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We have studied the ground state of a quasi-one-dimensional periodic Anderson-like chain with the f orbitals
connected only to the conduction orbitals at the even sites. Using the exact diagonalization �ED� technique and
the Hartree-Fock approximation �HFA�, we find that at half-filling, for the symmetric case, the ground state is
always ferrimagnetic. In the weak hybridization case, the ferromagnetism is mainly contributed by the local
magnetic moment on the f orbital while in the strong hybridization case, the ferromagnetism mainly results
from the ferromagnetic correlation between the conduction orbitals. In the large-hybridization limit, the con-
duction orbitals at the odd sites form a spin-1

2 ferromagnetic chain with exchange decoupling from another
conduction orbital and the f orbital. For the asymmetric case, we construct the phase diagram. The region
between two critical values of the energy of the f orbital is the ferrimagnetic state. Outside this region, the
ground state is antiferromagnetic. This region depends on the on-site Coulomb repulsion on the f orbital and
the hybridization. In the large-hybridization limit, the ferrimagnetic state exists only in the symmetric case. The
results by the HFA and the ED are consistent quantitatively in the weak coupling and strong hybridization case.
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I. INTRODUCTION

The microscopic mechanism of itinerant ferromagnetism
is a long-standing problem in strongly correlated electron
systems. The Hubbard model was introduced in 1963 to de-
scribe ferromagnetism in such systems.1 Unfortunately, very
few rigorous results are available. Nagaoka2 showed that
when a single hole is introduced into the just half-filled sys-
tem, the ground state is a completely polarized ferromagnetic
state in the strong coupling regime. With a bipartite lattice
and a half-filled band, Lieb3 obtained the ground state with
spin S= ��A �−�B � � /2, where �B � ��A � � is the number of sites in
the B�A� sublattice. For a system with a magnetic impurity
embedded in a conducting host, the Anderson model4 has
been successfully applied to describe the physics.

For lattice systems, the natural extension of the impurity
Anderson model is the periodic Anderson model �PAM�. The
magnetism in this model has been studied extensively. The
rigorous results show that the ground state of the PAM is a
singlet at half-filling5 and exhibits short-range antiferromag-
netic correlations.6 A variety of numerical techniques have
been applied to the PAM. The magnetic correlation of the
nonmagnetic ground state and the lowest excitation were
studied by the exact diagonalization �ED� techniques for
short PAM chains.7,8 The spectral-weight function of the lat-
tice Anderson model on small square and tetrahedral clusters
was also investigated by the ED �Ref. 9�. Quantum Monte
Carlo �QMC� simulations10 have shown that the local
f-electron spins are compensated with other f electrons as
well as band electrons leading to a singlet ground state. The
results of QMC also show that the nonsaturated ferromag-
netism of the PAM can be interpreted by a mechanism for
itinerant ferromagnetism based on a simple two-band
model.11 Numerical studies of finite chains employing the
density matrix renormalization group �DMRG� have pro-
vided the phase diagram of the one-dimensional12,13 PAM.
For strong coupling, the quarter-filled system has a S=0

ground state with strong antiferromagnetic correlations. At
slightly larger fillings there is a transition to a ferromagnetic
state. For the symmetric and asymmetric Anderson lattices at
half-filling, the charge gap, the spin gap, and the quasiparti-
cle gap have been studied by the DMRG technique.14 For the
electron density between half and three-quarters fillings, a
ferromagnetic ground state of the one-dimensional PAM has
been found exactly in the strong hybridization and strong
coupling regime.15 Recently, the ground-state properties of
the symmetric and asymmetric one-dimensional PAM as a
function of band filling and the model parameters have been
studied by the local mean-field approach.16 The phase dia-
gram for both cases was obtained and the local moment and
occupation number of the f level were calculated.

In this paper, we consider another simplified structure of a
quasi-one dimensional organic polymer17 poly-BIPO sche-
matically shown in Fig. 1. The main zigzag chain consists of
carbon atoms. R denotes side radical with unpaired electron.
This model has been described by a Peierls-Hubbard model18

with the on-site Coulomb interaction U independent of site.
The ferrimagnetic ground state was obtained by the Hartree-
Fock approximation18 �HFA�. Since this structure is a bipar-
tite lattice, Lieb’s theorem also gives the ground state with
spin S= 1

2 per unit cell for the Hubbard model at half-filling.
For a generalized symmetric Hubbard model with the hop-
ping tij and the on-site Coulomb interaction Ui to be site
dependent, the rigorous result19 also shows that the ground
state of this bipartite lattice has the ferrimagnetic long-range
ordering. However, for the asymmetric case in which the
orbital energy �i is not equal to −Ui /2, above rigorous theo-

FIG. 1. A quasi-one-dimensional organic polymer chain.
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rems are not applicable and the ground state is not known.
The aim of this work is to study the properties of the ground
state for a special asymmetric case in which there are an
uncorrelated conduction orbital at each site in the zigzag
chain and a correlated localized f orbital at each side site R.
In this periodic Anderson-like model �PALM�, the localized
orbital hybridizes with the conduction orbital at the even site.
Using the ED technique and the HFA, we study the phase
diagram of the present PALM at zero temperature and half-
filling, the spin correlation and the charge fluctuations in
different ground-state phases. Our calculation shows that in
the symmetric case, the ground state is always ferrimagnetic.
This result indicates that the rigorous result in Ref. 19 is also
true for the on-site Coulomb repulsion Ui=0 at sites of the
main chain. For the asymmetric case, the ferrimagnetic state
exists in a region of the energy � f of the localized orbital,
which depends on the on-site Coulomb interaction at the
localized orbital and the hybridization strength. For weak
coupling and strong hybridization, the phase diagram by both
methods is consistent.

The remainder of this paper is organized as follows. The
model and the computational method are given in Sec. II.
The phase diagrams and spin correlations are described in
Sec. III. Finally the discussion and conclusion are given.

II. MODEL AND COMPUTATIONAL METHOD

The Hamiltonian for the quasi-one-dimensional periodic
Anderson-like chain in Fig. 1 is defined by

H = − t�
l,�

�cl,1,�
† cl,2,� + cl+1,1,�

† cl,2,� + H.c.� + � f�
l,�

nl,3,�

+ U�
l

nl,3,↑nl,3,↓ + V�
l,�

�cl,2,�
† cl,3,� + H.c.� . �1�

Here, cl,i,�
† �cl,i,�� are the creation �annihilation� operators of

electron with spin �= ↑ ,↓ on the ith site of the lth cell,
respectively. nl,i,� is the number operator of electron. In the
notation �l , i�, i=1,2 denotes the conduction orbitals on the
zigzag chain while i=3 denotes the localized f orbitals at
side site R. t is the hopping integral between the nearest-
neighbor conduction orbitals, � f is the energy of the localized
f orbital, U is the on-site Coulomb repulsion of the f elec-
trons, and V is the hybridization between the localized orbital
and conduction orbital. In the following discussion, we take
t as energy unit.

Within the ED method,20 the calculation is performed in a
subspace with a given number of electrons N and a given z
component Sz of the total spin S of the system. In order to
determine quantum number S of the total spin of the ground
state, we calculate the mean value of the operator S2 in the
ground state with the lowest possible Sz �0 or 1

2 according to
whether N is even or odd�. Since �S2�=S�S+1�, we can de-
duce the value of S. The ground-state phases are character-
ized through the local spin-spin correlations �Sl,i ·Sm,j� and
spin structure factor S�q�

S�q� =
1

N2 �
li,mj

eiq�l−m��Sl,i · Sm,j� . �2�

Within the HFA, we treat the electron-electron interaction
in the HFA,

nl,i,↑nl,i,↓ = �nl,i,↑�nl,i,↓ + �nl,i,↓�nl,i,↑ − �nl,i,↑��nl,i,↓� . �3�

Here, � � is the average with respect to the mean-field-theory
ground state. Due to translation symmetry, �nl,i,��= �ni,�� is
independent of l.

In order to diagonalize the Hamiltonian, we take the Fou-
rier transformation of cl,i,�,

cl,i,� = Nc
−1/2�

k

e−iklbk,i,�. �4�

Here, Nc is the number of unit cell. Then the Hamiltonian
becomes

H = �
k,�

bk,�
† M��k�bk,�. �5�

Here, bk,�
† is a three-dimensional row vector defined as,

bk,�
† = �bk,1,�

† ,bk,2,�
† ,bk,3,�

† � . �6�

M��k� is a 3�3 energy matrix

M��k� = � 0 − 1 − e−ik 0

− 1 − eik 0 V

0 V U�n3,−�� + � f
� .

�7�

Here, −� denotes down spin �up spin� if � is up spin �down
spin�. From the equation

M��k�Vi��k� = Ei,��k�Vi��k�, �i = 1,2,3� , �8�

we can get an eigenvalue Ei,��k� and an eigenvector Vi��k�
of the matrix M��k�, where i �=1,2 ,3� is the energy-band
index. The unitary transformation P��k� that diagonalizes
M��k� is given by

P��k� = 	V1��k�,V2��k�,V3��k�
 . �9�

So we can define an three-dimensional new operator ak,�
†

=bk,�
† P��k� to diagonalize the Hamiltonian Eq. �5�,

H = �
k,�

�
i=1

3

Ei,��k�ak,i,�
† ak,i,�. �10�

Here, ak,i,�
† is the ith component of ak,�

† . The ground state can
now be written as

�G� = �
k,i,�

�occ�

ak,i,�
† �0� . �11�

Here, �0� is electron vacuum state and �occ� labels the states
occupied by electrons. From Eq. �11�, we can get the charge
density

�nj,�� = Nc
−1 �

k,i,�

�occ�

Vji��k�Vji�
* �k� . �12�

Here, Vji��k� is the jth component of the eigenvector Vi��k�.
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Because the matrix M��k� contains the term �nj,��, we
must solve Eqs. �8� and �12� self-consistently. The spin den-
sity �Sj

z� is defined as

�Sj
z� =

1

2
��nj,↑� − �nj,↓�� . �13�

III. RESULTS AND DISCUSSION

We first study the phase diagram of the quasi-one-
dimensional periodic Anderson-like chain at half-filling. We
use the ED technique to calculate the quantity S2 in the
ground state and obtain the value of S. Although the ED can
only deal with a small system, for the one-dimensional inter-
acting system such as the PAM and the Kondo lattice,7,21 the
magnetic correlation and phase diagram have been deter-
mined accurately on the basis of the precise treatments of the
finite-size effects observed in the ED data. Figure 2 shows
the phase diagram for the weak hybridization V=0.1 and for
the cluster with the size N=6,9, and 12 under periodic
boundary condition. The region between two curves is the
ferrimagnetic �FM� phase with the spin S= 1

2 per unit cell.
Outside this region, the ground state is the antiferromagnetic
�AF� phase. We will discuss the properties of the two
ground-state phases later. It is obvious that the phase dia-
grams for these three sizes are nearly the same and the finite-
size effect is very small. In the case of the symmetric Hub-
bard model, the rigorous result19 shows that the ground state
of this bipartite lattice has the spin 1

2 per unit cell. Our result
indicates that the ferrimagnetic ground state exists in a much
larger region of parameter space, e.g., for the asymmetric
case � f �−U /2 and for the on-site Coulomb Ui=0 at sites on
the main chain. The calculated result shows that the two
boundaries � f

− and � f
+ between the FM phase and AF phase

have the relation � f
+=−U−� f

−, which can also be induced
from the analysis of the symmetry of the Hubbard Hamil-
tonian for bipartite lattice.22 Hence, in the following discus-

sion, we just analyze the behavior of the upper critical point
� f

−.
As the hybridization V increases, the region of the FM

phase becomes smaller. Figure 3 shows the critical point � f
−

as a function of U for different V and the cluster size N
=12. One can see that as V increases, � f

− approaches gradu-
ally to the value −U /2. This result means that for the sym-
metric PALM, the ground state is always ferrimagnetic. In
order to exhibit the nature of the phase transition, we have
performed the calculation of the energy band by the HFA.
We solve Eqs. �8� and �12� self-consistently and obtain the
band spectra and the spin density. Figure 4 shows the energy
bands for U=2, � f =−0.8, V=0.1 and 2. The Coulomb repul-
sion U and the hybridization V remove the degeneracy in the
spin configuration. In the ground state, the lowest two up-
spin bands and one down-spin band are occupied. Hence the
ground state is ferrimagnetic and has the spin S= 1

2 per unit
cell. In this case, from Eq. �8� one can find that the Fermi
level is exactly at E3,��k=��=0. We can get the necessary
condition for the FM phase from this fact. In the small-V
limit, we have

E1,���� � a� +
V2

a�

, E2,���� � −
V2

a�

, E3,���� = 0.

�14�

Here, a�=U�n3,−��+� f. Under the condition a↑�0 and a↓
�0, in Fig. 4�a� the bands E1,↑, E3,↑, and E2,↓ are filled and
the FM phase is stable. This condition induces

− U�n3,↓� � � f � − U�n3,↑� . �15�

Because the charge density �n3,�� is between 0 and 1, Eq.
�15� leads to 0�� f �−U. In the large-V limit, we have

FIG. 2. The phase diagram by the ED for V=0.1 and different
system size N.

FIG. 3. The upper critical point � f
− as a function of U for

different V. The dashed line corresponds to the symmetric case � f
−

=−U /2.
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E1,��k� � − V +
a�

2
, E2,��k� � V +

a�

2
,

E3,��k� �
2�1 + cos k�a�

V2 . �16�

In this case, there is almost no dispersion in the band struc-
ture. The splits of the bands with respect to spin are much
smaller than those for small V. One can find this tendency in
Fig. 4�b� for the strong hybridization V=2. To stabilize the
FM state, one also needs the condition a↑�0 and a↓�0,
under which the bands E1,↑, E3,↑, and E1,↓ are filled. This
condition also leads to Eq. �15�. In the intermediate hybrid-
ization case, the numerical calculation shows that the FM
state also requires this condition.

As the hybridization V is very small and the f level � f is
just below the Fermi level EF=0, due to the Coulomb repul-
sion U the f orbital is nearly singly occupied by up-spin
electrons. The flat parts of the bands E3,↑ and E1,↑ in Fig. 4�a�
are almost occupied by the electrons on the f orbital. The
ferromagnetism is mainly contributed by the magnetic mo-
ment on the localized f orbital. In this case, the charge den-
sity �n3,↑�→1 and �n3,↓�→0. From Eq. �15�, we know that
the size of the upper critical point � f

− is very small. As V is
enhanced, �n3,↑� decreases and �n3,↓�increases so that the size
of the � f

− increases. In the large-V limit, the f orbital is nearly
doubly occupied. The charge densities �n3,↑� and �n3,↓� are
close to 1

2 . In this case, from Eq. �15� one can see that the
upper critical � f

− approaches to −U /2. Therefore, the ferro-
magnetism in the FM state is mainly contributed by the mag-
netic moment on the zigzag chain. The above discussion

based on the HFA is consistent with the phase diagram in
Fig. 3 obtained by the ED technique. To check the applica-
bility of the HFA, in Fig. 5 we give a comparison of the
phase diagrams by the HFA and the ED. Although the ten-
dency of the phase diagrams by both methods is similar, the
quantitative consistency only occurs for small Coulomb re-
pulsion U and large hybridization strength V.

In order to exhibit the properties of the ground-state
phases, we study the spin-spin correlations by the ED with
the cluster size N�12. Figure 6�a� shows the spin structure
factor S�q� defined in Eq. �2� for U=5, V=0.5, and different
� f. For � f =−0.6, S�q� has a peak at q=0 and the ground state
is ferrimagnetic. For � f =−0.4, the AF phase is clearly iden-
tified with a peak of S�q� at q=�. Figure 6�b� shows the size
dependence of the peak weight S�q=0� and S�q=�� in the
two phases for the cluster size N=6, 9, and 12. To extrapo-
late to the thermodynamic limit, the FM state exhibits long-
range order since the total spin is S= 1

2 per unit cell for any
size. In the AF state, S�q=�� decreases with the cluster sizes
but is also nonzero in the thermodynamic limit. This behav-
ior may indicate a long-range antiferromagnetic correlation,
which is in contrast to the short-range antiferromagnetic cor-
relation in the standard6 PAM. In the symmetric Hubbard
model, the rigorous result19 shows that the ground state of
this bipartite lattice has both the ferromagnetic and antifer-
romagnetic long-range orderings. In the asymmetric case, the
transition between the FM state and the AF state results from
the competition between these two correlations.

The local spin-spin correlations �Sl,i ·Sm,j� as functions of
the hybridization V are shown in Fig. 7 for � f =−1, U=2, 5,
and 10. The double occupancy Wi= �ni,↑ni,↓� is also given in
Fig. 8 for the same parameters. In the symmetric case U=2,
the ground state is always ferrimagnetic. As the hybridization
V is very small, there are no double occupancies on the
f orbital and a large double occupancy on the conduction
orbital. Hence the ferromagnetic correlation �Sl,3 ·Sl+1,3�

FIG. 4. The energy band Ei,��k� for U=2, � f =−0.8, V�0.1
and 2.

FIG. 5. The upper critical point � f
− by the ED and the HFA as a

function of V for different U.
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between two highly localized f orbitals almost has the satu-
ration value 0.25. The appropriate antiferromagnetic correla-
tions between the nearest-neighboring orbitals �including
both the conduction orbital and the localized f orbital� play
an important role in mediating this ferromagnetic correlation.
For small V, the ferromagnetism mainly results from the lo-
calized magnetic moment on the f orbital. With increasing V,
the double occupancy on the f orbital increases while that on
the conduction orbital �l ,1� decreases. As V is very large, the
conduction orbital �l ,1� is nearly singly occupied while the f
orbital is occupied almost equally by up-spin and down-spin
electrons. As a result, the ferromagnetic correlation between
two conduction orbitals �l ,1� and �l+1,1� reaches to the
saturation value 0.25 while the spin correlation between two
f orbitals nearly vanishes. This result shows that in the large-
V limit and the symmetric case, the conduction orbitals �l ,1�
form a spin-1

2 ferromagnetic chain with exchange decoupling
from the conduction orbitals �l ,2� and the f orbitals because
the spin correlations �Sl,1 ·Sl,2�, �Sl,3 ·Sl+1,3� and �Sl,2 ·Sl+1,2�
nearly vanish. Meanwhile, �Sl,2 ·Sl,3� shows a strong antifer-
romagnetic correlation between the conduction orbitals �l ,2�
and f orbital but does not reach the saturation value −0.75 of
a singlet because these two orbitals are partially doubly oc-
cupied.

In the asymmetric case for U=5, 10, and small V, the
ground state is the FM phase. As V increases to a critical
value Vc corresponding to the jumps in Figs. 7 and 8, the
ground state is the AF phase. In the AF phase, for weak

hybridization the f orbital is mainly singly occupied and
there is a strong antiferromagnetic correlation between two f
orbitals. For strong hybridization, the spin correlations
�Sl,1 ·Sl,2�, �Sl,3 ·Sl+1,3�, and �Sl,2 ·Sl+1,2� tend to zero while
the antiferromagnetic correlation �Sl,2 ·Sl,3� reaches a large
value. Similarly to the symmetric case, it seems that the con-
duction orbital �l ,1� also has exchange decoupling from the
conduction orbitals �l ,2�. However, the spin correlation be-
tween two conduction orbitals �l ,1� and �l+1,1� is much
smaller than that of a spin-1

2antiferromagnetic chain because
the double occupancy on the conduction orbital �l ,1� is
large.

In Fig. 9, we show the charge density �ni�= �ni,↑�+ �ni,↓� as
a function of the hybridization V for � f =−1, U=2, 5, and 10.
In the symmetric case U=2 and � f =−1, the ground state is
ferrimagnetic and there is no charge fluctuation due to
particle-hole symmetry. In the asymmetric case U=5 and 10,
with increasing V, the charge density transfers from the f
orbital to the conduction orbitals. Because for small V the f
orbital is nearly singly occupied by an up-spin electron, the
reduction of charge density on the f orbital leads to the de-
creasing of the ferromagnetic correlation between two f or-
bitals in Fig. 7. As V increases to a critical value Vc, the FM
state transits to the AF state. Let us analyze the mechanism
of the transition. From Fig. 9, one can find that at the critical
value Vc there is an abrupt drop and jump in charge density
on the f orbital and the conduction orbitals, respectively. The
abrupt jump in charge density on the conduction orbitals
�l ,1� induces a large increase of double occupancy on this
orbital in Fig. 8. Hence, there is a large reduction in the
antiferromagnetic correlation between the nearest-
neighboring conduction orbitals �l ,1� and �l ,2�. On the other
hand, the drop in charge density on the f orbital weakens the
antiferromagnetic correlation between the f orbital and the
conduction orbitals �l ,2�. In the FM state, these two kinds of

FIG. 6. �a� Spin structure factor S�q� for U=5, V=0.5, and
different � f. �b� The size dependence of the peak weight S�q=0� and
S�q=�� in the two phases for the cluster size N�6, 9, and 12.

FIG. 7. The spin-spin correlations �Sl,i ·Sm,j� as a function of V
for � f =−1, U=2 �solid�, 5 �dashed�, and 10 �dotted�.
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antiferromagnetic correlations mediate the ferromagnetic
correlations between two f orbitals and the ferromagnetic
correlations between the conduction orbitals �l ,1� and �l
+1,1�. The reduction of these two antiferromagnetic corre-
lations will destabilize the FM state. As a result, the FM state
transits to the AF state at the critical value Vc.

In the strong hybridization and strong coupling regime,15

the one-dimensional PAM has ferromagnetic ground state for
the electron density between half and three-quarters fillings.
It is interesting to compare the present result with it. In the
one-dimensional PAM, for infinite U and t	V, the ferro-
magnetism requires �� f � 
V. At the exact half-filling case,
the total spin per site is zero. However, in the present PALM,
the ground state is ferromagnetic for � f −U /2 in the strong
hybridization and half-filling case. The infinite U is not re-
quired as in Ref. 15. In the infinite U and t	V limit, the
ferromagnetism needs the infinite � f�−U /2�. The mecha-
nisms of ferromagnetism for these two models are also dif-
ferent. In the one-dimensional PAM, the microscopic mecha-
nism of the ferromagnetic ground state is similar to the one
found by Nagaoka.2 The coherent propagation of the Kondo
singlet is responsible for the polarization of the spins. In the
present PALM, the ferromagnetism results from the antifer-
romagnetic correlations between the nearest-neighbor sites.
For infinite U and t	V, the mechanism of the ferromag-
netism is similar to those proposed by Lieb3 and Tian and
Lin19 in the Hubbard model for symmetric bipartite lattice.

In summary, we have studied the quasi-one-dimensional
periodic Anderson-like chain at half-filling using the ED
technique and the HFA. For the symmetric case, the ground
state is always ferrimagnetic with spin S= 1

2 per unit cell. In
the weak hybridization case, the ferromagnetism originates
from the ferromagnetic correlation between two f orbitals
while in the strong hybridization case, the ferromagnetism is
mainly contributed by the ferromagnetic correlation between
the conduction orbitals �l ,1�. In the large-V limit, the con-
duction orbitals �l ,1� form a spin-1

2 ferromagnetic chain with
exchange decoupling from another conduction orbital �l ,2�
and the f orbitals. For the asymmetric case, we construct the
phase diagram. For given U and V, there are two critical
values 0�� f

−�−U /2 and � f
+=−U−� f

−. The region between
two critical values is the FM phase. Outside this region, the
ground state is antiferromagnetic. With increasing U and V,
the upper critical point � f

− decreases. In the large-V limit, the
FM state exists only along the line � f =−U /2 because of � f

−

→−U /2. We find that in the weak coupling and strong hy-
bridization case, the results by the HFA and the ED are con-
sistent quantitatively.
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