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We have examined the behavior of noninteracting electrons moving on a corner-sharing tetrahedral lattice
into which we introduce a uniform �box� distribution, of width W, of random on-site energies. We have used
both the relative localization length and the spectral rigidity to analyze the nature of the eigenstates and have
determined both the mobility-edge trajectories as a function of W and the critical disorder Wc, beyond which
all states are localized. We find �i� that the mobility-edge trajectories �energies Ec versus disorder W� are
qualitatively different from those found for a simple cubic lattice and �ii� that the spectral rigidity is scale
invariant at Wc and thus provides a reliable method of estimating this quantity—we find Wc / t=14.5. We then
discuss our results in the context of the metal-to-insulator transition undergone by LiAlyTi2−yO4 in a quantum-
site percolation model that also includes the above-mentioned Anderson disorder. We show that the effects of
an inhomogeneous distribution of on-site energies produced by the Al impurity potentials are small compared
to those produced by quantum-site percolation, at least in the determination of the doping concentration at
which the metal-to-insulator transition is predicted to occur.
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I. INTRODUCTION

The properties of the corner-sharing tetrahedral lattice
�CSTL� are of interest in a wide variety of physical systems.1

This lattice is a nonbipartite, and thus frustrated, three-
dimensional structure that is the conducting path of electrons
in many interesting systems. This network can be derived,
e.g., from the diamond structure �which is a bipartite lattice�
by placing a site at each bond midpoint.2 One interesting
consequence from this construction is that, e.g., the critical
�classical� site percolation threshold of pyrochlore is the
same as the bond percolation threshold of diamond. Also,
this structure is a sublattice of many compounds, including
pyrochlores and spinels. In the A2B2O7 pyrochlore structure,
both the A and B sublattices can be realized as a network of
corner-sharing tetrahedra, which is nowadays often referred
to as the pyrochlore lattice. Examples of the interesting
�quantum� magnetic properties and superconducting behav-
ior of several pyrochlores are discussed in the literature.3,4

Indeed, there exist many experimental results which seem to
suggest that the geometrical frustration of the CSTL in these
compounds is responsible for their peculiar properties, and it
has been argued that geometrical frustration tends to amplify
the correlation and quantum effects.1

The initial motivation for our work has to do with the
electronic properties of the normal spinel AB2O4,5 in which
the B sublattice forms a corner-sharing tetrahedral network.
There are a large number of well-known spinels, some with
exotic magnetic2 and electronic properties.6 Further, the re-
cent discovery7 of the first d-electron heavy-fermion com-
pound LiV2O4 has generated substantial interest in such elec-
tronic systems, which has subsequently directed us to a
study10,11 of the simpler but as-yet not understood properties
of LiTi2O4,8 the latter of which has been suggested to be
related to the high-Tc superconductors owing to strong elec-
tronic correlations.9

LiTi2O4 undergoes a metal-to-insulator transition when
excess Li is doped onto the Ti �corner-sharing tetrahedral�

sublattice or when Al �or Cr, which is not discussed in this
paper� is substituted for Ti on the same sublattice, and due to
the large difference in on-site energies �e.g., doped Li versus
Ti�, this system is well approximated by a quantum-site per-
colation model in which the removed sites are those Ti sites
onto which either an excess Li or substituting Al ion are
added. Recently, two of the present authors and Johnston10

have examined the possibility that such a model accounts for
the metal-to-insulator transition and found that physics be-
yond that contained in a quantum-site percolation model will
be required. One example candidate for this “extra physics”
can be understood as follows: the excess Li or substitutional
Al impurity ions will generate a distribution of on-site ener-
gies around them due to their impurity potentials, so that in
addition to their presence eliminating those sites from the
conducting path, their effect on the neighboring sites should
also be included. As suggested by Anderson,2 the role played
by such physics is approximated by a random set of on-site
energies. Here we focus on one simple variant of such
random energies—viz., that given by a uniform �box�
distribution—and at the end of this paper we discuss
the effect of such randomness on this metal-to-insulator
transition.

We stress, however, that in any systematic study of the
physics involving itinerant electrons encountered on a disor-
dered CSTL could require the information contained in our
paper. For example, in addition to our own work,11,12 there
are now several papers by Fujimoto13–16 and others17,18 on
the physics of correlated electrons on this lattice, and if such
work is extended to disordered systems, possessing an un-
derstanding of the disordered but uncorrelated electrons
would be beneficial.

Our paper is organized as follows. In Sec. II we present
the model that we study, and in Sec. III we state the numeri-
cal procedures that we use and the statistical quantities that
we evaluate. In Sec. IV we give our comprehensive numeri-
cal results for the mobility-edge trajectories and the critical
disorder, and in Sec. V we present our results for the
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quantum-site percolation model plus Anderson disorder that
is meant to mimic the �noninteracting� model of the metal-
to-insulator transition in LiTi2O4. Finally, in Sec. VI we state
our conclusions.

II. MODEL

In an effort to better understand the physics of electrons
moving on this structure, we calculate numerically the
mobility-edge trajectories in the energy-disorder plane of a
CSTL with a tight-binding Hamiltonian with a uniform �box�
distribution model of disorder �described below�. In these
calculations only near-neighbor hoppings are included, sys-
tem sizes up to 43 904 sites have been investigated, and pe-
riodic boundary conditions have been used. The CSTL under
consideration is quite complicated: there are two formula
units per primitive unit cell, the conventional unit cell is that
of an fcc lattice, and each formula unit has two octahedral-
site Ti atoms. That is, each conventional unit cell has 16
sites. For this reason the oft-used transfer matrix-method19 is
awkward to implement, and we have instead diagonalized
the Hamiltonian matrix for a lattice with L�L�L conven-
tional unit cells.

The Hamiltonian for this system is given by

H = �
i,�

�ini,� − t �
�i,j�,�

�ci,�
† cj,� + H.c.� , �1�

where i , j denote the sites of the lattice, �i , j� implies that i
and j are near neighbors, and ci,� �ni,�� is the destruction
�number� operator for an electron at site i and spin �. The
hopping energy is t, and the on-site energy at site i is given
by �i. For a uniform �box� distribution of disorder the on-site
energies are being chosen at random to be in the range from
−W /2 to +W /2, with all energies in this range having the
same probability.

Our objective is to analyze this model and determine the
energy ranges over which the eigenstates are localized and
extended—the trajectory in �W, energy� space defines the
mobility-edge trajectories. Further, when W is increased the
upper and lower mobility edges will merge, thus identifying
the critical disorder; this quantity is denoted by Wc �or, more
precisely, Wc / t in dimensionless units�, and we have deter-
mined this quantity using several different techniques.

It seems reasonable that one could be guided, in part, by
the extensive studies of this transition for the 3d simple cubic
lattice; however, there are some important differences that
make this system considerably more difficult to work with.
First, the energy spectrum of the simple cubic lattice is sym-
metric about zero energy, and since the upper and lower mo-
bility edges merge at the transition indicated by Wc, one may
examine an energy window around zero �see, e.g., Fig. 2 of
Ref. 19 for an example density of states for such a problem�.
Further, since the mobility edge is remarkably flat in the
immediate region of Wc, one can improve their statistics by
looking at a reasonably large window of energy around zero
�see, e.g., Fig. 1 of Ref. 20 and the discussion in Ref. 21�.
However, this is not the case for a CSTL—the spectrum is
not symmetric about some middle energy �apart from the
limit of infinite disorder, which is pathological and of no

assistance in our numerics�, and thus the search for the criti-
cal disorder �at which the mobility edges merge� is more
problematic. As an example of this, note that in studies of the
mobility-edge trajectories for quantum-site percolation mod-
els, the simple cubic lattice behaves somewhat similarly to
the box distribution’s result discussed above �see Ref. 22�,
whereas for the CSTL two of us and Johnston10 found that
the trajectory was not flat, instead depending strongly on
disorder �which for a quantum-site percolation model is the
fraction on unoccupied sites�. Indeed, in the results presented
below, we will show that �i� the mobility edges meet at an
energy around −4t, whereas the middle of the band �for this
W� is at an energy of −0.5t, and �ii� the mobility edges do
depend on disorder quite strongly, and the upper and lower
mobility edges are not obviously related to one another. In
part for these reasons, the identification of the mobility-edge
trajectories and Wc is somewhat more challenging for a
CSTL.

III. NUMERICAL PROCEDURES

In order to distinguish between localized and extended
eigenstates we have used several techniques. First, we have
calculated the localization length of an eigenstate23 in the
form

� = �
i

�
j

��i�2�� j�2d�i, j� , �2�

where �i is the probability amplitude for the eigenstate, of a
given fixed energy, at site i and d�i , j� is the Euclidean dis-
tance between lattice sites i and j. Then, this quantity is
averaged for all energy eigenstates in a chosen energy range.
The ratio of this parameter to the identically defined local-
ization length of an eigenstate with constant amplitude over
the entire lattice, the latter denoted by �0, is referred to as the
relative localization length; the ratio is thus denoted by � /�0.
The behavior of this relative localization length as a function
of increasing lattice size �for an specific energy range in the
spectrum of the system� indicates whether these eigenstates,
in the thermodynamic limit, will have localized or delocal-
ized character. That is, if this parameter increases with sys-
tem size �having a limiting ratio of 1�, those states are ex-
tended, while if this quantity decreases with system size,
those eigenstates are localized. This statistic was employed
in the identification of the mobility-edges and metal-to-
insulator transition in a quantum-site percolation model of a
CSTL.10,12

The above-described statistics require the determination
of the eigenvectors of the Hamiltonian, which is numerically
more demanding than the determination of the eigenvalues
alone. The most commonly employed statistic for analyzing
the eigenvalues is so-called level statistics.24,25 However, we
have found26 that the most sensitive indication of, in particu-
lar, Wc / t is the so-called Dyson-Mehta �3 “spectral rigidity,”
which is described in detail in a variety of references—see,
e.g., Refs. 27 and 28. �3 is defined by
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�3�K� =� 1

K
min
A,B

�
x

x+K

	N��� − A� − B
2d��
x

�3�

where N��� is the integrated density of states, and �. . .�x de-
notes an average over different parts of the energy spectrum.
At the critical value of disorder this statistic will be invariant
with system size, whereas above and below this value of W it
will flow to so-called Poissonian and Gaussian orthogonal
ensemble �GOE� limits corresponding to localized and ex-
tended states, respectively. The utility of this statistic can be
noted in its success in identifying Wc / t for a variety of mod-
els and lattices—an example for this model of disorder for
the isotropic 3d simple cubic lattice is discussed in Ref. 21
and for the anisotropic 3d simple cubic lattice in Refs. 29
and 30. Many details of the algorithm that is employed cal-
culating this statistic, including the application of this meth-
odology to the study of other problems, are given in Refs. 27
and 28.

We performed these calculations for system sizes up to
16 000 sites when the eigenvectors were required and for
sizes up to 43 904 sites when only the eigenvalues were
evaluated. In a small number of instances we evaluated the
eigenvectors for system sizes up to 27 648 and found that our
predictions based on smaller lattices did not change when
these results were included.

IV. NUMERICAL RESULTS

We constructed the complete Anderson-disordered Hamil-
tonians for CSTL’s with different realizations of box disorder
�random diagonal elements between −W /2 and W /2�, using
periodic boundary conditions, and these have been diagonal-
ized. In Fig. 1 we show some representative density of states
�DOS�, including the same quantity for an ordered lattice.

The data for disordered systems correspond to a system size
of 21 296 sites averaged over 50 realizations of disorder. The
disorder strengths correspond to below, equal to, and above
the critical disorder �discussed below�. The evolution of the
DOS from the ordered to the disordered systems shows that
the zero of the DOS at an energy of −2t �for the ordered
lattice� becomes a small dip at much lower energies, but this
dip is not associated with the lower mobility edge to be con-
crete, at the critical disorder this dip is present but the upper
and lower mobility edges have merged �as we show below,
they merge at an energy around −4t�. At high disorder, as
expected, the DOS is approximately symmetric around an
energy of zero. Last, the band edges are qualitatively similar
to those predicted in analytical calculations.24

Clearly, when the disorder strength is not large �relative to
Wc� the density of states is not symmetric about some
“middle” energy, and to clarify previous comments we note
that this necessitates that a search for the mobility edges
must include a broadband of energies in the spectrum. In
fact, as we discuss below, we find that the mobility edges
merge at an energy around −4t, which is not that close to the
middle of the band for W�Wc �as seen in the figure, this
middle is around −0.5t�. Only in the very large W / t limit
does the DOS become approximately symmetric about zero
energy.

The relative localization length � /�0 was calculated for
system sizes of N=128 to 16 000 sites, and these results
were averaged over sufficient realizations to obtain con-
verged statistics. Typically, this required an average over a
total of roughly 5000 eigenstates in an energy range of �E
=1.0t for any of these system. We found that our numerics
displayed the desired self-averaging over complexions for
the larger lattices.

A plot displaying typical data is shown in Fig. 2 for a
system sizes up of 8192 sites—this corresponds to a W / t
ratio that is roughly 7% below the critical disorder �see be-
low�. For energy bins that do not include any extended states,
the relative localization decreases quite strongly as N is in-
creased, as is seen above �E� 	1,2
� and below �E� 	−8,
−7
� the extended-state energy range—these are states in the

FIG. 1. �Color online� The density of states for a tight-binding
Hamiltonian on a 21 296 site CSTL with periodic boundary condi-
tions for near-neighbor hopping only and with a box distribution of
on-site energies of width W. For W�0 these data are averages over
50 different realizations of disorder, and the final results are found
using a histogram method with a bin width of 	=0.1t. The chosen
values of W correspond to below, at, and above the critical disorder
Wc / t=14.5.

FIG. 2. �Color online� The variation of the relative localization
length for lattice sizes from 128 to 8192 sites of CSTL’s with peri-
odic boundary conditions, as a function of different energy ranges,
for W / t=13.5.
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upper- and lower-mobility tails, respectively. As one ap-
proaches the extended-state region from above �E� 	0,1
�
and below �E� 	−7,−6
� the decrease of the relative local-
ization length with system size is less pronounced and the
overall magnitude of this quantity is increased; these states
are also in the mobility tails, but are closer in energies to the
mobility edges. However, for states inside the energy range
E� 	−5,−2
 we see unambiguously that the relative localiza-
tion length grows as the system size is increased and these
states correspond to extended states. In the intervening en-
ergy ranges �E� 	−2,0
 and 	−6,−5
�, the lattice sizes
shown are too small to clearly identify the extended versus
localized nature of the eigenstates.

Based, in part, on these results, we examined lattice sizes
up to 16 000 sites in the energy range E� 	−5,−2
 with in-
creasing W / t to determine when states in this energy region
became localized, and our results are shown in Fig. 3 �note
that the vertical scales are identical in the four frames�. For
all energy ranges one sees a clear progression from extended
to localized behavior with increasing W / t, indicated by both
the scaling with system size and the overall magnitude of the
relative localization length. For W / t=14, states in the energy
range E� 	−5,−2
 are extended, while for W / t=15.5 these
states are localized. Also, these data are consistent with states
in the energy range E� 	−3,−2
 being localized for W / t
=15. This then implies that the mobility edges merge at an
energy around −4t, and further, these data thus allow us to

identify a clear upper bound of Wc / t
15.5. Further, recall-
ing our earlier statements regarding the scale invariance of
the spectral rigidity for W=Wc, if we also note the approxi-
mate independence of system size of the relative localization
length for W / t=14.5 and 15, we expect that Wc / t will be in
this range.

In order to identify the mobility-edge trajectories it is ad-
vantageous to first have a reliable value for Wc / t, but from
the above-described relative localization length data we can-
not be more accurate than Wc / t�14.5–15. Instead, we have
found that a determination of both the mobility-edge trajec-
tories and the critical disorder may be obtained using the
scaling of the �3 “spectral rigidity” of Eq. �3�. To be specific,
if this quantity scales to the Poissonian limit of uncorrelated
energy levels as the size of the system is increased, then the
states in that energy range are localized, and if this quantity
scales to the GOE limit, the states are extended.26

We have studied systems having up to 27 648 sites, which
is close to the number of sites in a 30 simple cubic lattice,
and have ensured that for all system sizes a sufficient number
of realizations are used such that the spectral rigidity was
converged for a given W / t and a given system size; some-
times, this required that about 2 000 000 eigenvalues be col-
lected. �For a small number of W / t we have found a smaller
number of eigenvalues for system sizes up to 43 904, and
these results are consistent with the data that we present be-
low.� For W / t=14 example data are shown in Fig. 4. In the
energy range of E� 	−5,−3
 that was identified through the
use of the relative localization length �as corresponding to
extended states as the mobility edges approach one another�
�3 moves towards GOE statistics, whereas in the E
� 	−8,−6
 and 	−2,0
 ranges it moves towards the Poisso-
nian limit. Further, in the energy ranges E� 	−3,−2
 and
	−6,−5
 we find that there is no clear scaling with an in-

FIG. 3. �Color online� Variation of the relative localization
length for systems from N=128 to 16 000 sites for W / t= 14, 14.5,
15, and 15.5. Note that the vertical scales are identical, thus dem-
onstrating the increased �negative� slope of the relative localization
length as N and W / t are increased.

FIG. 4. �Color online� The Dyson-Mehta spectral rigidity �3

plotted for different energy ranges and system sizes, for W / t=14. In
the range E� 	−5,−3
 these data scale towards the GOE statistics
�lower curve� or correlated energy levels, whereas for both E
� 	−5,−3
 and E� 	−5,−3
 these data scale towards the uncorre-
lated result of the Poissonian limit �upper curve�. For clarity we
only show three system sizes—other sizes obey the scaling inferred
from the shown data. The two limiting curves correspond to �un-
correlated� Poissonian statistics and �correlated� Gaussian-
orthogonal-ensemble statistics.
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crease in system size—that is, the spectral rigidity oscillates
with system size in these two energy ranges, indicating the
presence of both localized and extended states, and thus one
can clearly identify that a mobility edge is to be found in this
range.

As mentioned above, we can also use numerical results
for the spectral rigidity to determine an accurate value of
Wc / t. That is, if we examine all energy ranges around E
� 	−5,−3
 and find a scaling of �3 to the Poissonian limit for
large system sizes, then these states are localized and such
values of Wc / t are above the critical disorder strength. Fur-
ther, we can use the scale invariance of the spectral rigidity
to precisely identify Wc / t, and our results are shown in Fig.
5. We find that for W / t=14.5 this quantity is independent of
system size. We examined a mesh of �W / t=0.25 for W / t
around 14.5, but found that for precisely W / t=14.5 the scale
invariance was the most robust—the curves for all system
sizes are very nearly coincident and, most importantly, fluc-
tuate in a very small width about an average �as opposed to
moving towards the Poissonian or GOE limits�. So our final
number for the critical disorder of a box distribution of dis-
order in an Anderson model for CSTL’s is Wc / t
=14.5±0.25. For W / t=15 this figure shows that the states in
this energy range are scaling towards the uncorrelated limit,
thus confirming that such disorder is in excess of the critical
disorder.

Using such a combined relative localization length and
spectral rigidity approach, we have identified the mobility
edges for a variety of W / t, and our estimates for these ener-
gies as a function of disorder are shown in Fig. 6. As dis-
cussed previously, it is interesting to note that the energy at
which the mobility edges merge at Wc / t is not in the middle
of the density of states �also see Fig. 1�; further, unlike the

simple cubic lattice, our data for the mobility edges show
that they do not rapidly coalesce as Wc / t is approached from
below. Instead, the upper mobility edge approaches the en-
ergy at which the two edges merge much more gradually—
for comparison, see Fig. 1 of Ref. 31.

One further comparison of these results to previously pub-
lished data for three-dimensional simple cubic lattices in-
volves the magnitude of Wc / t—note the well-accepted result
for the critical value of Wc / t for the simple cubic lattice: viz.,
16.5.31–36 At this time we do not have a reliable explanation
for the decreased value of Wc / t of the CSTL, something that
can only be realized with detailed analytical work. However,
if one follows the logic that Wc should be close to the non-
interacting bandwidth, which is 12t for the simple cubic lat-
tice and 8t for the CSTL, and thus reexpresses Wc in units of
the bandwidth �which here we label by B�, then Wc /B�1.4
for the simple cubic lattice and Wc /B�1.8 for the CSTL,
and thus one sees that in these scaled units the critical disor-
der is in fact larger in CSTL’s than in a simple cubic lattice.
One can speculate that the increase of Wc /B follows from the
various near neighbors in these two lattices—we have listed
the near neighbors up to the tenth “shell” in Table I. From
this one sees that in the third and fourth shells the CSTL has
many more neighboring sites on which to form delocalized
states than does the simple cubic lattice, so perhaps this dif-
ference between these lattices is partly responsible for the
large increase of Wc /B in the CSTL in comparison to the
simple cubic lattice.

V. APPLICATION TO LiTi2O4

We have presented comprehensive numerical results for a
box distribution of random on-site energies for CSTL having
near-neighbor hopping only. We have used the relative local-
ization length and spectral rigidity to identify the mobility-
edge trajectories as a function of the width of the box distri-
bution and have determined that Wc / t�14.5 is the critical
disorder at which the upper and lower mobility edges merge.
These results aid us in understanding results presented below
for disordered LiTi2O4.37

FIG. 5. �Color online� Scale invariance of the spectral rigidity
showing that for the values of W / t=14.5 and 15, over the energy
window E� 	−5,−3
, this quantity is independent of system size
for W / t=14.5 and scales towards the Poissonian uncorrelated limit
for W / t=15. We note for comparison that these lattice sizes are
approximately equivalent to 18, 20, 23, 25, 28, and 30 cubed simple
cubic lattices. The Poisson and GOE limits are discussed in a pre-
vious caption. The arrow shows the direction that the curves are
moving, for W / t=15, with increased system sizes �for clarity we
only show three system sizes for W / t=15�.

FIG. 6. �Color online� The mobility-edge trajectories �estimates
bounded by hatched region� separating localized and extended
states on a CSTL for a box distribution of on-site energies of width
W, with our data points �solid squares� and error bars interpolated
by the boundaries of the hatched region.
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As was discussed in the Introduction, our work on this
problem was motivated by our interest in the metal-to-
insulator transition undergone by Li1+xT2−x−yAlyO4. One way
to go beyond the quantum-site percolation calculations dis-
cussed in Ref. 10 is to include the change of the on-site
energies due to the impurity potentials, and we have deter-
mined the distribution of on-site energies produced by these
impurity potentials �using different models of screening�. A
detailed analysis of the resulting distributions, independent
of the model of screening used, indicated that almost all of
these energies were between approximately ±t, which, if rep-
resented by an Anderson model with a box distribution of
on-site energies, would correspond to W / t=2, well below
Wc / t=14.5 for CSTL.

To determine this estimate, a particular complexion of dis-
order is considered in which the Al ions are placed randomly
on the octahedral sites of the spinel structure �the Ti sites of
the ordered crystal� according to y, which determines the
concentration of Al impurities, and then the screened Cou-
lombic potential from all Al sites is summed up for each of
the �nondisordered� Ti sites—these energies thus approxi-
mate the �relative� on-site energies of the Ti sites in the dis-
ordered lattice. This procedure is repeated for many different
realizations of disorder. An example plot of such a distribu-
tion on-site energies is given in Fig. 7 for the case of
Lindhard screening, which is introduced in the usual
manner;38 very similar distributions are found for a Thomas-
Fermi model of screening. Thus, we do not expect the inclu-
sion of this “additional disorder” to produce a substantial
change of the results found before,10 for which the only dis-
order effects that were included arose from quantum-site per-
colation.

Indeed, that is what we concluded when we repeated the
calculations described in Ref. 10 but now adding in the vary-
ing on-site energies generated by the Al impurity
potentials—our results for LiAlyTi2−yO4 when a Lindhard
model of screening is used are shown in Fig. 8. We find that
the critical value of Al doping that leads to a metal-to-
insulator transition is reduced from yc0.82 for a model that
includes quantum-site percolation only to yc0.78 when the
effects of impurity potentials are also included. That is, the
role played by the impurity potential disorder is minimal—

the lower-mobility-edge energy, for a given disorder, is in-
creased only moderately in a model that includes the effects
of the Al impurity ion potentials.

TABLE I. A comparison of the number of nearest neighbors
�NN� for simple cubic and CSTL’s.

Near Neighbors Simple cubic lattice CST lattice

First 6 6

Second 12 12

Third 8 12

Fourth 6 12

Fifth 24 24

Sixth 24 6

Seventh 12 18

Eighth 30 12

Ninth 24 24

Tenth 24 36

FIG. 7. �Color online� The distribution of the on-site energies of
the Ti sites in a disordered lattice as a function of Al concentration
y. These energies are found in a Lindhard model of screening of the
impurity potentials.

FIG. 8. �Color online� The numerically determined phase dia-
gram for the identification of the critical doping concentrations of
the metal-to-insulator transition in LiAlyTi2−yO4 after including the
on-site energies from the screened Coulomb potentials of the dop-
ing Al3+ ions; the Lindhard approximation is used for screening
potentials. The data shown are the Fermi energies �EF� and mobility
edges �Ec� as a function of doping for LiAlyTi2−yO4 system. Dashed
lines �dotted and dashed� are estimates of the Fermi energies and
the mobility edges from our previous calculations of the quantum-
site percolation �QSP� model only—see Ref. 10. The open black
circle is the new estimate of the Al concentration at which one
would find a metal-to-insulator transition, in a model that includes
the effects of both quantum-site percolation and the inhomogeneous
distribution of on-site energies caused by the Al impurity potential.
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VI. CONCLUSIONS

We have determined the mobility-edge trajectories and the
critical disorder for corner-sharing tetrahedral lattices, lat-
tices that are common in studies of fully frustrated magnetic
systems, as well as the sublattice of octahedral sites of a
normal spinel structure. We have examined the metal-to-
insulator transition of LiAlyTi2−yO4 and determined that a
quantum-site percolation model plus Anderson-like on-site
disorder produced by impurity potentials leads to a critical
doping of yc0.78, only 5% less than one estimates if
Anderson disorder is ignored and only quantum-site percola-
tion is studied. Since yc0.33 is the experimental value,37

indirectly this result supports the hypothesis that something
beyond one-electron physics is required to explain this
transition—e.g., strong electronic correlations. This possibil-
ity will be addressed in a future publication.11
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