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Spectral functions for strongly correlated 5f electrons
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We calculate the spectral functions of model systems describing 5f compounds adopting cluster perturbation
theory. The method allows for an accurate treatment of the short-range correlations. The calculated excitation
spectra exhibit coherent 5f bands coexisting with features associated with local intra-atomic transitions. The
findings provide a microscopic basis for partial localization. Results are presented for linear chains.
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I. INTRODUCTION

Electronic correlations are strongly evident in actinide in-
termetallic compounds. The highly complex phase diagrams
with novel sometimes enigmatic ordered states reflect a sen-
sitivity to small changes in external control parameters like
temperature, pressure, and magnetic fields.! An undispen-
sible prerequisite for an explanation of the observed anoma-
lies is a microscopic understanding of the strongly interact-
ing 5f electrons which partially preserve atomiclike
character. Occupying the partially filled 5f shells according
to Hund’s rules leads to magnetic moments. The lifting of
rotational symmetry in a crystal by the crystalline electric
field (CEF) and the hybridization with the delocalized con-
duction states of the outer-shell electrons leads to a large
number of low-energy excitations.

Of particular interest are the heavy-fermion phases where
the low-energy excitations correspond to heavy quasiparti-
cles. Their enhanced effective masses m" are reflected in en-
hanced values of the Sommerfeld coefficient and the Pauli
spin susceptibility. The heavy quasiparticles have been ob-
served by de Haas-van Alphen (dH-vA) experiments in a
number of compounds. The experiments unambiguously
confirm that some of the U 5f electrons must have itinerant
character. It has been known for quite some time that the 5f
states in actinide intermetallic compounds cannot be consid-
ered as ordinary band states. Standard band-structure calcu-
lations based on the local density approximation (LDA) fail
to reproduce the narrow quasiparticle bands. On the other
hand, the predicted bandwidths are too small to explain pho-
toemission data.>® These shortcomings are a direct conse-
quence of the inadequate treatment of local correlations
within ordinary electron-structure calculations.

Increasing experimental evidence points towards a two-
fluid model implying the co-existence of both localized
atomiclike and itinerant bandlike 5f states. For U heavy-
fermion compounds the photoemission spectra usually dis-
play a two-peaked structure in the 5f emission.*> The peak at
1 eV binding energy results from the localized 5f states
while the narrow peak at the Fermi level is attributed to
5f-derived itinerant quasiparticles.® Concerning the low-
energy excitations it has been shown recently that the dual
model allows for a quantitative description of the renormal-
ized quasiparticles—the heavy fermions—in UPd,Al;. The
measured dH-vA frequencies for the heavy-quasiparticle por-
tions as well as the large anisotropic effective masses can be
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explained very well by treating two of the 5f electrons as
localized.”® Finally, the coexistence of 5f-derived quasipar-
ticles and local magnetic excitations in this compounds has
been confirmed by recent neutron scattering experiments.’
Theoretical studies aimed at an explanation of the complex
low-temperature structures lay emphasis on the partitioning
of the electronic density into localized and delocalized
parts.'®!! Considering the success of the dual model in de-
scribing the low-energy behavior of actinide heavy-fermion
compounds we have to explain how the splitting of the 5f
shells arises and propose means of identifying the underlying
microscopic mechanism.

The dual model as sketched above is an effective Hamil-
tonian for the low-energy regime. In the spirit of Wilson’s
renormalization group it should be obtained by integrating
out processes at higher energies. The central theoretical task
is to identify the microscopic mechanisms which cause the
5f-band widths to renormalize to almost zero for certain or-
bital symmetries while staying finite for others. In the
present paper we concentrate on the role of intra-atomic cor-
relations, the motivation being as follows: Recent model
studies for the ground-state properties of small clusters show
that intra-atomic correlations as described by Hund’s rules
may strongly enhance anisotropies in the kinetic energy and
thus lead to an orbital-selective Mott transition in S5f
systems.®!2 This scenario closely parallels the one postulated
recently to explain the behavior of transition-metal
oxides.!3"'® Here we discuss how intra-atomic correlations
affect the single-particle spectral functions. The conjecture is
that the above-mentioned enhancement of anisotropies in the
kinetic energy can explain the dual nature of the 5f electrons.
In a real material this enhancement would imply anisotropies
far beyond these predicted by a standard electronic-structure
calculation.

The concept of correlation-driven partial localization in U
compounds has been challenged by various authors (see,
e.g., Ref. 17). The conclusions are drawn from the fact that
conventional band-structure calculations within the LDA
which treat all 5f states as itinerant can reproduce ground-
state properties like Fermi-surface topologies and densities.
The calculation of ground-state properties, however, cannot
provide conclusive evidence for the delocalized or localized
character of the 5f states in actinides. First, the presence of
localized states can be simulated in standard band calcula-
tions by filled bands lying (sufficiently far) below the Fermi
level. Second, the Fermi surface is mainly determined by the
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number of particles in partially filled bands and the geometry
of the lattice which affects the dispersion of the conduction
electrons. A change in the number of band electrons by an
even amount does not necessarily affect the Fermi surface
since a change by an even number may correspond to adding
or removing a filled band. As such, the Fermi surface is not
a sensitive test of the microscopic character of the states
involved.

Following up this track of thought we would like to
present here a qualitative discussion of strongly correlated 5f
systems, emphasizing properties of the spectral functions
which would allow an experimental discrimination between
correlation-driven partial localization and a usual filled-band
scenario. We lay emphasis on the role of orbital degeneracies
and on intra-atomic correlations which compete with the (an-
isotropic) kinetic energy. The features chosen for discussion
are the distribution of spectral weight, the formation of co-
herent bands, and the opening of an excitation gap.

We begin the discussion in Sec. II with a brief exposition
of the model Hamiltonian and the techniques emphasizing
the general structures involved. The numerical procedure and
the parameters adopted in the actual calculation are the pre-
sented in Sec. III. In the subsequent sections IV and V, we
delineate details of the models and the results obtained. The
conclusions are summarized in Sec. VI.

II. MODEL HAMILTONIAN AND COMPUTATIONAL
METHOD

For the adoption of a model describing the 5f electrons in
actinide-based heavy-fermion systems we rely on experience
with ab initio electronic-structure calculations. In these ma-
terials, the direct overlap of the 5f-wave functions at neigh-
boring sites is anticipated to be rather small due to the large
U-U distance. Detailed studies'® suggest that the 5f states
acquire their dispersion by hybridization with high-lying
empty conduction states. We model these processes by intro-
ducing weak effective transfer integrals. The interplay be-
tween intra-atomic Coulomb interaction and anisotropic ki-
netic energy in 5f systems is described by the simple model
Hamiltonian'?

H:Hband+HCoul- (1)

The local Coulomb repulsion

Heon=7 E Z szlj12j13,~z4c;21(a)cjzz(a)c,-%(mc,-%(a)

017

)

is written in terms of the usual fermionic operators
T(a) [c; (a)] which create [annihilate] an electron at site a
in the 5 f state with total angular momentum j and z projec-
tion j,. Considering the fact that the spin-orbit splitting is
large we neglect contributions from the excited spin-orbit
multiplet j=7/2 and adopt the j-j coupling scheme. The

Coulomb matrix elements Uj Jigede, for j,,=-5/2,...,5/2,
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are given in terms of the usual Clebsch-Gordan coefficients
C - and the Coulomb parameters U,.

‘The kinetic energy operator in the band term H,,,  de-
scribes the hopping between all pairs neighboring sites (ab):

> tlef(@)e;(b) +Hel+ 2 gcf (a)e; (a).

(ab).j, aj,

Hpana=—

(4)

We assume the transfer integrals #; to be diagonal in the
orbital index j,. This 51mphﬁcat10n is justified for a one-
dimensional system since the cylindrical symmetry allows
one to select a common quantization axis for all sites. We
would like to stress that although the hopping term is as-
sumed to be diagonal in the orbital indices, the correspond-
ing channels are coupled through the Coulomb term. Finally,
we account for the orbital energy €, which determines the f
valence of the ground state.
The single-particle spectral function

Ajz(k, ) =
2w e] (WE)Psw - o), >0,
2 [N Ve RS0+ w0g), <0,
p
(5)
with
c; (k) = \%; eik“cjz(a), 0B = END_ENV - (6)

yields the probability for adding (w>0) or removing (w
<0) an electron with energy w in a state characterized by
momentum k and angular momentum pI‘O_]eCtIOI’l Jj, to the
N-particle ground state |\I' ) with energy E The states
with N+1 and their energies are denoted by |‘I'(N+1 ) and
E(N‘l) respectively, and L is the number of sites.

The importance of the spectral functions stems, first, from
the fact that they can be observed in photoemission and in-
verse photoemission experiments and, second, that the
orbital-projected expectation value of the kinetic energy per
site,

T/ff dof(o) 7 Ee ()A; (k, w), (7

as well as the orbital-projected momentum distribution func-
tion

+00

ni(k)=| dof(w)A; (ko) (8)

—0

and the orbital-projected density of states (DOS)
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FIG. 1. Representation of a one-dimensional chain as a super-
lattice of identical L(C)site clusters. The orbital-dependent transfer
integrals between neighboring sites within a cluster and between
adjacent clusters are t=(t =520l 12:5/2) and 1o
=(1, =505 -+ 0] =5 12), respectively.

t()

D, (w)= %E A; (kw), (9)
k

can be expressed through them. The dispersion of the band
energies €; (k) is given by the kinetic energy, Eq. (4), and f is
the usual Fermi function.

We determine the spectral function A; (k,w) from the
single-particle Green’s function sz(k,w), i

1
A (k,w)==—1limIm G, (k,w +i7), (10)
z s Zz

7—0*
which, in turn, are calculated applying cluster perturbation
theory (CPT).!%2* The method which has been successfully
applied to a wide variety of many-particle models proceeds
by dividing the infinite periodic lattice into identical finite
LO-site clusters as illustrated in Fig. 1.

The Hamiltonian (1) takes the form

H=2 Ho+ 2 Viieh  cu. (11)
m m,n.a,b,j, ° N h

where HY refers to cluster m while V"'

ab;. describes the hop-
ping between sites a and b on the adjacent clusters m and n.

The Green’s functions of the finite clusters,
GODw=G65) @, ab=1,.,L'9  (12)

are calculated exactly, thereby fully accounting for the com-
plex dynamics of the strongly correlated system. Here we use
the locator representation where the indices refer to the sites
in the cluster. In a second step, the intercluster hopping Z’b’;
is treated as a weak perturbation which yields the Green’s
function of the superlattice:'%2°

G

o (13)
1-V(9)G)

Gabjz(Qa Z) =

ab

The variation with the wave vector Q which is taken from
the first Brillouin zone of the superlattice is introduced by
the intercluster hopping matrix ‘A/L(Q). Its matrix elements
are obtained from V. by performing a Fourier transforma-
tion with respect to the cluster indices m and n. Following
Ref. 19, the translational invariance of the original lattice is
explicitly restored, yielding the Green’s function
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1 .
G, k2 =i 2 e Gy, (LK), (14)
a,b -

Note that the CPT is exact in three limiting cases: vanishing
hopping terms, in an uncorrelated system, and for infinite
cluster size. The approximation is controlled most effectively
by considering different cluster sizes L(©)

Before we turn to a detailed description of the calcula-
tions we would like to mention the following caveat. The
formulation of CPT as summarized above implicitly relies on
the assumption that the ground states of the interacting elec-
tron system are nondegenerate. This proposition, however,
may not be satisfied for the building blocks of the superlat-
tice. The problem arises trivially for clusters containing an
odd number of electrons where all states are at least twofold
degenerate. Of course one could try to circumvent the prob-
lem by choosing appropriate cluster sizes or by varying the
band filling—i.e., the number of particles. This strategy
which may work for simple systems does not provide a so-
lution in orbitally degenerate systems. Due to the local or-
bital degrees of freedom, the complexity increases rapidly
with the number of sites or particles imposing serious restric-
tions on models. As we attempt at a description of homoge-
neous phases we separately calculate the Green’s functions
for the states of the ground-state manifold and subsequently
average the spectral function.

III. COMPUTATIONAL DETAILS

We begin by specifying the model parameters entering the
Hamiltonian, Eq. (1). The high-energy scale is set by the
Coulomb repulsion between two 5f electrons at the same
site. The parameters U, are chosen according to the follow-
ing considerations. First, it is well known that the isotropi-
cally averaged Coulomb repulsion in a metal is strongly re-
duced as compared to its value in an atom. The reduction is
a direct consequence of screening by the itinerant conduction
electrons which, in turn, implies that the actual value de-
pends upon the chemical environment of the correlated ion
under consideration. We do not attempt an ab initio calcula-
tion of this quantity but rather leave it as a parameter U,
whose value can be estimated from the positions of the va-
lence peaks in photoemission and inverse photoemission.
The intra-atomic correlation which is the focus of interest in
the present paper involves the anisotropic parts of the Cou-
lomb interaction. The latter give rise to the multiplet struc-
ture. It is important to note that the corresponding interac-
tions are (usually) not screened and hence retain their atomic
values. As we expect the anisotropic Coulomb parameters to
be rather robust with respect to changes in the chemical com-
position or to pressure we use fixed values for the differences

AU4= U]=4— U]=0= -3.79 eV,

AU2= UJ=2—UJ=0=—2.72 eV, (15)

which were determined from an ab initio calculation for
UPt;.* The value for the orbital energy €, in Eq. (4) is fixed
by the requirement that low-energy states be formed by lin-
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ear combinations of the ionic f> and f* configurations which
are energetically (almost) degenerate. The intermediate va-
lent ground state with n,=2.5 allows for low-energy valence
transitions and the formation of bands also in the strong-
coupling limit.

Finally, the values of the transfer integrals 7; are varied in
the strong-coupling regime. As in Ref. 12 we choose tin
=15, in the figures.

We next turn to the calculation of the cluster Green’s

functions (AJJ(.C) (z) which account for the local correlated dy-

namics. We should like to mention that the use of the open-
boundary conditions required by the CPT method consider-
ably increases the numerical effort over that encountered in
finite clusters with periodic boundary conditions. A further
difficulty arises from the fact that the orbital degrees of free-
dom may lead to a rather high density of low-energy states.
Keeping in mind these complications the Green’s functions
for clusters with two and three correlated sites are calculated
using Lanczos continued-fraction technique.” To avoid con-
vergence problems due to the near degeneracy of the lowest
excited states in the 5f systems we use the JDQR algorithm?®
instead of the usual Lanczos method to obtain the ground
state.

For purposes of comparison we present alongside the CPT
spectra the test cases of finite clusters using periodic-
boundary conditions. In this case, the calculation of the clus-

ter Green’s function éj(,c)(z) simplifies to

k
1<
Gy ()= 7 2 "Gk 2), (16)

ko=

where?’

G\ (k,2) = G\ (k,2) + GIS(k.2),

1
(©) _ +
Gjelkoz) = (Fole; (k) ——— £.® W),

1
(¢ - () ————
Gk = (Wilef (0 — e W) (17

The discrete value k,=€(2w/L), €=0,...,L—1, labels the
single-particle eigenstates of the L-site cluster. The Green’s
functions are evaluated for complex frequencies z=w+in
with 7> 0. The imaginary part leads to additional Lorentzian
broadening of the spectral functions and may affect the be-
havior of the integrals like the expectation value of the ki-
netic energy or the momentum distribution function. All
these quantities are increasingly difficult to compute as 7
decreases. For the actual calculations we choose values for 7
of the order of 1072 of the relevant hopping integrals. For the
plots a rather large value of 7=0.03 is chosen to allow for a
good visualization.

The absolute values of U; are very large compared to the
hopping integral, and thus we shall limit ourselves to the
subspace of f2 and f configurations for the ground state
which has shown to be a good approximation. This leads to a
considerable reduction of Hilbert-space dimension and less
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computational costs. The actual sizes of the Hilbert spaces in
the reduced systems for the two-site cluster filled with five
electrons are 600 states and 220 and 400, respectively, for
four and five electrons. For the clusters with three sites one
obtains 18 000 dimensions for a filling with eight electrons
and 8000 and 13 500, respectively, for seven and nine elec-
trons. The matrix representations of the Hamiltonian are then
stored as sparse matrices.

IV. SPECTRAL FUNCTIONS OF FINITE CLUSTERS
A. Atomic limit

We begin by discussing the spectral function of our model
in the atomic limit neglecting hopping between the sites. The
results provide a first qualitative insight into the behavior in
the strong-coupling limit. Due to the rotational invariance of
the Coulomb interaction, Eq. (2), the spectral functions
A; (w) will not depend on the magnetic quantum number ;.
The lowest-energy states of an intermediate-valent system in
the zero-bandwidth limit are given by products of atomic f?
and f° configurations whose energies are assumed to be (al-
most) degenerate. The corresponding spectral functions are
obtained in close analogy to the classical work by Hubbard.?
The zero-configuration width approximation which neglects
intra-atomic correlations leads to a characteristic three-peak
structure. The valence transitions f2— f' and f*> — f* occur at
large energies and, concomitantly, do not affect the low-
temperature behavior. The latter is determined by the low-
energy peak resulting from the transitions 2« f3 within the
f% and f3 configurations. This peak is a direct consequence of
the intermediate-valent ground state. The strong correlations
present imply a substantial transfer of spectral weight from
the low-energy part to the high-energy regime. The weights
of the peaks can be estimated from combinatorial consider-
ations. The weight Z(f>— f!) of the transition f>— f! equals
the probability that a state with a given j, is occupied in that
£ contribution of the mixed-valent ground state. Following
these lines one finds

1 1
Z(fF— = p Z(fP—f)= 3

Z(f3—>f2)=i, Z(f3—>f“)=i. (18)

The central focus of the present paper is the evolution of
the low-energy peak whose spectral weight sums up to 7/12.
Intra-atomic correlations which are usually described by
Hund’s rules further reduce the spectral weight of the low-
energy excitations involving valence transitions |f3,J
=9/2)=|f?,J=4) between the ground-state multiplets. The
corresponding spectral weights can be expressed in a
straightforward way in terms of the usual Clebsch-Gordan
coefficients and the reduced matrix elements. In addition to
the central peak one finds transitions to the excited multiplets
If?,J=9/2)—|f*,J=2) and |f2,J=4)—|f,J=3/2), |f*.]
=5/2) occurring at the corresponding multiplet excitations.
The excitation energies as well as the corresponding spectral
weights are listed in Table I. We should like to mention that
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TABLE I. Positions and spectral weight of the atomic transitions
in uranium from numerical calculations. For w<0 eV eV the con-
tributions are from the hole propagation and for =0 eV eV from
the particle propagation.

PES BIS

-1.06 0.00 0.00 1.60 2.73
0.054  0.196  0.218 0.032  0.083

Position/eV
Spectral weight

there is no transition into the excited multiplet [f2,J=0).

B. Results for finite clusters

We next turn to the modifications introduced by the hop-
ping between different sites which acts as a weak perturba-
tion in the strong-coupling limit. Its principal effect is to
remove the rotational symmetry of the isolated atom and,
consequently, remove the high degeneracy of the ground
state. As the total angular momentum ceases to be a good
quantum number the ground state may contain admixtures
from excited J multiplets. The model Hamiltonian as speci-
fied by Egs. (1)—(4), however, conserves the z component of
the angular momentum, allowing us to classify the eigen-
states with respect to J,.. The magnetic character of the
ground states depends upon the transfer integrals as shown in
Ref. 12. These modifications affect the spectral functions
A; (ke, w) of an L-site cluster where the discrete set of quan-
tum numbers k;=0,...,(L—1)27/L labels the single-particle
eigenstates. First, the positions of the peaks corresponding to
the transitions between different valence states may acquire
dispersion. Second, spectral weight may be transferred from
the low-energy regime to high-energy satellites. Third, tran-
sitions to excited multiplets not present in the atomic limit
may appear and, finally, the overall spectral weight may be
redistributed among the different j, channels. These issues
will be addressed in the following section.

A first qualitative understanding can be gained by consid-
ering the spectral functions of a two-site cluster where
simple approximate expressions are found for the ground
states in limiting cases. Throughout the discussion we restrict
ourselves to the strong-coupling regime |7; | <|AU,| where
the ground state is mainly built from products of local f?
configurations  [f?;4J.) and local f* configurations
| f3;9/2J£). Finite hopping between the two sites a and b
splits the manifold in first-order perturbation theory. We con-
sider the case of strongly anisotropic hopping |t3,,|=|t|>|¢'|
=|tsp|=t1] and [t30|=[f| <[t'|=t50| =11 2] as well as isotro-
pic hopping t3,=t=t"=ts5,=t,,. The variation with ¢, t' of
the spectral functions is displayed in Fig. 2.

Let us first consider the behavior along the isotropic line
typ=t=t"=ts=t;p. Due to the rotational invariance, the
magnitude 7> of the total angular momentum J=J(a)
+J(a) provides a good quantum number. It has been shown
previously!? that the ground state is sixfold degenerate. It is
a linear combinations of the [J? eigenstates |(%4)J,_7Z> and
|(49)JT,.) for J=5/2 which can be expressed in terms of

the above-mentioned product states |f3;% ;4J.) and
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jz= +3/2 jz= +1/2 jz= +5/2
t=—0.01
t' =—0.09
t=-0.05
t' =—0.05
t=-0.09
t' =-0.01

-02 0 0.2 -02 0 02 -02 0 02
w/eV w/eV w/eV

FIG. 2. Variation with wave number of the orbital-projected
spectral functions calculated for a two-site cluster with five elec-
trons and the hopping parameters t3,=t and t;,=t5,=t'. The solid
line and the dotted line refer to k=0 and k=, respectively. The
spectra are obtained from averaging the Green’s functions over the
degenerate ground-state manifold. Spectral weight is transferred to
local excitations (valence transitions and transitions into excited
atomic multiplets) which are not displayed here. The Lorentzian
broadening is 7=0.03.

1% ,%\71—]1). The gain in kinetic energy,

(s

given in terms of the reduced matrix element (%ch”él)

)

for J=5/2, results from the formation of symmetric (anti-
symmetric) combinations the above-mentioned 77 eigen-
states. The isotropy of the ground state is reflected in the
isotropic spectral functions which exhibit peaks at the ener-
gies

Il

¢l (a)c; (b) ‘ <4g>ﬂ>

(19)

= \/% and the 6j symbol

SRV

O o

J
17=(-1 10<4 7

33 907
+=————¢= +0.077 eV. (21)
141386

Due to the strong correlations, we find two peaks for both
removing (adding) electrons in symmetric states cT (k 0)

and antisymmetric states cT (k ).

In the strongly amsotroplc case =|t|>t'|=|ts)0)

state with 7,=+15/2 has the simple form (for J,=+15/2)
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1 /(. tr .
[¥) 150 = ?(Cé/z(a) + _Cé/z(b)>
V2 ]

= clp(a)c] p(a)cl (b)c] (D) (22)

describing an independent j,=3/2 electron in a magnetically
polarized background. This state is separately an eigenstate
of the kinetic energy as well as the Coulomb energy. Remov-
ing an electron in the single-particle state

1. »
\,_5(%/2(“) + Hcs/z(b)>

as well as adding one in its orthogonal counterpart leads to
final states J(a)=4=J(b) and J(a)=9/2=J(b), respectively,
where both sites are in the ground-state multiplets of the
local f2 and f> configurations. As a consequence, we find two
sharp peaks with full spectral weight at the energies
==t/ which evolve into a quasiparticle band in extended
systems. The additional spectral weight appearing in Fig. 2 at
positive energies w= +|t| accounts for the probability of add-
ing an electron in the minority channel j,=-3/2. This gen-
erates final states which contain contributions from excited
states like unfavorable local f* configurations and excited
multiplets in the local f> subspaces. The overlap with states
from the local ground-state manifold gives rise to a peak at
o= +|t| whose reduced height, however, highlights the trans-
fer of significant spectral weight to the high-energy regime.
Finally, the absence of dispersion in the j =1/2 and j,
=5/2 spectral functions as well as the reduced spectral
weight in the low-energy regime reveals the localized char-
acter of the corresponding orbitals in the ground state. The
evolution of the spectra and in particular the reduction of
spectral weight in the low-energy regime are reminiscent of
the gap formation at the Mott-Hubbard transition. The quali-
tative difference between the 5/2 and 1/2 channels as well
as the asymmetry within the 1/2 channel reflects the intra-
atomic (Hund’s rule type) correlations.

The structure of the spectral functions in the complemen-
tary anisotropic limit |t5,|=|t,,,|=[t'|>|t|=|ts/,| can be ex-
plained by similar considerations. The Kramers’ degenerate
ground state is built from configurations where all but the
J.==3/2(j,=3/2) orbitals are occupied. This implies 7,
=+3/2. It is important to note that this implies antiferromag-
netic correlations between the sites. In this state, delocaliza-
tion of the j,=3/2(j.=—-3/2) is not principally excluded. It
is, however, associated with breaking Hund’s rules. As a re-
sult we find dispersion in the corresponding channels. The
spectral weight, however, is reduced due to intra-atomic ex-
citations.

The characteristic structure of the spectra as summarized
above is present also in the three-site cluster as can be seen
from Fig. 3. The coherence effects, however, are more pro-
nounced. For a discussion of the (approximate) ground states
in limiting cases we refer the reader to Ref. 12.

A striking feature is the splitting of the lower peaks for
jz: +1/2 and jz: +5/2 at l1/2=l5/2=—0.09 and t3/2=—0.0] .
The key to the explanation is provided by the observation
that the corresponding ground state is characterized by anti-
ferromagnetic intersite correlations, a property encountered
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jZ= +3/2 jz= +1/2 jz= 15/2
t =—0.01
t' =—0.09
t=-0.05
t'=-0.05
t=-0.08
' =—0.01
-02 0 02 -02 0 02 -02 0 0.2
w/eV w/eV w/eV

FIG. 3. Variation with wave number of the orbital-projected
spectral functions calculated for a three-site cluster with eight elec-
trons and the hopping parameters 73,,=t¢ and t;,,=t5,=t". The solid
line and dotted line refer to k=0 and k=+27/3, respectively. The
spectra are obtained from averaging the Green’s functions over the
degenerate ground-state manifold. Spectral weight is transferred to
local excitations (valence transitions and transitions into excited
atomic multiplets) which are not displayed here. The Lorentzian
broadening is 7=0.03.

already in the two-site cluster discussed above. The implica-
tions for the three-site system, however, are more subtle. For
periodic boundary conditions the ground state is a complex
superposition of several (almost) equivalent states reflecting
frustration. Removing an electron from the ground state
leads to rather complex final states which, in turn, give rise
to the observed splitting.

The most prominent feature of the spectral functions in
the strongly anisotropic limit is the partial localization which
can be viewed as an orbital-selective Mott transition. The
intra-atomic correlations strongly enhance the anisotropies of
the kinetic energy as can be seen from Fig. 4. The calculated
projected kinetic energy Tj// . (Fig. 4) agrees well with re-
sults from ground-state wave function.'> The small differ-
ences in the results from the ground-state wave function are
due to Lorentzian broadening with 7=0.005.

V. CLUSTER PERTURBATION THEORY

The essential benefit gained from CPT is the possibility to
calculate the spectral functions at arbitrary wave vectors and
band filling. In the present paper we explore the first aspect,
treating CPT as a sophisticated interpolation scheme for the
variation with k. The averaged particle number per site, on
the other hand, is kept fixed at the value used in the under-
lying cluster calculation. Comparing the spectra of the infi-
nite chain to those of isoelectronic finite clusters provides us
with an estimate of finite-size effects since the building
blocks of the chain are treated with different boundary con-
ditions.
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FIG. 4. Ratio T; / n of the two-site cluster (left) and three-site
cluster (right) with 7; <0 along the line #3,=1 and 1,,=1s,,=1" con-
necting the values below the figures.

The qualitative behavior of the spectral functions reflects
the detailed structure of ground state which is determined by
the competition between the energy gain due to intra-atomic
correlations and kinetic energy. The latter, however, depends
upon the boundary conditions imposed upon the wave func-
tions. The cluster calculations discussed in the preceding sec-
tion were performed adopting the usual periodic-boundary
conditions. The CPT, however, requires cluster Green’s func-
tion for open-boundary conditions. In the strong-coupling re-
gime, the dependence upon the transfer integrals of the
ground state is only weakly affected by the actual choice of
boundary conditions. In the strongly anisotropic limit with
one dominating transfer integral (a) the high-spin states with
ferromagnetic intersite correlations are energetically most fa-
vorable. They are followed by rather complex intermediate-
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FIG. 5. Phase diagrams of the three-site cluster filled with eight
electrons for negative hopping parameters ¢; , derived for the total
magnetization J, for periodic-boundary conditions (left panel) and
open-boundary conditions (right panel).

spin states (b) as the case of isotropic hopping (c) is ap-
proached. Along this line the salient feature of the correlated
ground state is its high degeneracy. In the case of two domi-
nating hopping channels (d) low-spin phases with antiferro-
magnetic intersite correlations are formed. These features
originally derived for periodic-boundary conditions are en-
countered also for open-boundary conditions as can be de-
duced from Fig. 5.

Figures 6 and 7 display the orbital-projected spectral
functions of the linear chain. The data refer to the low-energy
regime where the electronic excitations involve transitions
between the lowest Hund’s rule multiplets. We adopt the
same values for the transfer integrals as in the cluster calcu-
lations. The system is clearly in the strong-coupling regime
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FIG. 6. Spectral functions of a one-dimensional 5f system from
the CPT with cluster of two sites (upper panel) and three sites
(lower panel). The orbital-projected spectra are a superposition of
the +j, and —j, parts of the spectra. The anisotropic hopping param-
eters are t3,=—0.09 eV and #;,=t5,=—0.01 eV. The peaks are
broadened with a finite imaginary part of 7=0.03.
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FIG. 7. Spectral functions of a one-dimensional 5f system from
the CPT with cluster of two sites (upper panel) and three sites
(lower panel). The orbital-projected spectra are a superposition of
the +j, and —j, parts of the spectra. The anisotropic hopping param-
eters are 13,=—0.01 eV and #;,=15,=—0.09 eV. The peaks are
broadened with a finite imaginary part of 7=0.03.

where the symmetries of the ground states are rather sensi-
tive to the detailed description of the kinetic energy. The
high-energy features associated with transitions to excited
atomic states are not shown here.

As regards the variation with wave vector of the spectral
functions, the qualitative behavior closely parallels the one
obtained for the finite clusters. The spectral functions clearly
show a dispersing band in the orbital channel with the domi-
nant hopping. The position of the narrow peak whose finite
width is to be attributed to the additional broadening follows
the characteristic cosine dispersion of a one-dimensional
tight-binding band with nearest-neighbor hopping. The gap
in the dispersion of the dominant hopping channel in Figs. 6
and 7 are introduced by the antiferromagnetic intersite cor-
relations which effectively reduce the size of the Brillouin
zone. The bandwidth, however, is reduced by a factor of
~7/12 as compared to 4|t|=0.36 eV expected for uncorre-
lated electrons. The renormalization reflects the transfer of
spectral weight to the high-energy satellites. The linewidths
of the dispersing bands in the linear chain are approximately
twice the value of the bonding-antibonding splitting in the
two-site cluster. This discrepancy is due to the fact that the
number of nearest neighbors in the lattice is twice that in the
corresponding cluster. The 5f channels with subdominant
hopping exhibit low-energy excitations which are incoherent
and which may exhibit a pseudogap at the Fermi energy. It
should be noted that the CPT spectra based on three-site
clusters are in good agreement with their two-site cluster
counterparts. The cluster size and the boundary conditions
apparently affect the incoherent excitations in the channels
with the subdominant hopping. This can be seen from com-
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FIG. 8. Orbital-projected MDF calculated within CPT starting
from three-site cluster and the hopping parameters 73,=¢ and f),
=ts5,,=t". The spectral functions displayed in the figure were inte-
grated over energy in an interval of —4 eV below the chemical
potential.

paring the CPT spectra obtained from two- and three-site
clusters.

The coexistence of a coherent 5f band and incoherent
f-derived low-energy excitations implies partial localization.
The orbital-selective localization suggests the presence of
different types of low-energy excitations which have differ-
ent orbital character. Photoemission experiments with polar-
ized incident light should be able to distinguish the two. In
fact, recent experiments on URu,Si, seem to be consistent
with this hypothesis.

The momentum distribution function (MDF) as defined in
Eq. (8) is displayed in Fig. 8. The variation with wave vector
k clearly shows the dual character of the 5f electrons. In the
homogeneous high-spin phase, the height of the discontinu-
ity in n; (k) for orbitals with dominant hopping is consistent
with the spectral weight of the dispersive low-energy peak.
In the low-spin phase, however, it reflects the reduction of
the Brillouin zone due to antiferromagnetic correlations.

Figure 9 displays the orbital-projected DOS as calculated
within CPT.

VI. SUMMARY AND OUTLOOK

We have studied the consequences of strong intra-atomic
correlations on the spectral functions of 5f electrons by ap-
plying CPT. The result derived for a one-dimensional chain
confirms the idea of orbital-dependent localization in aniso-
tropic systems. The orbital-projected spectral functions for
the channels with dominant hopping display narrow disper-
sive bands in the vicinity of the Fermi energy while the low-
energy single-particle excitations in the remaining channels
involve mainly incoherent local transitions. In all channels,
considerable spectral weight is transferred to the high-energy
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regime where we find intra-atomic transitions to excited mul-
tiplets as well as valence transitions. The transfer of spectral
weight renormalizes the widths of the dispersing bands and
hence increases the corresponding effective masses.

The dual character of the 5f electrons—i.e., the division
of 5f states into delocalized and localized orbitals—can be
clearly seen from the orbital-projected momentum distribu-
tion function. The latter has a pronounced discontinuity for
the orbitals with dominant hopping while its smooth varia-
tion can almost be neglected in the remaining channels. In a
three-dimensional crystal such a behavior implies that only
the orbitals with dominant hopping contribute to the quan-
tum oscillations of the dHvA effect.

Calculations starting from clusters with two and three
sites yield similar results in the strong-coupling regime. The

orbital-dependent suppression of the kinetic energy calcu-
lated for the chain agrees well with previous results obtained
for small finite clusters imposing periodic-boundary condi-
tions. These finding suggest that the features associated with
orbital-selective localization are rather robust.

The model calculations presented suggest that the orbital
dependence of the 5f spectral functions can be used as fin-
gerprint for orbital-selective localization in actinide systems.
The orbital dependence could be observable by varying the
polarization of the incident light.

It is therefore desirable to perform similar calculations for
models describing real materials. This requires the calcula-
tions to be extended to higher dimensions. An important gen-
eralization is the inclusion of nondiagonal transfer integrals
which is currently in progress.
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