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This paper deals with Hamiltonians of the form H=−�2+v�r�, with v�r� periodic along the z direction,
v�x ,y ,z+b�=v�x ,y ,z�, and x, y confined in a finite domain. The wave functions of H are the well-known
Bloch functions �n,��r�, with the fundamental property �n,��x ,y ,z+b�=��n,��x ,y ,z� and �z�n,��x ,y ,z+b�
=��z�n,��x ,y ,z�. We give the generic analytic structure �i.e., the Riemann surface� of �n,��r� and their corre-
sponding energy En��� as functions of �. We show that En��� and �n,��x ,y ,z� are different branches of two
multivalued analytic functions, E��� and ���x ,y ,z�, with an essential singularity at �=0 and additional branch
points, which are generically of order 1 and 3, respectively. We show where these branch points come from,
how they move when we change the potential, and how to estimate their location. Based on these results, we
give two applications: a compact expression of the Green’s function and a discussion of the asymptotic
behavior of the density matrix for insulating molecular chains.
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I. INTRODUCTION

The analytic structure of the Bloch functions for one-
dimensional �1D� crystals with inversion symmetry was in-
vestigated in Ref. 1. Among the major conclusions of this
paper is the fact that the entire band structure can be charac-
terized by a single, though multivalued, analytic function
E��� ��=eikb�, with branch points that occur at complex k.
A similar conclusion holds also for the Bloch functions. The
positions of the branch points determine the exponential de-
cay of the Wannier functions. For insulators, they also deter-
mine the exponential decay of the density matrix and other
correlation functions. It was recently shown that the order of
the branch points determines the additional inverse power-
law decay of these functions.2 We can say that, although the
branch points occur at complex k, their existence and loca-
tion have very important implications on the properties and
dynamics of the physical states. The complex k wave func-
tions are also important when describing surface and defect
states, metal-insulator junctions, and electrical transport
across finite crystals and linear molecular chains.3–6

The methods developed in Ref. 1 could not be extended to
higher dimensions, where the results are much more limited.
The first major step here was made by des Cloizeaux, who
studied the analytic structure near real k’s, for crystals with a
center of inversion.7,8 His conclusion was that the Bloch
functions and energies of an isolated simple band are ana-
lytic �and periodic� in a complex strip around the real k’s.
The restriction to crystals with center of symmetry was later
removed.9 The analytic structure has been reconsidered in a
study by Avron and Simon,10 who gave answers to some
important, tough qualitative questions. For example, one of
their conclusions was that all isolated singularities of the
band energy are algebraic branch points. The topology of the
Riemann surface of the Bloch functions for finite gap poten-
tials in two dimensions has been investigated in a series of
studies by Novikov et al.11 The analytic structure has been
also investigated by purely numerical methods. Since it is
impossible to explore numerically the entire complex plane,

numerical methods cannot provide the global structure. Even
so, they can provide valuable information. For example, in
the complex band calculations for bulk Si,12 or linear mo-
lecular chains,13,14 one can clearly see how the bands are
connected, even though these studies explored only the real
axis of the complex energy plane.

In this paper we consider linear molecular chains, de-
scribed by a Hamiltonian of the form

H = − �2 + v�r� , �1�

with v�r� periodic with respect to one of the Cartesian coor-
dinates of R3, let us say z:

v�x,y,z + b� = v�x,y,z� . �2�

The wave functions of H are Bloch waves, �n,��r�, with the
fundamental property

�n,��x,y,z + b� = ��n,��x,y,z� ,

�z�n,��x,y,z + b� = ��z�n,��x,y,z� . �3�

We derive the generic analytic structure �the Riemann sur-
face� of �n,��r� and of the corresponding energy En��� as
functions of complex �. We shall see that they are different
branches of two analytic functions, ���r� and E���, with an
essential singularity at �=0 and additional branch points
which, generically, are of order 3, respectively 1. We show
where these branch points come from, how they move when
the potential is changed and, in some cases, how to estimate
their location.

Our strategy is as follows. According to the Bloch theo-
rem, we can restrict z to z� �0,b� and study the following
class of Hamiltonians, which will be called Bloch Hamilto-
nians:

H� = − �2 + v�r�, z � �0,b� , �4�

with � referring to the following boundary conditions:

PHYSICAL REVIEW B 73, 035128 �2006�

1098-0121/2006/73�3�/035128�12�/$23.00 ©2006 The American Physical Society035128-1

http://dx.doi.org/10.1103/PhysRevB.73.035128


���x,y,b� = ���x,y,0� ,

�z��x,y,b� = ��z��x,y,0� ,
�5�

which define the domain of H�. For z� �0,b�, the eigenvec-
tors of H� and their corresponding energies coincide with
�n,��r� and En���. Let ��H�� denote the resolvent set of H�,
which is composed of those points in the complex energy
plane for which �z−H��−1 is bounded. Now, it was long
known that the Green’s function, �z−H��−1, evaluated at
some arbitrary point z���H��, is analytic of �, for any � in
the complex plane.17 In Sec. II, we derive the local analytic
structure of the eigenvectors and eigenvalues as functions of
�, starting from this observation alone. To obtain the global
analytic structure, we start with a simple v�r�, with known
global analytic structure, and then study how this structure
changes when v�r� is modified.

When this formalism is applied to 1D periodic systems,
all the conclusions �and a few additional ones� of Ref. 1
follow with no extra effort. This is done in Sec. III. Section
IV presents the results for linear chains. We have two appli-
cations: a compact expression for the Green’s function,
which is developed in Sec. V, and the computation of the
asymptotic behavior of the density matrix for insulating lin-
ear molecular chains, which is done in Sec. VI. We conclude
with remarks on how to calculate the analytic structure for
real systems. We also have two Appendixes with mathemati-
cal details.

II. GENERAL FORMALISM

We consider here, at a general and abstract level, an ana-
lytic family, �H����C, of closed, possibly non-self-adjoint op-
erators. The analyticity is considered in the sense of Kato,15

which means that, for any z���H��, the Green’s function
can be expanded as

�z − H���
−1 = �

n=0

�

��� − ��nRn�z� , �6�

with the power series converging in the topology induced by
the operator norm, for any �� in a finite vicinity of �. We
have already mentioned that the Bloch Hamiltonians form an
analytic family.

In this section, we discuss the analytic structure of the
eigenvalues and the associated eigenvectors of H�, as func-
tions of �, based solely on the analyticity of the Green’s
function. For this, we need to find ways of expressing the
eigenvalues and eigenvectors using only the Green’s func-
tion. The major challenge will be posed by the degeneracies.

Suppose H� has an isolated, nondegenerate eigenvalue E�,
for � near �0. Then there exists a closed contour � separating
E�0

from the rest of the spectrum. For � in a sufficiently
small vicinity of �0, E� remains the only eigenvalue inside �
and we can express E� as

E� = Tr	
�

z�z − H��−1 dz

2�i
. �7�

As shown in Appendix A, Eqs. �6� and �7� automatically
imply that E� is analytic at �0. Since �0 was chosen arbi-

trarily, we can conclude that the nondegenerate eigenvalues
are analytic functions of �, as long as they stay isolated from
the rest of the spectrum.

Suppose now that H� has two isolated, nondegenerate ei-
genvalues, E� and E��, which become equal at some �c �see
Fig. 1�:

E�c
= E�c

� = Ec. �8�

We are interested in the analytic structure of these eigenval-
ues and the associated eigenvectors, for � in a vicinity of �c.

Equation �7� is no longer useful, since there is no such
�-independent contour � that isolates one eigenvalue from
the rest of the spectrum, for all � in a vicinity of �c. The key
is to work with both eigenvalues, since we can still find a
�-independent contour �, separating E� and E�� from the rest
of the spectrum �see Fig. 1�, as long as � stays in a suffi-
ciently small vicinity of �c. We define

Fm��� = �E��m + �E���m, m = 1,2, . . . . �9�

The main observation is that we can use the Green’s function
to express Fm���:

Fm��� = Tr	
�

zm�z − H��−1 dz

2�i
. �10�

Then, as shown in Appendix A, it follows from Eqs. �6� and
�10� that Fm��� are analytic functions near and at �c.

The functions introduced in Eq. �9� provide the following
representation:

E� =
1

2
�F1��� + 
2F2��� − F1���2� ,

FIG. 1. The figure shows two isolated eigenvalues of H�, E�,
and E��, that become equal for �=�c. The figure also shows the
contours of integration, �, �, and �� used in the text.
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E�� =
1

2
�F1��� − 
2F2��� − F1���2� . �11�

Thus we managed to express the eigenvalues in terms of the
Green’s function alone. The analytic function,

G��� � 2F2��� − F1���2, �12�

must have a zero at �c, so its generic behavior near �c is

G��� = �� − �c�Kg��� , �13�

with K an integer larger or equal to 1 and g��� analytic and
nonzero at �c. The cases when K	2 are very special and
will not be considered here. Only the following two possi-
bilities are relevant to us:

G��� = ��� − �c�g��� �type I�
�� − �c�2g��� �type II� ,

�14�

where g��� is analytic and has no zeros in a vicinity of �c.
For a type-I degeneracy, as � loops around �c, E� be-

comes E��, and vice versa. The two eigenvalues are different
branches of a double-valued analytic function, with a branch
point of order 1 at �c:

E� = Ec + 
�� − �c�1/2 + ¯ . �15�

For a type-II degeneracy, both E� and E�� are analytic near
�c.

We consider now the spectral projectors, P� and P��, as-
sociated with E� and E��, respectively. For ���c, they have
the following representation:

P� = 	
�

�z − H��−1 dz

2�i
, �16�

where � is defined by �z−E� � =d, with d small enough �thus
� dependent� so E�� lies outside � �see Fig. 1�. P�� has a
completely equivalent representation. We list the following
properties:

P�
2 = P�, P��

2 = P�� ,

P�P�� = P��P� = 0. �17�

For a type-I degeneracy, as � loops around �c, P� be-
comes P�� and vice versa. Thus P� and P�� are different
branches of a double-valued analytic function, with branch
point of order 1 at �c. In other words, they are given by the
same function �identified from now on with P��, which is
evaluated on different Riemann sheets. These sheets have �c
as a common point. Thus if P� does not diverge at �c, then

lim
�→�c

P� = lim
�→�c

P�� . �18�

But this will contradict, for example, P�P��=0. We must con-
clude that P� diverges at �c. To find out the form of the
singularity, we observe that if �E� denotes the difference
E�−E��, then �E�P� has a well defined limit at �c, which can
be seen from the following representation:

�E�P� = 	
�

�z − E����z − H��−1 dz

2�i
. �19�

Since �E�� ��−�c�1/2, we can conclude that the singularity
of P� is of the form ��−�c�−1/2. In addition, we mention that
the total spectral projector,

P��� = P� + P�� , �20�

is analytic near and at �c, as it can be seen from the repre-
sentation

P��� = 	
�

�z − H��−1 dz

2�i
, �21�

and that the Green function for �=�c and z near Ec has the
following structure:

�z − H�c
�−1 = �z − Ec�−2 lim

�→�c

�E�P� + �z − Ec�−1P��c� + R�z� ,

�22�

with R�z� analytic near Ec. This expression is interesting be-
cause the Green’s function of self-adjoint operators, viewed
as functions of z, always have simple poles. Thus H�c

cannot
be a self-adjoint operator. In other words, type-I degeneracies
cannot occur for those values of � for which H� is self-
adjoint.

We now turn our attention to the eigenvectors. Since, for
���c, P� is rank 1, it can be written as

P� = �����̄�� , �23�

with �� ��̄�� the eigenvector to the left �right�, normalized as

��̄�,�� = 1. �24�

As explained in Ref. 16, passing from the projector to the
eigenvectors is not a trivial matter, since these vectors are
defined up to a phase factor. The question is, can we choose
or define these phases so that no additional singularities are
introduced? We can give a positive answer when there is an
antiunitary transformation Q, such that

H�
† = QH�Q−1. �25�

As we shall later see, such Q exists, for example, when
v�x ,y ,z�=v�x ,y ,−z�. Now fix an arbitrary � and observe
that

P� =
P����Q��P�

�Q�,P��
. �26�

One immediate problem with the above expression is that the
denominator can be zero. This can happen only for isolated
values of � for, otherwise, the denominator will be identi-
cally zero. Let �0 be such value, assumed different from the
branch point �we can always choose a � satisfying this con-
dition�. We know that the only singularity of P� is at �c, so
what we have in the left and right sides of Eq. �26� are two
functions that are equal on a domain surrounding �0 but ex-
cluding �0, and one of them, P�, is analytic at �0. Then it is
a fact that both functions are analytic at �0. This means the
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numerator in the right-hand side of Eq. �26� must also cancel
at �0, with the same power as the denominator and the prob-
lem disappears. The existence of Q was not essential in this
argument. Then, it is natural to think that we can define the
left and right eigenvectors of H� as

��� =
P���

�Q�,P��1/2 �27�

and

��̄� =
P�

†Q��
�Q�,P��1/2 . �28�

The only problem is the following: the denominator in Eq.
�26� behaves like ��−�0�
 near �0, with 
 some unknown
integer power. As we have already seen, the numerator of Eq.
�26� must have exactly the same behavior. Now let us look at
Eqs. �27� and �28�: the denominator of �� behaves like ��
−�0�
/2, but the numerator can behave like ��−�0�r with r

arbitrary, as long as the numerator of �̄� behaves like ��
−�0�
−r. However, using the intertwining property of Q, we

can see that the numerators of ��� and ��̄� are P� �� and
QP� ��, respectively. Because ker Q=0, the two numerators
must have the same behavior near �0, i.e., r=
 /2. The con-

clusion is that both ��� and the complex conjugate of ��̄�
are analytic at �0.

If Q cannot be defined, this may no longer be true. You
may think that, in such cases, we should modify the denomi-
nator of �� to �Q� , P��r/
. The problem is that �0 is not
unique so this may fix the problem at �0 but not at other
similar points, because r may change.

There will be, inherently, a branch point at �c, where ��

and �̄�
* behave as

���r� =
c�r�

�� − �c�1/4 + d�r� + ¯ , �29�

�̄�
*�r� =

c̄�r�
�� − �c�1/4 + d̄�r� + ¯ , �30�

i.e., �� and �̄�
* have a branch point of order 3 at �c. If the

operator Q with the above-mentioned properties exists, this
is their only singularity near �c.

For a type-II degeneracy, P� and P�� are analytic near �c.
The eigenvectors can be introduced in the same way as
above and, if Q exists, they are analytic functions of �.

Analytic deformations. We analyze now what happens
when an analytic potential w is added:

H�,� = H� + �w . �31�

By analytic potential we mean that �H�,���,��C is an analytic
family in the sense of Kato, in both � and � �see Appendix
B�.

For any fixed �, the isolated, nondegenerate eigenvalues
of H�,� remain analytic of �. The interesting question is what
happens with the degeneracies. Suppose that, at some fixed
�0, there are two isolated, nondegenerate eigenvalues, E�,�0
and E�,�0

� , which become equal at �c. For � in a small vicin-

ity of �c and � in a small vicinity of �0, we can define the
functions F1,2�� ,�� and G�� ,�� as before, which are now
analytic functions in both arguments, �� ,��, near ��c ,�0�.

If at �0, �c is a type-I degeneracy, the only effect of a
variation in � is a shift of �c. Indeed, since

G��c,�0� = 0, ��G��c,�0� � 0, �32�

the analytic implicit function theorem assures us that there is
a unique �c��� such that

G„�c���,�… = 0. �33�

Moreover, the zero is simple, i.e., �c��� remains a type-I
degeneracy. For � near �0,

�c��� = �c −
��G��c,�0�
��G��c,�0�

�� − �0� + ¯ , �34�

where the dots indicate higher-order terms in �−�0. From
Eqs. �15� and �29� we readily find

�c��� = �c�1 −
� − �0



	 c̄�x�w�x�c�x�dx + ¯ � . �35�

If H�,� and H�*,� have complex conjugate eigenvalues, then

G„�,�… = G„�*,�…*. �36�

In this case, if �c is located on the real axis, so it is �c���. If
not, then

G„�c���,�… = G„�c���*,�… = 0, �37�

which contradicts the uniqueness of �c���.
Generically, a type-II degeneracy splits into a pair of

type-I degeneracies when � is varied. Indeed, since

G��c,�0� = ��G��c,�0� = ��G��c,�0� = 0, �38�

the generic structure of G�� ,�� near ��c ,�0� is

G��,�� = a�� − �c�2 + b�� − �c��� − �0� + c�� − �0�2 + ¯ .

�39�

Thus for ���0, G�� ,�� will have, generically, two simple
zeros �type-I degeneracies� at

�c
±��� = �c +

� − �0

2a
�− b ± 
b2 − 4ac� + ¯ . �40�

The coefficients a, b, and c can be derived from a perturba-
tion expansion of Eqs. �9� and �12�, leading to

�c
±��� = �c −

� − �0

���E�c

 �Tr��P�c
− P�c

� �w� ± 
− Tr�P�c
wP�c

� w�� ,

�41�

plus higher orders in �−�0.
If a type-II degeneracy does not split, it remains a type-II

degeneracy for all values of �. This is a consequence of the
fact that, if two analytic functions are equal on an interval,
they are equal on their entire domain.
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We now summarize the findings of this section. The iso-
lated, nondegenerate eigenvalues of H� are analytic of �.
Double degeneracies can be of different kinds. Type-I degen-
eracies are equivalent to branch points. Near such degenera-
cies, E� behaves as a square root. Type-I degeneracies are
robust to analytic perturbations: as long as they stay isolated,
variations of the periodic potential cannot destroy or create
but only shift them. At type-II degeneracies, the eigenvalues
are analytic. Type-II degeneracies are unstable to analytic
perturbations: generically, they split into two type-I degen-
eracies. The other types of degeneracies were considered rare
and not discussed here. The analytic structure of the spectral
projectors can be automatically deduced from the analytic
structure of E���. If there exists an antiunitary transformation
Q, such that H�

† =QH�Q−1, then the phase of the eigenvectors
can be chosen in a canonical way and their analytic structure
follows automatically from the analytic structure of E���. If
such Q does not exist, the eigenvectors will still have singu-
larities of the type ��−�c�−1/4 at the branch points of E� but
the present analysis does not rule the existence of additional
singularities.

A similar analysis can be developed for higher degenera-
cies. For a triple degeneracy, for example, we will have to
consider the functions Fm���, with m=1,2 ,3. However, we
regard higher degeneracies as nongeneric, i.e., more rare than
simple degeneracies and will not be considered in this paper.

III. STRICTLY 1D SYSTEMS

We apply here the abstract formalism to an already well
studied problem: the analytic structure of Bloch functions in
1D, i.e., the wave functions of the following Hamiltonian:

H = − �x
2 + v�x�, v�x + b� = v�x�, x � R . �42�

According to Bloch theorem, finding the wave functions and
their corresponding energies is equivalent to studying the
following analytic family of Hamiltonians:17

H� = − ��x
2�� + v�x�, x � �0,b� , �43�

defined in the Hilbert space of square integrable functions
over the interval �0,b�. The index � refers to the boundary
conditions

��b� = ���0�, ���b� = ����0� , �44�

which define the domain of H�. The energy spectrum of H
consists of all eigenvalues of H�, when � sweeps continu-
ously the unit circle. If �n,��x� is the normalized eigenvector
of H� corresponding to the eigenvalue En���, then �n,��x�
coincides on �0,b� with the Bloch wave of the same energy.
If we extend these functions to the entire real axis by using

�n,��x + mb� = �m�n,��x�, x � �0,b� , �45�

they will automatically satisfy the standard normalization,

	
−�

�

�n,1/��x��n,���x�dx = 2�i���� − ��� . �46�

Here are a few elementary properties of H�. H� is an
analytic family in the sense of Kato, for all ��C. H� is

self-adjoint if and only if � is on the unit circle. In general,
H1/�* is the adjoint of H�. If C is the complex conjugation,
CH�C=H�*. Thus H� and H�* have complex conjugated ei-
genvalues and H� and H1/� have identical eigenvalues. This
tells us that the analytic structure is invariant to �→1/� and
�→�*. Because of these symmetries, it is sufficient to con-
sider only the domain �� � �1. For � not necessarily on the
unit circle, the spectral projector on En,� is given by

Pn,��x,y� = �n,��x��n,1/��y� . �47�

We consider now the following class of Hamiltonians:

H�,� = − ��x
2�� + �v�x�, v�x + b� = v�x� , �48�

and we adiabatically switch � from 0 to 1. As it is shown in
Appendix B, potentials v�x� with square integrable
singularities18 are analytic. Thus the theory developed in the
previous section can be applied to a large class of potentials.

The eigenvalues and the associated eigenvectors of H�,0
are given by

En
0��� = b−2�2n�i + ln ��2,

�n,�
0 �x� = b−1/2e�2n�i+ln ��x/b. �49�

They are the different branches of the following multivalued
analytic functions:

E0��� = b−2�ln ��2, ��
0�x� = b−1/2�x/b. �50�

The Riemann surface of E0��� is shown in Fig. 2�a�. There
are only type-II degeneracies and they occur at �= ±1:

En
0�� = 1� = E−n

0 �� = 1� ,

En
0�� = − 1� = E−n+1

0 �� = − 1� . �51�

A plot of these eigenvalues for � on the unit circle is given in
Fig. 3�a�. Now we turn on the periodic potential. Typically,

FIG. 2. �a� The Riemann surface of E0��� is a spiral, which has
been cut along the dotted lines in individual sheets, indexed by n
=0, ±1, . . . . The solid dots indicate the type-II degeneracies and
the arrows indicate how they pair. �b� The Riemann surface of E���
at �	0. The empty dots represent the branch points and the arrows
indicate how the Riemann sheets are connected. In both panels, the
thick line shows the trajectory on the Riemann surface, when �
moves on the unit circle.
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the energy spectrum of H consists of an infinite set of bands
separated by gaps, denoted here by �n �see Fig. 3�b��. When
v�x� is modified, some of the gaps may close and others may
open. If we assume that all the gaps open when the periodic
potential is turned on, as in Ref. 1, then all type-II degenera-
cies split into pairs of type-I degeneracies, �c��� and
1/�c���, located on the real axis. �c��� and 1/�c��� are
branch points for E���, which connect different sheets of the
original Riemann surface �see Fig. 2�b��. Since they are con-
strained on the real axis, the trajectory of different branch
points cannot intersect �they stay on the same Riemann
sheet�, i.e., the branch points remain isolated as � is in-
creased. Thus as the previous section showed, they move
analytically as we increase the coupling constant and we can
conclude that the analytic structure cannot change, qualita-
tively, as we increase �.

For �=0, we move from one sheet to another as � moves
continuously on the unit circle, as Fig. 2�a� shows. The situ-
ation is different for ��0 �see Fig. 2�b��: when � completes
one loop on the unit circle, we end up on the same point of
the Riemann surface as where we started. We can then re-cut
the Riemann surface, so that we stay on the same sheet when
� moves on the unit circle �see Fig. 4�.

Thus we rediscovered one of the main conclusions of Ref.
1. The eigenvalues En��� are different branches of a multi-
valued analytic function E��� with a Riemann surface shown
in Fig. 4: there are branch points or order 1 at �1, �2 , . . ., and
an essential singularity at 0. For � small, Eq. �41� leads to

�n = �− 1�n−1�1 −
b�n

4
�n
� , �52�

where �n is the nth energy gap and �n is the energy in the
middle of the gap.

If v�x�=v�−x�, we can construct Q as Q=CS, where C is
the complex conjugation and S is the inversion relative to
x=0. Thus for systems with inversion symmetry, we can also
conclude at once that the only branch points of the Bloch
functions are �1, �2 , . . ., which are of order 3 �see Eqs. �29��.
The present analysis actually adds something to the results of
Ref. 1, where the author studied two particular phase choices

of the Bloch functions, namely, those imposed by ���x�
��� � =1� being real at the points of inversion symmetry, x
=0 and x=b /2. The author warns that other choices can in-
troduce additional singularities and thus reduce the exponen-
tial localization of the corresponding Wannier functions. A
frequently used method of generating Wannier functions lo-
calized near an arbitrary x0 is to impose Im ���x0�=0. Since
such a phase choice corresponds to choosing ��x�=��x−x0�
in Eqs. �27� and �28�, we can automatically conclude that it
does not introduce additional singularities and that the expo-
nential localization of the corresponding Wannier functions
is maximal.

IV. LINEAR MOLECULAR CHAINS

We specialize our discussion to three dimensions and con-
sider Hamiltonians of the form

H = − �2 + V�r�, V�x,y,z + b� = V�x,y,z� . �53�

Using the Bloch theorem, we can find the spectrum and the
wave functions of H by studying the following family of
analytic Hamiltonians:

H� = − �x
2 − �y

2 − ��z��
2 + V�r�, z � �0,b� , �54�

with the boundary conditions

��x,y,b� = ���x,y,0� ,

�z��x,y,b� = ��z��x,y,0� . �55�

The general facts about H� listed in the previous section are
still valid. Again, the analytic structure is invariant to �
→�* and �→�−1 so we can and shall restrict the domain of
� to the unit disk, �� � �1.

We apply the analytic deformation strategy, as we did for
the 1D case. We start from a Hamiltonian with known global
analytic structure. For this we consider a separable potential,

FIG. 3. �a� The plot of En
0��� �n=0, ±1, . . . � as functions of real

kz ��=eikzb�. �b� The generic band structure when the periodic po-
tential is turned on. FIG. 4. An equivalent representation of the Riemann surface of

Fig. 2�b�. The index n is now the band index. Each sheet corre-
sponds now to one energy band. The thick line shows the trajectory
on the Riemann surface when � encircles the origin at a small
radius.
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H0 = − �2 + v��x,y� + v�z�, v�z + b� = v�z� , �56�

and then adiabatically introduce the nonseparable part of the
Hamiltonian,

H� = H0 + �w�r�, w�x,y,z + b� = w�x,y,z� . �57�

We assume, for simplicity, that

H� � − �x
2 − �y

2 + v��x,y� �58�

has only discrete, nondegenerate spectrum. For this, we will
have to constrain x and y in a finite region, which can be
arbitrarily large. To be specific, we assume x ,y� �0,b�� and
impose periodic boundary conditions. This is actually the
most widely used approach in numerical calculations involv-
ing linear chains. We also assume that w�r� has square inte-
grable singularities, which warranties that it is an analytic
potential �see Appendix B�.

Let � j�x ,y�, Ej and �n,��z�, En��� denote the eigenvectors
and the corresponding eigenvalues of H� and of

H�� � − ��z��
2 + v�z� , �59�

respectively. Then the eigenvectors and the corresponding
eigenvalues of H�,0 are given by

�n,�
j �x,y,z� = � j�x,y��n,��z� ,

En
j ��� = Ej + En��� . �60�

The global analytic structure of En
j ��� is known: for j fixed,

they are different branches of a multivalued analytic function
Ej���, with a Riemann surface as in Fig. 4. We now look for
type-II degeneracies:

E = Ej + Enj
��� = Ei + Eni

��� , �61�

which can occur only for � on the unit circle or on the real
axis but away from the branch cuts. Indeed, if ��E� denotes
the Kramers function for the strictly one-dimensional Hamil-
tonian H��,19 then Eq. �61� is equivalent to

��E − Ej� = ��E − Ei� . �62�

In Ref. 1, it was shown that the equation d� /dE=0 has
solutions only for E on the real axis. Using exactly the same
arguments, one can show that all the solutions of Eq. �62� are
on the real axis �see Fig. 5�. Given that

�2 − 2��E − Ej�� + 1 = 0, �63�

with ��E−Ej� real, it follows that � must lie either on the
unit circle or on the real axis �away from the branch cuts�.
For example, the solutions A and C in Fig. 5 have � on the
unit circle, while the solution B has � on the real axis, inside
the unit circle. We will refer to these three situations as cases
A, B, and C. Since the analytic structure is symmetric to �
→�*, the type-II degeneracies on the unit circle always come
in pairs, symmetric to the real axis.

We consider first the case A, which corresponds to the
case when two bands intersect as in Fig. 6�a�. Figure 6�b�
shows the Riemann sheets corresponding to these two bands.
There are two type-II degeneracies, marked with solid
circles, on the unit circle and symmetric to the real axis. We

assume for the beginning that these are the only type-II de-
generacies that split when the nonseparable potential is
turned on. When the type-II degeneracies split, avoided
crossings occur and the bands split �see the dashed lines in
Fig. 6�a��. We denote the upper and lower band by E±���.
When the nonseparable part of the potential is turned on, the
already existing branch points shift along the real axis. For
small �, the shifts can be calculated from Eq. �35�. In addi-
tion, two type-I degeneracies appear �and another two out-

FIG. 5. ��E−Ej� and ��E−Ei� as functions of E, for a typical
Kramers function �. The solutions to Eq. �62� are given by the
intersection points A, B, C, . . . .

FIG. 6. �a� Enj

j ��� and Eni

i ��� as functions of real kz ��=eikzb� for
case A. The dashed lines shows the bands after the nonseparable
potential was turned on. �b� The Riemann sheets of Enj

j ��� and
Eni

i ��� and the type-II degeneracies �solid circles�, with arrows in-
dicating how they pair �case A�. �c� The Riemann surface at �	0.
The empty circles represent the branch points and the arrow indi-
cate how they connect different points of the Riemann surface.
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side the unit disk�, introducing branch points that connect the
original Riemann sheets. The connected sheets are shown in
Fig. 6�c�, where we can also see that, when � makes a com-
plete loop on the unit circle, we end up at the same point as
where we started. This means we can re-cut the two, now
connected, sheets so that we stay on the same sheet when �
moves on the unit circle. These new sheets are shown in Fig.
7 and correspond now to the upper and lower bands E±���.

We consider now case C, which corresponds to a situation
when two bands intersect as in Fig. 8�a�. When the type-II
degeneracies split, the bands split in E±��� and a gap ap-
pears. This is the only qualitative difference between cases A
and C. The Riemann surfaces, before and after the nonsepa-
rable potential was turned on, are shown in Figs. 8�b� and
8�c�. Again, we can re-cut the Riemann surface so one sheet
corresponds to one band. These new Riemann sheets are
shown in Fig. 9.

The case B goes completely analogous. The qualitative
differences are that the branch points split from the real axis
and we do not have to re-cut the Riemann surface.

We analyze now a more involved possibility, namely
when we have more type-II degeneracies on the same Rie-
mann sheet:

Enj

j ��� = Eni

i ���, Enj

j ���� = Enk

k ���� . �64�

Such a situation appears when, for example, we have bands
crossing as in Fig. 10�a�. The Riemann sheets for these bands
and the type-II degeneracies are shown in Fig. 10�b�. When
the perturbation is turned on, the type-II degeneracies split in
pairs of type-I degeneracies, introducing branch points con-
necting the original sheets as shown in Fig. 10�c�. Again,
when � completes one loop on the unit circle, we end up at
the same point of the Riemann surface as where we started.
We can then re-cut the Riemann surface such that we stay on
the same sheet when � moves on the unit circle �see Fig. 11�.
The only new element is a Riemann sheet �corresponding to
the middle band� with six branch points.

The last situation we consider is the emergence of a com-
plex band. Suppose that H has a symmetry with an irreduc-
ible representation of dimension 2. Suppose that this symme-

try is also present for the Bloch Hamiltonian at �=1. In this
case, the separable Hamiltonian will have bands that touch
like in Fig. 12�a�. Such situations are no longer accidental. In
this case, the function G��� introduced in Eq. �12� behaves
as

G��� = �� − 1�4g��� , �65�

with g��� nonzero at �=1. Following our previous notation,
this will be a type-IV degeneracy �see Fig. 12�b��. When the

FIG. 7. The Riemann sheets of E±��� �case A�. The thick line
shows a trajectory on the Riemann surface when � completes a loop
around the origin.

FIG. 8. �a� Enj

j ��� and Eni

i ��� as a function of real kz ��=eikzb�
for case C. The dashed lines shows the bands after the nonseparable
potential was turned on. �b� The Riemann sheets of Enj

j ��� and
Eni

i ��� and the type-II degeneracies, with arrows indicating how
they pair �case C�. �c� The Riemann surface at �	0. The empty
circles represent the branch points and the arrow indicate how they
connect different points of the Riemann surface.

FIG. 9. The Riemann sheets of E±��� �case C�. The thick lines
shows a trajectory on the Riemann surface when � completes a loop
around the origin.
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nonseparable potential is turned on, the degeneracy at �=1
cannot be lifted because of the symmetry. This means G���
must continue to have a zero at �=1. Generically, the order
of this zero is reduced to 2 and two other zeros split, sym-
metric relative to the unit circle. In other words, the type-IV
degeneracy splits into a pair of type-I degeneracies plus a
type-II degeneracy. E��� remains analytic at �=0, but now
the two bands are entangled, in the sense that we need to
loop twice on the unit circle to return back to the same point
of the Riemann surface �see Fig. 12�c�� and we can no longer
cut the Riemann surface so that we stay on the same sheet
when � moves on the unit circle. A complex band can in-

volve an arbitrary number of bands. For example, the new
bands shown with dashed lines in Fig. 12�a� can entangle
with other bands at �=−1, through the same mechanism, and
so on. Rather than cutting the Riemann surface in individual
sheets, we think it is much more convenient to think of a
complex band as living on a surface made of all the indi-
vidual sheets that are entangled through the mechanism de-
scribed in Fig. 12. We note that the complex band can split in
simple bands as soon as the symmetry is broken.

We can continue with further examples but we can al-
ready draw our main conclusions. The eigenvalues of H�,�
are different branches of a multivalued analytic function
E���. The Riemann surface of E��� can be cut in subsur-
faces, such that each subsurface describes one band. For a
simple band, this subsurface consists of the entire unit disk,
with cuts obtained by connecting a finite number of branch
points to the essential singularity at �=0. For a complex
band, the subsurface consists of a finite number of unit disks
that are connected as in Fig. 12�c�. On this subsurface we can
have an arbitrary number of branch points, that connect this
subsurface to the rest of the Riemann surface. For both
simple and complex bands, the branch points are symmetric
relative to the real axis and, generically, they are of order 1
�“accidental” higher degeneracies can lead to branch points
of higher order�.

As we analytically deform the Hamiltonian, the unsplit
type-II degeneracies stay on the unit circle or real axis and
the positions of the branch points shift smoothly. In contra-
distinction to the 1D case, the branch points can move from

FIG. 10. �a� The band Enj

j ��� intersects with Eni

i ��� and Enk

k ���.
The dashed line shows the bands at �	0. �b� The Riemann sheets
for these bands and the type-II degeneracies, with arrows indicating
how they pair. �c� The Riemann sheets at �	0.

FIG. 11. The Riemann sheets corresponding to the three bands
�dashed lines� of Fig. 10�a�, for �	0.

FIG. 12. �a� Two bands, Eni

i ��� and Enj

j ���, touch tangentially at
kz=0 ��=1�. The dashed lines show the bands after the nonsepa-
rable potential was turned on. �b� The Riemann sheets for these
bands and the type-IV degeneracy �solid circle�. �c� The Riemann
sheets after the nonseparable potential was turned on.
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one sheet to another and their trajectories can intersect.
When two of them intersect, they either become branch
points of order 2 or recombine into a type-II degeneracy.
Higher-order branch points are not stable, in the sense that
small perturbations split them into two or more branch points
of order 1.

The Riemann surface of the spectral projector P� is the
same as for E���. When the inversion symmetry is present,
the analytic structure of the Bloch functions can also be com-
pletely determined from the analytic structure of E���: the
Riemann sheets of ���x� are the same as for E���, but the
branch points are generically of order 3 �see Eq. �29��.

V. GREEN’S FUNCTION

With the analytic structure at hand, it is a simple exercise
to find a compact expression for the Green’s function GE
��E−H�−1, which is a generalization of the well-known
Sturm-Liouville formula in one dimension. Indeed, using the
eigenfunction expansion,

GE�r,r�� = �
n
	

���=1

�n,1/��r��n,��r��
E − En���

d�

2�i�
, �66�

where the sum goes over all unit disks of the Riemann sur-
face. Changing the variable from � to 1 /� if necessary, the
above expression can also be written as

GE�r,r�� = �
n
	

���=1

�n,1/��r���n,��r	�
E − En���

d�

2�i�
, �67�

where r	=r if z	z�, r	=r� if z�	z, and similarly for r�.
This step is necessary because we will deform the contour of
integration inside the unit circle. We could deform the con-
tour outside the unit circle, but since we chose to exclude
this part of the domain we do not have this liberty anymore,
and we need to rearrange the arguments before deforming
the contour. The integrand �including the summation over n�
is analytic at the branch points. Also, for �→0, En���→�

and �n,1/��r���n,��r	����z−z��, so there is no singularity at
�=0. Then, apart from poles, which occur whenever En���
=E, the integrand is analytic. Using the residue theorem, we
conclude that

GE�r,r�� = �
j

�1/�j
�r����j

�r	�

� j��E�� j�
, �68�

where the sum goes over all � j on the Riemann surface such
that E�� j�=E. This expression is valid for systems with and
without inversion symmetry, since it is the projector, not the
individual Bloch functions, that enters into the above equa-
tions. Equation �68� is closely related to the surface adapted
expression of the bulk Green’s function derived in Ref. 20.

VI. DENSITY MATRIX

As a simple application, we derive the asymptotic behav-
ior of the density matrix n�r ,r�� for large �z−z��, when there

is an insulating gap between the occupied and unoccupied
states. We start from

n�r,r�� =
1

2�i
	

C
GE�r,r��dE , �69�

where C is a contour in the complex energy plane surround-
ing the energies of the occupied states. Using Eq. �68�, we
readily obtain

n�r,r�� =
1

2�i
	

�

�1/��r�����r	��−1d� , �70�

where � is the pre-image of the contour C on the Riemann
surface of E���. We now restrict r and r� to the first unit cell
and calculate the asymptotic form of n�r ,r�+mbez� for large
m. Using the fundamental property of the Bloch functions,
we have

n�r,r� + mbez� =
1

2�i
	

�

�1/��r�����r	��m−1d� . �71�

We deform the contour � on the Riemann surface such that
the distance from its points to the unit circle is maximum. In
this way, we enforced the fastest decay, with respect to m, of
the integrand. This optimal contour will surround �infinitely
tide� the branch cuts enclosed by the original contour. The
asymptotic behavior comes from the vicinity of the branch
points �c and �c

* �they always come in pairs� that are the
closest to the unit circle. Using the behavior of the Bloch
functions near the branch points, we find

n → Re c̄�r�c�r���c
m	 ��/�c�m−1d��/�c�

��1 − �/�c�1/2 , �72�

where the integral is taken along the branch cut of �c. This
integral is equal to �2/��B�m ,1 /2�, with B the beta function.
We conclude that

n�r,r� + mbez� →
1

�
B�m,1/2�Re�c̄�r�c�r���c

m� . �73�

Again, this expression holds for systems with and without
inversion symmetry, since it is the projector, not the indi-
vidual Bloch functions, that enters in the above equations.

VII. CONCLUSIONS

First, we want to point out that the formalism presented
here can be also applied to cubic crystals, to derive the ana-
lytic structure of the Bloch functions with respect to kz, while
keeping kx and ky fixed. Preliminary results and several ap-
plications have been already reported in Ref. 21.

We come now to the question of how to locate the branch
points for a real system. In a straightforward approach, one
will have to locate those � inside the unit disk where H�

displays degeneracies. Although such a program can be, at
least in principle, carried out numerically, there are few
chances of success without clues of where these points are
located. This is because, in more than one dimension, these
degeneracies occur, in general, at complex energies. One
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possible solution is to follow the lines presented in this pa-
per: locate the type-II degeneracies for a separable potential
vs, chosen as close to the real potential v as possible, and
follow the trajectory of the branch points as the potential is
adiabatically changed v�=vs+��v−vs�, from �=0 to 1. We
plan to complete such a program in the near future.

The analytic structure of the band energies and Bloch
functions of 3D crystals, viewed as functions of several vari-
ables kx, ky, and kz is a much more complex problem, with
qualitatively new aspects. It will be interesting to see if this
problem can be tackled by the same analytic deformation
technique.
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APPENDIX A

We prove here that if �H����C is an analytic family in the
sense of Kato,15 then Fm��� defined in Eq. �9� are analytic
functions. If Rz�����z−H��−1, by definition,15 the limit

lim
��→�

Rz��� − Rz����
� − ��

�A1�

exists in the topology induced by the operator norm, for any
��C and z���H��. We denote this limit by ��Rz���. Con-
sider now an arbitrary �0�C, and a contour � in ��H�0

�
surrounding N eigenvalues of H�0

. Note that the Bloch
Hamiltonians considered in this paper have compact resol-
vent so their spectrum is always discrete. For � in a small
neighborhood of �0, � remains in ��H�� and we can define

F̂m��� � 	
�

zmRz���
dz

2�i
, �A2�

and Fm���=Tr F̂m���. F̂m��� is an analytic family of rank N
operators for � in a small neighborhood of �0. Indeed, if

F̂m� ��� � 	
�

zm��Rz���
dz

2�i
, �A3�

then

� F̂m��� − F̂m����
� − ��

− F̂m� ����→ 0 �A4�

as ��→�, since it can be bounded by

	
�

�z�m�Rz��� − Rz����
� − ��

− ��Rz���� �dz�
2�

. �A5�

This means the limit

lim
��→�

F̂m��� − F̂m����
� − ��

�A6�

exists and is equal to F̂m� ���. Since F̂m� ��� is the difference of
rank N operators, it is at most rank 2N. In particular,

�Tr F̂m� ��� � ��. Then

�Fm��� − Fm����
� − ��

− Tr F̂m� ����→ 0 �A7�

as ��→�, since

�Tr� F̂m��� − F̂m����
� − ��

− F̂m� �����
� 4N� F̂m��� − F̂m����

� − ��
− F̂m� ���� , �A8�

and Eq. �A7� follows from Eq. �A4�. Thus the limit

lim
��→�

Fm��� − Fm����
� − ��

�A9�

exists and is equal to Tr F̂m� ���.

APPENDIX B

We discuss here the analytic perturbations for linear mo-
lecular chains. As we did in the main text, we constrain x and
y in finite intervals. The Bloch functions are determined by
the following Hamiltonian:

H�,� = − �� + �w, x,y � �0,b�� and z � �0,b� , �B1�

where �� is the Laplace operator with periodic boundaries in
x and y and the usual Bloch conditions in z. We show that if

�w�L2 � �	 w�r�2dr�1/2

� � , �B2�

then H�,� is an analytic family for all ��C. For this we need
the following technical result.

Proposition. Suppose w satisfies Eq. �B2�. Then, for a
positive and sufficiently large, there exists a positive �a such
that lima→��a=0 and

�wf�L2 � �a��H�,0 + a�f�L2, �B3�

for any f in the domain of H�,0.
Now, pick an arbitrary �0, let z���H�,�0

� and denote dz

= ��H�,�0
−z�−1 � ��, where � � denotes the operator norm.

Since

�1 − �a��0���wf�L2 � �a��H�,�0
+ a�f�L2, �B4�

for any f in the domain of H�,0, taking a sufficiently large so
that 1−�a ��0 � 	0, we obtain

�w�H�,�0
− z�−1� �

�a�1 + �z + a�dz�
1 − �a��0�

� � . �B5�

If M denotes the right-hand side of the above equation, then
�H�,�−z�−1 is bounded for ��−�0 � �M−1 and has the follow-
ing norm convergent expansion:
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�H�,� − z�−1 = �H�,�0
− z�−1  �

n=0

�

��0 − ��n�w�H�,�0
− z�−1�n.

�B6�

Thus �H�,�−z�−1 is analytic at the arbitrarily chosen �0.
We now give the proof of the proposition. For f in the

domain of H�,0, let g= �H�,0+a�f . If G�= �H�,0+a�−1, with a
assumed sufficiently large so that �H�,0+a�−1 exists, we have

f�r� =	 G��r,r�;a�g�r��dr� �B7�

and Schwartz inequality gives ��f�L� �supr � f�r� � �

�f�L� � sup
r
�	 �G��r,r�;a��2dr��1/2

�g�L2. �B8�

If we denote


a = sup
r
�	 �G��r,r�;a��2dr��1/2

, �B9�

with the aid of Eq. �B8�, we obtain

�wf�L2 � 
a�w�L2��H�,0 + a�f�L2, �B10�

i.e., Eq. �B3�, if we identify �a�
a �w�L2. We remark that 
a
defined in Eq. �B9� is optimal, in the sense that there are f’s

when we do have equality in Eq. �B10�. It remains to show
that lima→�
a=0.

If G0= �−�+a�−1, with � the Laplace operator over the
entire R3, then we have the following representation:

G��r,r�;a� = �
R��

�−nzG0�r − r� + R;a� , �B11�

where the sum goes over all points of the lattice � defined by
R= �nxb� ,nyb� ,nzb�. Since G0 is real and positive, we can
readily see that �G��r ,r� ;a� � �G����r ,r� ;a�. Moreover,

	 G����r,r�;a�2dr� = �H���,0 + a�−2�r,r� , �B12�

and we have the following representation:

�H���,0 + a�−2�r,r� = �
R��

���−nzC0�R;a� , �B13�

where C0= �−�+a�−2. Note that the diagonal part of �H���,0
+a�−2 is independent of r. C0 can be explicitly calculated,
leading to


a � � �
R��

���−nz
e−
a�R�

2�
a
�1/2

, �B14�

with equality for � real and positive. The right-hand side is
finite for a sufficiently large and goes to zero as a→�.
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