x,t�N�x,t�…

�x
+ g�N,NT�

− r�N,NT� , �1�

�NT�x,t�
�t

= g�N,NT� − r�N,NT� . �2�

In Eq. �1�, � and D are the electron mobility and the diffu-
sion coefficient, respectively, again assumed independent
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from position and time. The terms g�N ,NT� and r�N ,NT� are
random source and sink for N�x , t� and NT�x , t� and give the
character of stochastic Langevin equations6,11,12 to �1� and
�2�. When space-charge effects are included in the model, the
electric field E�x , t� in �1� is the sum of the uniform and
constant external field Ee and a term Ei�x , t� due to charge
fluctuations. Thus, to solve �1� and �2�, the Poisson equation
is also needed,

�E�x,t�
�x

=
q

A�
„NT�x,t� − N�x,t�… , �3�

where A is the cross section of the semiconductor sample, q
is the absolute value of the electron charge, and � is the
dielectric constant, the latter assumed uniform and constant
in the semiconductor. Since in steady state conditions
�Ei�x , t��=0, averaging Eqs. �1�–�3�, gives

�NT�x,t�� = �N�x,t�� = N0, �4�

�g�N0,N0�� = �r�N0,N0�� . �5�

In the following g�N0 ,N0� and r�N0 ,N0� are taken to be two
stochastic independent Poisson processes with equal aver-
ages, �g�N0 ,N0��= �r�N0 ,N0��=g0, and equal power spectral
density 2g0.

Following a perturbative approach,4,8,13 the free electron
and ionized trap densities are written as N�x , t�=N0+n�x , t�
and NT�x , t�=N0+nT�x , t�, respectively, where n�x , t� and
nT�x , t� are the fluctuations of N�x , t� and NT�x , t�. Substitut-
ing these expressions in �1�–�3� and expanding g�N ,NT� and
r�N ,NT� in a power series up to the first order with respect to
N�x , t� and NT�x , t�, the following equations for n�x , t�,
nT�x , t�, and Ei�x , t� are obtained:

�n�x,t�
�t

= D
�2n�x,t�

�x2 + �Ee
�n�x,t�

�x
+ �

�Ei�x,t�
�x

N0 −
n�x,t�

�N

−
nT�x,t�

�T
+ �gr , �6�

�nT�x,t�
�t

= −
nT�x,t�

�T
−

n�x,t�
�N

+ �gr , �7�

�Ei�x,t�
�x

=
q

A�
„nT�x,t� − n�x,t�… , �8�

where

1

�N
= � �r�N,NT�

�N
−

�g�N,NT�
�N

�
N=N0,NT=N0

, �9�

1

�T
= � �r�N,NT�

�NT
−

�g�N,NT�
�NT

�
N=N0,NT=N0

�10�

are the electron and trap lifetimes, respectively. In Eqs. �6�
and �7�, �gr=g�N0 ,N0�−r�N0 ,N0� is a Poisson process with
a zero average and power spectral density 4g0. The term
��(Ei�x , t�n�x , t�) /�x in �6� has been neglected since it is of

second order with respect to �Ee�n�x , t� /�x and
�N0�Ei�x , t� /�x, provided Ei�x , t��Ee and n�x , t��N0. This
approximation amounts to neglecting the Coulomb interac-
tion among the electrons.

Equations �6�–�8� allow the calculation of small charge
fluctuations in semiconductors in the drift-diffusion approxi-
mation. To solve such equations, proper boundary conditions
must be set, depending on the specific noise measurement
performed on the semiconductor. Current and voltage noise
power spectral density will be considered in Sec. III and Sec.
IV, respectively.

III. POWER SPECTRAL DENSITY OF CURRENT NOISE

We assume that a voltage of absolute value V=EeL is
applied to the semiconductor sample and we calculate the
spectrum of the noise associated to the current flowing
through the sample. In this case, Eqs. �6�–�8� must be solved
with the boundary conditions n�0, t�=n�L , t�=0,9,13–15 for the
electron density. No boundary conditions are required for the
trap density since no spatial derivatives of nT�x , t� are in-
volved in Eqs. �6�–�8�. One condition on the electric field
Ei�x , t� is needed instead. Since the total applied voltage
across the semiconductor sample is fixed, the voltage asso-
ciate to Ei�x , t� must vanish,

�
0

L

Ei�x,t�dx = 0. �11�

The current flowing through the semiconductor sample is
given by9,16

i�t� =
1

L
�

0

L �− qj�x,t� + A�
�Ei�x,t�

�t
	dx , �12�

where j�x , t� is the current density,

j�x,t� = − D
�n�x,t�

�x
− �Een�x,t� − �Ei�x,t�N0. �13�

However, taking into account relation �11� and the boundary
conditions for n�x , t�, relation �12� simplifies to

i�t� =
q�Ee

L
�

0

L

n�x,t�dx . �14�

To evaluate the power spectral density associated with the
fluctuations of i�t�, Eqs. �6�–�8� and �14� are interpreted as
the differential description of a linear system with stochastic
input �gr. Thus, the spectrum of the current noise is ob-
tained by the application of the standard linear system theory,

SI�f� = 4g0�
0

L


Ix0
�2�if�
2dx0

= 4g0�q�Ee

L
	2�

0

L

dx0��
0

L

Nx0
�x,2�if�dx�2

,

�15�

where Nx0
�x ,s� and Ix0

�s� are the transfer functions of the
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linear system described by �6�–�8� and �14� when the sto-
chastic generation-recombination event takes place at the
position x=x0. In other terms, Nx0

�x ,s� is the Laplace
transform of n�x , t� when the homogenous equations associ-
ated with to �6�–�8� are solved with the initial conditions
n�x ,0�=	�x−x0�, and nT�x ,0�=	�x−x0�, and Ix0

�s� is the cor-
responding Laplace transform of i�t�. The integration over x0

follows from the assumption that the generation events at
different positions are statistically independent.

To calculate �15�, we take the Laplace transform of Eqs.
�6�–�8�, taking into account the above initial conditions.
Then, eliminating the Laplace transforms of Ei�x , t� and
nT�x , t� using �7� and �8�, the following equation for Nx0

�x ,s�
is obtained:

−
�T

��

1 + s��

1 + s�T
	�x − x0� = D

�2Nx0
�x,s�

�x2 + �Ee

�Nx0
�x,s�

�x

− Nx0
�x,s�

�T

��

1 + s��

1 + s�T

1 + s�

�
, �16�

where

1

�
=

1

�N
+

1

�T
and

1

��

= �
q

A�
N0. �17�

In �17�, � can be considered an effective lifetime and �� is the
dielectric relaxation time in the semiconductor.

The explicit calculation of the power spectral density of
the current noise for both the long and short semiconductor
sample is performed separately in the next two sections, re-
spectively.

A. Long semiconductors

The time constant � gives an estimation of the lifetime
of the electron in the semiconductor. Thus, if the length
L of the semiconductor sample is much greater then the
distance traveled by the electron in a time interval �, or
L
�Ee�+�2D�, the electron dynamics can be studied in an
approximation in which the semiconductor has an infinite
length, extending from −� to +�. In this assumption, Eq.
�16� must be solved with the boundary conditions
limx→±� Nx0

�x ,s�=0, corresponding to the vanishing elec-
tron density at infinity. Actually, it is not necessary to explic-
itly determine the solution of �16�. Indeed, integrating �16�
over x between −� and +�, taking into account the boundary
conditions, and noting that the space slope of the carrier
density must also vanish, limx→±� �Nx0

�x ,s� /�x=0 
since the
integral of Nx0

�x ,s� over x must be convergent� we get

�
−�

+�

Nx0
�x,s�dx =

�

1 + s�
. �18�

This quantity is, as expected, independent from x0. Thus, to
calculate the power spectral density, large but finite values
for L must be considered again. Taking the absolute value of
�18�, we obtain

SI
��f� = 4g0

�q�Ee�2

L

�2

1 + 4�2f2�2 . �19�

This is the original result by van Vliet,2,4 independent from
both the drift-diffusion dynamics of the electrons and the
space-charge effects. Indeed, since the current noise is re-
lated to the total charge in the semiconductor, the electron
motion is relevant only if it contributes to the total charge by
modifying the rate with which electrons are captured by the
electrodes. However, in long samples the boundary effect of
the electrodes can be neglected, thus justifying �19�.

B. Short semiconductors

When the semiconductor has a finite length, Eq. �16� must
be solved with the boundary conditions Nx0

�0,s�=Nx0
�L ,s�

=0. In this case the solution of �16� is given by

Nx0
�x,s� =

1

D��+ − �−�
�T

��

1 + s��

1 + s�T
� e�+�L−x0� − e�−�L−x0�

e�+L − e�−L


�e�+x − e�−x� − �e�+�x−x0� − e�−�x−x0��


step�x − x0�� , �20�

where

�± = �±�s� =
1

L
�−

V

2VT
±� V2

4VT
2 + �2�s�	

with

�2�s� =
L2�T

D���

�1 + s����1 + s��
1 + s�T

�21�

and we have exploited Einstein’s relation D=VT�, VT
=kT /q being the thermal voltage. The integral of Nx0

�x ,s�
over x is given by

�
0

L

Nx0
�x,s�dx

=
�

1 + s�
� e�+�L−x0��e�−L − 1� − e�−�L−x0��e�+L − 1�

e�+L − e�−L + 1� .

�22�

By taking the integral over x0 of the square modulus of �22�,
we get, according to �15�,

SI�f� = 4g0
�q�Ee�2

L

�2

1 + 4�2f2�2�1 +

A
2

L

e��++�+
*�L − 1

�+ + �+
*

+

B
2

L

e��−+�−
*�L − 1

�− + �−
* +

2

L
Re�A

e�+L − 1

�+
�

+
2

L
Re�B

e�−L − 1

�−
� +

2

L
Re�AB*e��++�−

*�L − 1

�+ + �−
* �� ,

�23�

where
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A =
e�−L − 1

e�+L − e�−L and B = −
e�+L − 1

e�+L − e�−L .

The first term in the curly brackets of �23� provides the result
�19� for the long semiconductors, whereas the other terms
give the correction due to the finite length of the sample.9 It
is expected that the long sample limit �19� is recovered from
�23� for large values of L at fixed applied voltage. Indeed, by
letting L approach infinity in �23�, we get exp��−L�→0,
exp��+L�→�, A→0, and B→−1, leading to SI

��f�.
The power spectral density �23� can be studied in the

limit of high and low applied voltages. At high electric fields,
when the inequality V /VT
2
��2�if�
 holds, then �−�s��
−Ee /VT and the exponential of �−�s�L is negligible with re-
spect to 1 if, in addition, the magnitude of the applied volt-
age V is much greater than VT. Developing SI�f� in a power
series of �+�2�if�L��2�2�if�VT /V to the second order and
neglecting also �+�2�if� with respect to �−�2�if�, we find
that SI�f� saturates at

SI�f� �
4g0

3

�q�Ee�2

L

�2

1 + 4�2f2�2

VT
2

V2 
�4�2�if�


=
4q2g0L

3

�T
2

��
2

1 + 4�2f2��
2

1 + 4�2f2�T
2 . �24�

At low electric fields, V /VT�2
�2�2�if�
, then �+�s�
�−�−�s����s� /L. If 
��2�if�
L
1 we get again, as ex-
pected, Eq. �19�, whereas, if 
��2�if�
L�1, developing SI�f�
in a power series of �+�2�if�L���2�if� to the fourth order,
we get

SI�f� �
g0

30

�q�Ee�2

L

�2

1 + 4�2f2�2 
�4�2�if�


=
q2g0L

30

�T
2

��
2

1 + 4�2f2��
2

1 + 4�2f2�T
2

V2

VT
2 . �25�

Thus, the low voltage and short length limit is just scaled by
a factor V2 /120·VT

2 with respect to the high voltage limit.
The frequency behavior of the spectrum of the current

noise is studied by assuming that the inequalities ����N and
����T hold. This is justified by noting, for example, that the
value of �� in intrinsic silicon at room temperature is 0.32 �s
and decreases at increasing donor density. Under the above
assumption, three frequency ranges can be considered: low
frequencies, f �0.1/2��T, 0.1/2��N, midfrequencies,
0.1/2��T, 0.1/2��N� f �0.1/2���, and high frequencies,
f �0.1/2���. A factor of ten below the critical frequencies
1 /2��N, 1 /2��T, and 1/2��� is assumed to be large enough
for neglecting their contribution to the noise power spectrum.

As mentioned in the Introduction, the low frequency
value SI�0� of the current noise spectrum has been studied in
Ref. 9. The main results, which can be also derived from
�23�–�25�, are summarized for completeness. The normalized
power spectral density SI�0�L3 /4q2g0�2D2 as a function of
V /VT depends only on the adimensional parameter ��0�2

=L2�T /D��� and is plotted in Fig. 1.9 At a high electric field,
for V /VT
2��0� and V /VT
1, relation �24� gives9,17

SI�0� �
4q2g0L

3

�T
2

��
2 , �26�

whereas at low electric fields, for V /VT�2��0� and
��0��1, we get, from �25�,9

FIG. 1. Low frequency behav-
ior of the normalized power spec-
tral density of current noise,
SI�0�L3 /4q2g0�2D2, as a function
of the normalized voltage V /VT

for different values of the adimen-
sional parameter �2=L2�T /D���.
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SI�0� �
q2g0L

30

�T
2

��
2

V2

VT
2 . �27�

In the midfrequency range, since ��min��N ,�T�, two op-
posite cases can be distinguished,

�2�s� � �
L2�T

D���
for �N � �T

L2�T

D���

1 + s�N

1 + s�T
for �N � �T.� �28�

For �N��T, ��s����0� and the midfrequency behavior of the
noise spectrum is just scaled as the low frequency one,
SI�f��SI�0� / �1+4�2f2�2��SI�0� / �1+4�2f2�T

2�. Instead, for
�N��T, the frequency dependence is more complex. How-
ever, in both cases the high and low voltage limits are the
same, as given by �24� and �25�. At high electric fields, for
V /VT
2
��2�if�
 and V /VT
1, the noise power spectrum
SI�f� saturates at

SI�f� �
4q2g0L

3

�T
2

��
2

1

1 + 4�2f2�T
2 , �29�

whereas, at low applied voltages, for V /VT�2
��2�if�
 and
��2�if��1, we obtain

SI�f� �
q2g0L

30

�T
2

��
2

1

1 + 4�2f2�T
2

V2

VT
2 . �30�

At high frequencies, above about 0.1/2���, �2�s�
�L2�1+s��� /D��. At even higher frequencies, for
f �10/2��� the normalized power spectral density
SI�f� /4q2g0L is a function of the adimensional frequency
2�L2f /D only and is plotted in Fig. 2 for different values of
the ratio V /VT. The asymptotic behavior, for high and low

electric fields, is again given by �24� and �25�. At high volt-
age, when the inequalities V /VT
2
��2�if�
 and V /VT
1
hold, SI�f� saturates at

SI�f� �
4q2g0L

3

1 + 4�2f2��
2

4�2f2��
2 →

f�10/2���

4q2g0L

3
. �31�

At low electric fields, for V /VT�2
��2�if�
 and 
��2�if�

�1, we get

SI�f� �
q2g0L

30

1 + 4�2f2��
2

4�2f2��
2

V2

VT
2 →

f�10/2���

q2g0L

30

V2

VT
2 . �32�

It should be noted that the above analysis can be extended
to a regime of saturated drift velocity. In this case, the quan-
tity �Ee in Eq. �6� must be substituted with the saturated
carrier velocity �s and the term containing Ei�x , t� can be
neglected. Thus, the Poisson equation �8� is no longer needed
to derive the electron density from �6� and �7�. This amounts
to letting �� approach infinity, ��→�, and to making the
formal substitution V /VT→�sL /D in all relations of this sec-
tion.

IV. POWER SPECTRAL DENSITY OF VOLTAGE NOISE

The power spectral density of the voltage noise across the
semiconductor sample of length L can be studied according
to a relation analogous to �11�,

SV�f� = 4g0�
0

L


Vx0
�2�if�
2dx0, �33�

where Vx0
�s� is the Laplace transform of the voltage due to a

generation-recombination event taking place at x=x0 at the
instant t=0. In its most general, Eq. �33� should be studied
for an arbitrary fixed current flowing through the semicon-

FIG. 2. High frequency behav-
ior of the normalized power spec-
tral density of current noise,
SI�f� /4q2g0L, as a function of the
normalized frequency 2�L2f /D
for different values of the normal-
ized voltage V /VT.

CURRENT AND VOLTAGE NOISE SPECTRUM DUE TO… PHYSICAL REVIEW B 73, 035203 �2006�

035203-5



ductor, as much as the spectrum of the current noise has been
analyzed for an arbitrary applied voltage. However, the treat-
ment here is limited to the simpler and probably most inter-
esting case in which the external electric field is zero and the
two electrical terminals of the semiconductor sample are left
open. In this case the equation for the Laplace transform of
the charge density is

−
�T

��

1 + s��

1 + s�T
	�x − x0�

= D
�2Nx0

�x,s�

�x2 − Nx0
�x,s�

�T

��

1 + s��

1 + s�T

1 + s�

�
�34�

and must be solved with the boundary conditions J�0,s�
=J�L ,s�=0, where J�x ,s� is the Laplace transform of the
current density

J�x,s� = − D
�Nx0

�x,s�

�x
− �Ei�x,s�N0, �35�

and Ei�x ,s� is the Laplace transform of the internal electric
field Ei�x , t�.

A boundary condition is also needed for Ei�x ,s�, for which
we take Ei�0,s�=0. This implies that the electric field is also
zero at the other end of the semiconductor sample, or
Ei�L ,s�=0. To show that, we first note that by eliminating the
Laplace transform of NT�x , t� between �7� and �8�, Ei�x ,s� is
related to Nx0

�x ,s� by the relation

�Ei�x,s�
�x

=
q

A�

�T

1 + s�T
	�x − x0� − Nx0

�x,s�
q

A�

�T

�

1 + s�

1 + s�T
.

�36�

Integrating Eq. �34� over x between 0 and L and taking into
account the boundary conditions through relations �35� and
�36� gives

�
0

L

Nx0
�x,s�dx =

�

1 + s�
. �37�

If we now perform the integration of �36� over x between 0
and L we finally see that Ei�L ,s�=0. Thus, the boundary
conditions for the current density reduce to

� �Nx0
�x,s�

�x
�

x=0
= � �Nx0

�x,s�

�x
�

x=L
= 0. �38�

The solution of �34� with the boundary conditions �38� is
given by

Nx0
�x,s� =

1

2D�

�T

��

1 + s��

1 + s�T
� e��L−x0� + e−��L−x0�

e�L − e−�L �e�x + e−�x�

− �e��x−x0� − e−��x−x0��step�x − x0�� , �39�

where

� = ��s� =� �T

D��

1 + s��

1 + s�T

1 + s�

�
. �40�

To calculate the voltage across the sample, we compare Eqs.
�34� and �36� and find the following relation:

FIG. 3. An example of the nor-
malized power spectral density of
voltage noise, SV�f��2A2 /
4q2g0�T

2L3 for a low-doped silicon
sample 1 cm long.

FABIO E. ZOCCHI PHYSICAL REVIEW B 73, 035203 �2006�

035203-6



1 + s��

��

�Ei�x,s�
�x

= −
qD

A�

�2Nx0
�x,s�

�x2 . �41�

Finally, integrating �41� over x and taking into account the
boundary conditions �38�, we get

1 + s��

��

Ei�x,s� = −
qD

A�

�Nx0
�x,s�

�x
, �42�

so that the voltage across the sample is given by

Vx0
�s� � − �

0

L

Ei�x,s�dx =
qD

A�

��

1 + s��


Nx0
�L,s� − Nx0

�0,s��

=
q

A�

�T

1 + s�T

e��L−x0��e−�L − 1� + e−��L−x0��e�L − 1�
��e�L − e−�L�

.

�43�

According to �33�, the power spectral density of the voltage
noise is obtained by taking the integral over x0 of the square
modulus of �43�,

SV�f� =
4q2g0L�T

2

A2�2

1

1 + 4�2f2�T
2

1


�
2
� 
A
2

L

e��+�*�L − 1

� + �*

−

B
2

L

e−��+�*�L − 1

� + �* −
2

L
Re�AB*e��−�*�L − 1

� − �* �� ,

�44�

where

A =
e−�L − 1

e�L − e−�L and B = −
e�L − 1

e�L − e−�L .

For long semiconductors, exp�−�L�→0 and exp��L�
→�, we get

SV�f� �
4q2g0�T

2

A2�2

1

1 + 4�2f2�T
2 ·

1


��2�if�
2 Re
��2�if��

�45�

and the low frequency value SV�0� of the power spectral
density �45� is equal to

SV�0� �
4q2g0�T

2

A2�2

1

�3�0�
=

4q2g0�T
1/2

A2�2 �D����3/2. �46�

At midfrequencies, in long samples and in the assumption
that ���T, SV�f� behaves like �1+4�2f2�T

2�−1 whereas at
high frequency, for f �10/2���, SV�f� decrease as f−7/2,

SV�f� �
q2g0

2A2�2

D3/2

�7/2f7/2 . �47�

An example of this frequency dependence is shown in Fig. 3
in which Eq. �44� is plotted for a silicon sample 1 cm long.
The electron mobility has been taken equal to
�=1400 cm2/V s �Ref. 10� at room temperature, T=300K.
The diffusion coefficient D is related to the mobility � by
Einstein’s relation D=VT�. The time constants �N and �T are
equal to 1 ms and the donor density N0 /A is 1012 cm−3.

The f−7/2 dependence is obtained at frequencies larger
than 1/2��N, 1 /2��T, and 1/2��� when the only relevant
physical process is diffusion and Eqs. �6�–�8� can be simpli-
fied to

�n�x,t�
�t

� D
�2n�x,t�

�x2 + �gr , �48�

FIG. 4. An example of the low
frequency value of the power
spectral density of voltage noise
in low-doped silicon as a function
of the sample length.
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�nT�x,t�
�t

� �gr , �49�

�Ei�x,t�
�x

=
q

A�
„nT�x,t� − n�x,t�… . �50�

By solving the system of equations �48�–�50� in the long
semiconductor approximation �in which one electrical termi-
nal is at x=0 and the other one is at x=��, the solution �47�
for the power spectral density of the voltage noise is recov-
ered.

For short samples at low frequency, when 
��2�if�
L�1
holds, by developing SV�f� in a power series to the second
order, we get

SV�f� �
q2g0L3�T

2

3A2�2

1

1 + 4�2f2�T
2 . �51�

While �46� is independent from sample length L, the low
frequency value of �51� is proportional to L3. This depen-
dence is shown in Fig. 4, in which the low frequency value
of �44� is plotted as a function of the sample length L for the

same choice of the values of the physical parameters as
above.

V. CONCLUSIONS

The analytical expression of the power spectral density of
both current and voltage noise due to generation and recom-
bination fluctuations has been derived in a theoretical model
that includes the main physical effects in the semiconductor.
The calculated functions allow the analysis of the frequency
dependence of the noise spectrum and the influence of the
physical parameters on the current and voltage noise. The
low frequency value of the current noise spectrum is consis-
tent with results already available in the literature9 and gen-
eral expressions for the high and low voltage limits of the
current noise spectrum are provided. A dependence of the
voltage noise spectrum to f−7/2 at high frequency has been
evidenced in long semiconductor samples.

The analysis performed in the paper does not take into
consideration the effect of the single-particle autocorrelation
associated to the diffusion of a charge carrier in the
semiconductor.13 Further work is needed to extend the above
treatment to include such contributions.
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