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We present an extension of the layer-multiple-scattering method to photonic crystals of nonspherical par-
ticles in a homogeneous host medium. The efficiency of the method is demonstrated on a specific example of
a crystal of metallic spheroids. We report a thorough analysis of the optical properties of this crystal and
discuss aspects of the underlying physics that relate to the nonspherical shape of the particles.
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I. INTRODUCTION

The layer-multiple-scattering method �LMSM� is very ef-
ficient for the evaluation of the optical properties of three-
dimensional �3D� photonic crystals consisting of nonoverlap-
ping spherical scatterers in a homogeneous host medium.1–6

An important aspect of the method is that, contrary to tradi-
tional band-structure or time-domain methods, it proceeds at
a given frequency, i.e., it is an “on-shell” method. Therefore,
it can be directly applied to photonic crystals made of
strongly dispersive building components such as real
metals,7–13 ionic materials in the infrared region,14,15 doped
semiconductors,14 etc., thus exploring the impressive oppor-
tunities offered by the resonant behavior of the permittivity
and/or permeability of these materials in different regions of
frequency. Moreover, because of the on-shell character of the
method, absorption and/or gain in the constituent materials
can be treated in a straightforward manner. Besides the com-
plex frequency band structure of an infinite photonic crystal,
associated with a given crystallographic plane, the LMSM
allows one to calculate, also, the transmission, reflection and
absorption coefficients of an electromagnetic �EM� wave in-
cident at a given angle on a finite slab of the crystal and,
therefore, it can describe an actual transmission experiment.
An advantage of the method is that it does not require peri-
odicity in the direction perpendicular to the layers: the layers
must only have the same two-dimensional �2D� periodicity.
Therefore a number of interesting applications, such as
planar defects, heterostructures, and photonic crystal slabs on
homogeneous plates and substrates, can be also treated in
a more or less straightforward manner.16–22 Finally, the
LMSM can incorporate multiple-scattering Green’s-function
techniques23–26 that allow one to calculate the �local� density
of states of the EM field, as well as to treat defects and
disorder. This enables one to study a variety of interesting
physical phenomena, including waveguiding and Anderson
localization.

The LMSM has been proven very efficient for photonic
crystals of spherical particles, such as colloidal crystals,
opals, systems of microspheres, etc.27–31 With the same effi-
ciency, it can treat, also, spherical particles consisting of an
arbitrary number of concentric spherical shells by a powerful
recursive algorithm.32,33 Moreover, the method can be, in
principle, extended to systems of nonspherical particles, be-
cause the scattering properties of the individual particles en-
ter only through the corresponding T matrix. However, in

this case, the convergence of the method must be carefully
examined and its efficiency needs to be demonstrated.

In this paper, we report an extension of LMSM to photo-
nic crystals of nonspherical particles. We use the extended-
boundary-condition method �EBCM� for the evaluation of
the scattering T matrix of the individual particles34 and dem-
onstrate the efficiency of the method on a specific example
of a photonic crystal of metallic spheroidal particles. We ana-
lyze transmission and absorption spectra of finite slabs of
this crystal in conjunction with relevant complex-band-
structure and density-of-states diagrams, demonstrating the
physical origin of the field eigenmodes as well as the differ-
ences from corresponding systems of spherical particles. Po-
tential applications of photonic crystals of nonspherical par-
ticles are also anticipated.

II. SCATTERING BY A NONSPHERICAL PARTICLE

The electric field associated with a harmonic, monochro-
matic EM wave, of angular frequency �, has the form
E�r , t�=Re�E�r�exp�−i�t��. For a plane wave of wave vec-
tor q, propagating in a homogeneous medium characterized
by a relative dielectric function � and a relative magnetic
permeability � �we shall denote it by an index 0�, we have

E0�r� = p̂E0�q�exp�iq · r� , �1�

where E0 is the magnitude and p̂, a unit vector, the polariza-
tion of the electric field. The plane wave given by Eq. �1� can
be expanded into regular vector spherical waves about a
given origin of coordinates as follows:2,3

E0�r� = �
�=1

�

�
m=−�

� � i

q
aE�m

0 � � j��qr�X�m�r̂�

+ aH�m
0 j��qr�X�m�r̂�� , �2�

where q=���� /c, c being the velocity of light in vacuum;
j��qr� are the spherical Bessel functions which are finite ev-
erywhere; and X�m�r̂� are the vector spherical harmonics.
The coefficients aP�m

0 , P=E ,H, can be written as

aP�m
0 = AP�m

0 �q� · p̂E0�q� , �3�

with
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AE�m
0 �q� =

4�i��− 1�m+1

���� + 1�

�	i���
mei�Y�,−m−1�q̂� − ��

−me−i�Y�,−m+1�q̂��ê1

− ���
m cos 	 ei�Y�,−m−1�q̂� + m sin 	Y�,−m�q̂�

+ ��
−m cos 	 e−i�Y�,−m+1�q̂��ê2
 �4�

and

AH�m
0 �q� =

4�i��− 1�m+1

���� + 1�
	���

m cos 	 ei�Y�,−m−1�q̂�

+ m sin 	Y�,−m�q̂� + ��
−m cos 	 e−i�Y�,−m+1�q̂��ê1

+ i���
mei�Y�,−m−1�q̂� − ��

−me−i�Y�,−m+1�q̂��ê2
 ,

�5�

where ��
m� 1

2 ���−m���+m+1��1/2; �	 ,��� q̂ denote the an-
gular variables of q in the chosen system of spherical coor-
dinates; and ê1,ê2 are the polar and azimuthal unit vectors,
respectively, which are perpendicular to q.

We now consider a homogeneous particle of arbitrary
shape, centered at the origin of coordinates, and assume that
its relative dielectric function �s and/or magnetic permeabil-
ity �s, in general complex functions of �, are different from
those of the surrounding medium. When the plane wave de-
scribed by Eq. �2� is incident on the particle, it is scattered by
it, so that the wave field outside the particle consists of the
incident wave and a scattered wave, which can be expanded
in spherical waves as follows:

Esc�r� = �
�m

� i

q
aE�m

+ � � h�
+�qr�X�m�r̂�

+ aH�m
+ h�

+�qr�X�m�r̂�� , �6�

where h�
+�qr� are the spherical Hankel functions appropriate

to outgoing spherical waves: h�
+�qr���−i�� exp�iqr� / iqr as

r→�. On the other hand, the wave field inside the particle,
which must be finite at the origin, has the form

EI�r� = �
�m

� i

qs
aE�m

I � � j��qsr�X�m�r̂�

+ aH�m
I j��qsr�X�m�r̂�� , �7�

where qs=��s�s� /c.
In general the coefficients aP�m

+ of the scattered wave can
be expressed in terms of those of the incident wave �aP�m

0 �
through the scattering T matrix as follows:

aP�m
+ = �

P���m�

TP�m;P���m�aP���m�
0 . �8�

Among the methods suggested for the calculation of the T
matrix, EBCM appears to be very efficient. This method
takes into account the boundary condition of continuity of
the tangential components of the EM field on the surface of

the scatterer through appropriate surface integrals.34 This
leads to linear equations of the form

aP�m
0 = �

P���m�

QP�m;P���m�
0 aP���m�

I �9�

and

aP�m
+ = �

P���m�

QP�m;P���m�
+ aP���m�

I �10�

which, substituted into Eq. �8�, give

�
P���m�

TP�m;P���m�QP���m�;P���m�
+ = − QP�m;P���m�

0 . �11�

The matrix elements of Q0 and Q+ are given in terms of
integrals of simple expressions involving spherical Bessel
and Hankel functions over the surface of the scatterer.

Although the spherical-wave expansions of the EM field
are infinite series, it turns out that, if the size of the particle is
not much larger than the wavelength, a limited number of
partial waves, corresponding to �
�max, is sufficient for the
description of the scattered field and of the T matrix. How-
ever, in order to accurately solve Eq. �11�, we must keep
matrix elements up to �cut ���max�. The fact that �cut signifi-
cantly increases as the shape of the particle deviates from the
sphere means that, in order to accurately evaluate the ele-
ments of the T matrix of given dimensions, a large number of
Q-matrix elements are needed. Obviously, for spherical par-
ticles we have �cut=�max. We note that Eq. �11� should not be
solved through inversion of Q+, because this procedure may
induce numerical instabilities; it should be considered as a
linear system of equations and solved, e.g., by Gaussian
elimination with an overflow control.35

In the case of axially symmetric particles which have a
mirror plane normal to the symmetry axis, such as spheroids,
cylinders, etc., one obtains the following simple formulas for
the matrix elements of Q+ and Q0

QE�m;E��m�
+�0� = q2JE�m;H��m�

+�0� − qqs
�

�s
JH�m;E��m�

+�0� ,

QH�m;H��m�
+�0� = qqs

�

�s
JE�m;H��m�

+�0� − q2JH�m;E��m�
+�0� ,

QE�m;H��m�
+�0� = qqs

�

�s
JE�m;E��m�

+�0� + q2JH�m;H��m�
+�0� ,

QH�m;E��m�
+�0� = − q2JE�m;E��m�

+�0� − qqs
�

�s
JH�m;H��m�

+�0� , �12�

where
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JE�m;H��m�
+ =

2�i�mm��1 + �− 1��+���
���� + 1������ + 1�



0

1

d�cos 	�r2h�
+�qr�� 1

qsr

�

�r
�rj���qsr��� m2

sin2 	
Y��m�	�Y�m�	� +

�Y��m�	�

�	

�Y�m�	�
�	

�
+ ����� + 1�

� ln r

�	

j���qsr�

qsr
Y��m�	�

�Y�m�	�
�	

� ,

JH�m;E��m�
+ =

2�i�mm��1 + �− 1��+���
���� + 1������ + 1�



0

1

d�cos 	�r2j���qsr�� 1

qr

�

�r
�rh�

+�qr��� m2

sin2 	
Y��m�	�Y�m�	� +

�Y��m�	�

�	

�Y�m�	�
�	

�
+ ��� + 1�

� ln r

�	

h�
+�qr�
qr

Y�m�	�
�Y��m�	�

�	
� ,

JE�m;E��m�
+ =

2�i�mm��1 − �− 1��+���
���� + 1������ + 1�



0

1

d�cos 	�
mr2

sin 	
� 1

qr

�

�r
�rh�

+�qr��
1

qsr

�

�r
�rj���qsr���Y�m�	�

�Y��m�	�

�	
+ Y��m�	�

�Y�m�	�
�	

�
+

� ln r

�	
������ + 1�

j���qsr�

qsr

1

qr

�

�r
�rh�

+�qr�� + ��� + 1�
h�

+�qr�
qr

1

qsr

�

�r
�rj���qsr���Y�m�	�Y��m�	�� ,

JH�m;H��m�
+ =

2�i�mm��1 − �− 1��+���
���� + 1������ + 1�



0

1

d�cos 	�
mr2

sin 	
h�

+�qr�j���qsr��Y�m�	�
�Y��m�	�

�	
+ Y��m�	�

�Y�m�	�
�	

� , �13�

and JP�m;P���m�
0 are given by the same expressions as

JP�m;P���m�
+ with j��qr� in the place of h�

+�qr�. In Eqs. �13�,
Y�m�	� denotes the spherical harmonic Y�m�	 ,�=0�, and r
�r�	� is the distance of a given point on the surface of the
particle from the origin.

The factor �mm� in Eqs. �13� implies that Eqs. �11� split
into independent systems of equations, one system for each
value of m. Moreover, because of the factor �1± �−1��+��� in
Eqs. �13�, the matrix elements of Q+ and Q0 for PP�:
EH ,HE or EE ,HH vanish identically if �+�� is an even or
an odd integer, respectively, according to Eqs. �12�. There-
fore, each of the above-mentioned systems of equations can
be further reduced into two independent subsystems. We also
note that one need not calculate Q

P�m;P���m�
+�0� for negative val-

ues of m because, according to Eqs. �12� and �13�,
Q

P�−m;P���−m
+�0� = �2�PP�−1�Q

P�m;P���m
+�0� .

With the help of the T matrix, defined above, one can
calculate directly the change in the number of states up to a
frequency � between the system under consideration �a
single scatterer in a host medium� and that of the host me-
dium extending over all space as follows:


N��� =
1

�
Im ln det�I + T� , �14�

where I is the unit matrix.23,25 Of more interest is the differ-
ence in the density of states induced by the scatterer, given
by 
n���=d
N��� /d�. The scattering and extinction cross
section can be also obtained from the T matrix through the
equations

�sc =
1

q2 �
P�m

� �
P���m�

TP�m;P���m�AP���m�
0 · p̂�2

�ext = −
1

q2 Re �
P�m

�AP�m
0 · p̂�* �

P���m�

TP�m;P���m�AP���m�
0 · p̂ ,

�15�

while the absorption cross section is �abs=�ext−�sc. It is
clear that, except for the case of spheres, the cross sections
depend on the polarization and the direction of propagation
of the incident wave.

In the present work we shall consider metallic particles
characterized by �s=1 and a Drude relative dielectric
function36

�s��� = 1 −
�p

2

��� + i�−1�
, �16�

where �p is the bulk plasma frequency and � the relaxation
time of the conduction-band electrons of the metal, in air
��=1, �=1�. We assume, to begin with, a single oblate
spheroid with major axis A=2.065c /�p and minor axis B
=1.877c /�p, the latter being the axis of revolution z, and
compare it to a sphere of equal volume with radius S
=c /�p. For the numerical calculations we use �max=4, �cut
=6, and a Gaussian quadrature integration formula with ten
points for the integrals in Eqs. �13�. The results obtained
have a relative error less than 10−5.

The eigenmodes of the EM field, i.e., solutions of Eq. �8�
in the absence of an incident wave, are obtained at the poles
of the T matrix. In the case of a metallic sphere
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�TP�m;P���m�=TP��PP������mm�� such poles exist near the real
frequency axis for P=E. The eigenfrequencies of these so-
called surface- or particle-plasmon �because they correspond
to 2�-pole collective electron oscillations at the surface of the
particle� modes, in the limit qS ,qsS�1, are given by ��

��p�� / ��+ ��+1���,21 and the degeneracy of each mode is
2�+1. In the case of nonspherical particles there is no clear
characterization of multipole modes, since the T matrix is no
longer diagonal. However, for nearly spherical particles, one
can still characterize the modes as mainly dipole, quadru-
pole, etc.

In the left panel of Fig. 1 we show the change in the
density of states and the scattering cross section for the ob-
late spheroid and the corresponding sphere in air, in the fre-
quency region about the dipole surface-plasmon modes. It
can be seen that shape anisotropy induces a mode splitting,
an effect which can result, also, from permittivity anisotropy.
The threefold degeneracy of the dipole surface-plasmon
mode for the sphere is removed in the case of the spheroid,
giving rise to two Lorentian peaks in the density of states,21

shown by the broken curves in the upper left diagram of Fig.
1. The center of each Lorentzian gives the eigenfrequency
and its half width at half maximum gives the inverse of the
lifetime of the corresponding mode. The low-frequency peak
at 0.506�p is associated with a twofold degenerate dipole
mode �the area of the peak equals 2� which corresponds to
surface-plasma oscillations normal to the z axis �m= ±1�,
and is excited by an incident wave polarized normal to this
axis. The high-frequency peak at 0.538�p is associated with
a nondegenerate dipole mode �the area of the peak equals
unity� which corresponds to surface-plasma oscillations par-
allel to the z axis �m=0�, and is excited by an incident wave
polarized along this axis. It is worth noting that a sphere with

diameter equal to the major axis of the spheroid exhibits a
dipole peak at 0.515�p, whereas for a sphere with diameter
equal to the minor axis of the spheroid this peak appears at
0.524�p, i.e., the shift of the peak position relative to that of
the equal-volume sphere �at 0.517�p� is not as large as that
obtained in the case of the spheroid. It should be also noted
that the calculated eigenfrequencies of the dipole modes are
not very close to the nonretardation result, �1=�p /�3
=0.577�p, for a spherical particle, because the conditions qS,
qsS�1 are not satisfied in the case under consideration. In
the right panel of Fig. 1 we show the change in the density of
states and the scattering cross section for the spheroid and
the corresponding sphere in air, in the frequency region
about the quadrupole surface-plasmon modes. This fivefold
degenerate mode in the case of the sphere is split in the case
of the spheroid into one nondegenerate �m=0 at 0.621�p�
and two twofold degenerate �m= ±1 at 0.618�p and m= ±2
at 0.604�p� modes. While the excitation of the dipole
surface-plasmon modes depends only on the polarization of
the incident wave, the excitation of the higher multipole
modes depends also on the direction of incidence. For ex-
ample, a plane EM wave incident along the x axis with a
polarization along the z axis excites the m= ±1 quadrupole
mode, while a wave incident at an angle 45° with respect to
the z axis and polarization in the xz plane excites both the
m= ±2 and the m=0 quadrupole modes, as shown in the
lower right diagram of Fig. 1.

In Fig. 2 we show the scattering and absorption cross
sections of the particles, if we take into account dissipative
losses in the metal assuming �−1=0.025�p in Eq. �16�, which
is a typical value for metals. It can be seen from Fig. 2 that
the quadrupole surface-plasmon modes are fully absorbed:
they do not manifest themselves in the scattering cross sec-
tion and appear as small and broad peaks in the absorption
cross section. This happens because these modes have very
long lifetimes, as compared to the relaxation time.

FIG. 1. Left panel: The change in the density of states �upper
diagram� induced by a nonabsorbing metallic oblate spheroid �A
=2.065c /�p, B=1.877c /�p� in air, about the dipole resonances.
The corresponding scattering cross section is shown in the lower
diagram for incidence along the z direction �a�, and along the x
direction with polarization along the z axis �b�. Right panel: The
change in the density of states �upper diagram� about the quadro-
pole resonances. The corresponding scattering cross section is
shown in the lower diagram for incidence along the x direction with
polarization along the z axis �b�, and for incidence at an angle 45°
with respect to the z axis with polarization in the xz plane �c�. The
thin lines in all the diagrams show the corresponding results for a
sphere of equal volume �S=c /�p�.

FIG. 2. The scattering �upper diagram� and the absorption
�lower diagram� cross sections of a metallic oblate spheroid �A
=2.065c /�p, B=1.877c /�p� for incidence along the z direction �a�,
and along the x direction with polarization along the z axis �b�. The
thin lines in the diagrams show the corresponding results for a
sphere of equal volume �S=c /�p�.

G. GANTZOUNIS AND N. STEFANOU PHYSICAL REVIEW B 73, 035115 �2006�

035115-4



III. A PERIODIC MONOLAYER OF NONSPHERICAL
PARTICLES

We consider a plane of nonoverlapping particles, at z=0,
which are centered on the sites Rn of a given 2D lattice. Let
the plane wave, described by Eq. �1�, be incident on this
layer. Because of the 2D periodicity of the structure under
consideration, we write the component of the wave vector of
the incident wave parallel to the layer, q�, as q� =k� +g�
where k�, the reduced wave vector in the surface Brillouin
zone �SBZ�, is a conserved quantity in the scattering process
and g� is a certain reciprocal vector of the given lattice.
Therefore, the wave vector of the incident wave has the form
Kg�

± =k� +g�± �q2− �k� +g��2�1/2êz, where êz is the unit vector
along the z axis and the � or � sign refers to incidence from
the left �z�0� or from the right �z�0�. The corresponding
electric field is written as

Ein
s��r� = �Ein�g�i�

s� exp�iKg�
s� · r�êi�, �17�

where s�=+ or �, and i�=1 or 2 corresponds to a p- or
s-polarized wave, ê1,ê2 being the polar and azimuthal unit

vectors, respectively, which are perpendicular to Kg�
s� . Ac-

cording to Eq. �3�, the coefficients aP�m
0 in the expansion �2�

of the plane wave �17� are

aP�m
0 = AP�m;i�

0 �Kg�
s���Ein�g�i�

s� for P = E,H . �18�

Because of the 2D periodicity of the array of particles, the
wave scattered by it, when the wave �17� is incident upon it,
has the following form:

Esc�r� = �
Rn

exp�ik� · Rn��
�m

� i

q
bE�m

+ � � h�
+�qrn�X�m�r̂n�

+ bH�m
+ h�

+�qrn�X�m�r̂n�� , �19�

where rn=r−Rn. The coefficients bP�m
+ , which depend lin-

early on the amplitude of the incident wave, can be written
as follows:

bP�m
+ = BP�m;i�

+ �Kg�
s���Ein�g�i�

s� . �20�

We obtain BP�m
+ in terms of AP�m

0 by solving the following
system of linear equations:3

�
P���m�

��PP������mm� − �
P���m�

TP�m;P���m��P���m�;P���m��
�BP���m�;i�

+ �Kg�
s��

= �
P���m�

TP�m;P���m�AP���m�;i�
0 �Kg�

s�� , �21�

where the matrix elements �P�m;P���m� depend on the geom-
etry of the layer, on the reduced wave vector k�, and on the
frequency � of the incident wave; they depend also on the
dielectric function of the medium surrounding the particles,
but they do not depend on the scattering properties of the
individual particles. Explicit expressions for these matrix el-
ements are given in Ref. 2.

If we assign to the index P the integer values 1 and 2
instead of the symbols E and H, respectively, both the matrix
elements TP�m;P���m�, as defined for the symmetric particles
of Sec. II, and �P�m;P���m� vanish when P+�+m and P�
+��+m� have not the same parity. Therefore the system of
Eqs. �21� can be readily reduced to two subsystems, as fol-
lows:

�
o�
��oo� − �

o�

Too��o�o��Bo�
+ �Kg�

s�� = �
o�

Too�Ao�;i�
0 �Kg�

s�� ,

�
e�
��ee� − �

e�

Tee��e�e��Be�
+ �Kg�

s�� = �
e�

Tee�Ae�;i�
0 �Kg�

s�� ,

�22�

where the o�e� index enumerates the matrix elements that
correspond to P+�+m odd �even� integer in the sense men-
tioned above.

Since � and k� are conserved quantities in the scattering
process, the scattered field, given by Eq. �19�, will consist of
a series of plane waves with wave vectors

Kg
± = k� + g ± �q2 − �k� + g�2�1/2êz ∀ g �23�

and polarizations along ê1 and ê2 �polar and azimuthal unit
vectors, respectively, associated with every Kg

s , s=±�. There-
fore we write

Esc
s �r� = �

g
�
i=1

2

�Esc�gi
s exp�iKg

s · r�êi, �24�

where the superscript s=+ ��� holds for z�0 �z�0�.
Though the scattered wave consists, in general, of a number
of diffracted beams corresponding to different 2D reciprocal-
lattice vectors g, only beams for which Kgz

s is real constitute
propagating waves. When �k� +g�2�q2 the corresponding
wave decays to the right for s=+, and to the left for s=−; and
the corresponding unit vectors êi become complex but they
are still orthonormal �êi · ê j =�ij, i , j=1,2�. The coefficients in
Eq. �24� can be expressed through bP�m

+ as follows:3

�Esc�gi
s = �

P�m


P�m;i�Kg
s�bP�m

+ , �25�

with �P�m�Kg
s� given by

�E�m�Kg
s� =

2��− i��

qA0Kgz
+ ���� + 1�

�	i���
−mei�Y�m−1�K̂g

s� − ��
me−i�Y�m+1�K̂g

s��ê1

− ���
−m cos 	 ei�Y�m−1�K̂g

s� − m sin 	 Y�m�K̂g
s�

+ ��
m cos 	 e−i�Y�m+1�K̂g

s��ê2
 ,
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�H�m�Kg
s� =

2��− i��

qA0Kgz
+ ���� + 1�

	���
−m cos 	 ei�Y�m−1�K̂g

s�

− m sin 	 Y�m�K̂g
s� + ��

m cos 	 e−i�Y�m+1�K̂g
s��ê1

+ i���
−mei�Y�m−1�K̂g

s� − ��
me−i�Y�m+1�K̂g

s��ê2
 ,

�26�

where 	, � denote the angular variables �K̂g
s� of Kg

s , and A0

is the area of the unit cell of the 2D lattice. We note that,
according to Eq. �25�, �Esc�gi

s depend on the incident plane

wave through the coefficients BP�m;i�
+ �Kg�

s�� which are evalu-
ated from Eqs. �22�.

For example, when a plane wave �17� is incident on the
layer from the left, the transmitted wave �incident
+scattered� on the right of the layer is given by

Etr
+�r� = �

gi

�Etr�gi
+ exp�iKg

+ · r�êi, z � 0, �27�

with

�Etr�gi
+ = �Ein�g�i�

+ �gg��ii� + �Esc�gi
+ = Mgi;g�i�

++ �Ein�g�i�
+ , �28�

and the reflected wave on the left of the layer by

Erf
−�r� = �

gi

�Erf�gi
− exp�iKg

− · r�êi, z � 0, �29�

with

�Erf�gi
− = �Esc�gi

− = Mgi;g�i�
−+ �Ein�g�i�

+ . �30�

Similarly, we can define the transmission matrix elements
Mgi;g�i�

−− and the reflection matrix elements Mgi;g�i�
+− for a plane

wave incident on the layer from the right. Using Eq. �25� we
obtain

Mgi;g�i�
ss� = �ss��gg��ii� + �

P�m


P�m;i�Kg
s�BP�m;i�

+ �Kg�
s�� .

�31�

The matrix elements Mgi;g�i�
ss� obey the symmetry relation

Mgi;g�i�
−s−s� = �−1�i+i�Mgi;g�i�

ss� .
After calculating the transmitted and reflected waves,

when a plane wave �17� is incident on the given layer, we
can proceed to the calculation of the transmittance T�� ,k�

+g� , i�� and the reflectance R�� ,k� +g� , i�� of the layer.
These are defined as the ratio of the transmitted �reflected�
energy flux to the energy flux associated with the incident
wave. Assuming, e.g., incidence from the left, we obtain

T =
�gi

��Etr�gi
+ �2Kgz

+

��Ein�g�i�
+ �2Kg�z

+ �32�

and

R =
�gi

��Erf�gi
− �2Kgz

+

��Ein�g�i�
+ �2Kg�z

+ . �33�

We remember that only propagating beams �those with Kgz
+

real� enter the numerators of the above equations. Finally we
note that if absorption is present it can be calculated from the
requirement of energy conservation: A=1−T−R.

The difference in the number of states up to a given fre-
quency �, between the system under consideration �a plane
of particles in a homogeneous medium� and that of the host
medium extending over all space is given by


N��� =
N

A

 


SBZ

d2k�
N��,k�� , �34�

where N is the number of surface unit cells of the plane of
particles and A the area of the SBZ. The k�-resolved change
in the number of states is given, in the spherical-wave rep-
resentation, by


N��,k�� =
1

�
Im ln det�I + T� −

1

�
Im ln det�I − T�� ,

�35�

and in the plane-wave representation by


N��,k�� =
1

2�
Im ln det S , �36�

where the S matrix is identical to the M matrix defined by
Eqs. �31�.25,26 We note that the S matrix is defined in the
basis of those reciprocal-lattice vectors which correspond
to propagating beams and that the resulting 
N�� ,k��, con-
trary to that obtained through Eq. �35�, does not include
possible bound states of the system. The k�-resolved change
in the density of states is obtained through 
n�� ,k��
=�
N�� ,k�� /��.

We demonstrate the applicability of the formalism pre-
sented in this section on a specific example: a square array,
with lattice constant a=6.5c /�p, of nonabsorbing metallic
oblate spheroids, with A=2.065c /�p and B=1.877c /�p, in
air. For the given system it is sufficient to truncate the rel-
evant spherical-wave expansions at �max=4 and use �cut=6
for the calculation of the T matrix �see Sec. II�. Figure 3
shows the change in the density of states of the system with
respect to air, for k� =0, and the corresponding transmittance,
in the frequency region of the dipole surface-plasmon modes.
For k� =0, the square symmetry of the system implies that the
states of the EM field have the symmetry of the irreducible
representations of the C4v group: 
1, 
2, 
1�, 
2�, and 
5.37

The states of symmetry 
1, 
2, 
1�, and 
2� are nondegen-
erate, and 
5 are doubly degenerate. We note that a plane
EM wave propagating in the host region normal to the given
layer has the 
5 symmetry and, therefore, only the doubly
degenerate modes of the layer can be excited by an exter-
nally incident wave �see lower diagram of Fig. 3�. The non-
degenerate modes �of 
1 symmetry in the present case� are
inactive; they are bound states of the system and decay ex-
ponentially to zero away from the layer on either side of it.
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These inactive modes are delta functions in the density of
states, while the optically active modes, of 
5 symmetry, are
manifested as Lorentzian peaks in the density of states �see
upper diagram of Fig. 3�. The integral of each such Lorent-
zian equals two, while its center and width determine the
eigenfrequency and inverse lifetime, respectively, of the cor-
responding mode. The doubly degenerate dipole mode of the
single spheroid gives a 
5 resonant state at 0.525�p, with an
inverse lifetime 0.020�p, while its nondegenerate dipole
mode gives a bound state of 
1 symmetry at 0.555�p. It can
be seen that the position of the dipole modes of the single
spheroid is shifted in the case of the plane of spheroids be-
cause of the interaction between them. In the case of the
corresponding plane of spheres, the three-fold degenerate di-
pole mode gives a bound state of symmetry 
1 at 0.535�p
and a 
5 resonant state at 0.536�p, with an inverse lifetime
0.020�p.

Let us now consider off-normal incidence with k�

= �kx ,0�. In this case the point group of the system is the C1h

group. This group has two one-dimensional irreducible rep-
resentations: Q1 and Q2, with basis functions which are even
�Q1� and odd �Q2� upon reflection with respect to the xz
plane. We note that a plane EM wave propagating in the host
medium with the given k� has the Q2 or Q1 symmetry if it is
s or p polarized, respectively. A 
1 mode in the case of k�

=0 is now reduced to a mode of Q1 symmetry which is
excited by a p-polarized incident wave, as shown in the right
panel of Fig. 4. Similarly, a 
5 mode splits into a Q1 and a
Q2 mode. As can be seen in Fig. 4, these modes manifest
themselves as Lorentzian peaks of area equal to unity in the
density of states, and as complex resonance structures in the
corresponding transmission spectra.15

In Fig. 5 we show the transmittance and absorbance of the
given layer, if we take into account dissipative losses in the
metallic material ��−1=0.025�p�, for k� = �0.3� /a ,0� and p
polarization. It can be seen that sharp features in the trans-
mission spectra associated with resonant modes of long life-

time are smoothed out by absorption. This is clearly dis-
cerned in the case of the plane of spheroids, where the
corresponding broad and narrow resonances are well sepa-
rated. As a result one obtains a more uniform absorbance
over a relatively broad frequency range as compared with the
case of spherical particles, a property which may be useful in
the way of practical applications.

IV. A PHOTONIC CRYSTAL OF NONSPHERICAL
PARTICLES

In order to describe scattering by multilayers of particles
with the same 2D periodicity, it is convenient to express the
waves on the left of a given layer with respect to an origin Al
on the left of the layer at −dl from its center and the waves

FIG. 3. Change in the density of states �upper diagram� of a
square array, with lattice constant a=6.5c /�p, of nonabsorbing me-
tallic oblate spheroids �A=2.065c /�p, B=1.877c /�p�, with respect
to air, for k� =0 �the vertical broken lines show the position of the
bound states�, and transmittance �lower diagram� at normal inci-
dence. The thin lines in the diagrams show the corresponding re-
sults if the spheroids are replaced by spheres of equal volume �S
=c /�p�.

FIG. 4. A square array, with lattice constant a=6.5c /�p, of non-
absorbing metallic oblate spheroids �A=2.065c /�p, B=1.877c /�p�,
in air. Upper panel: The change in the density of states of Q2 �left
diagram� and Q1 �right diagram� symmetry of the system, for k�

= �0.3� /a ,0�, with respect to air. Lower panel: Transmittance of an
s- �left diagram� and a p- �right diagram� polarized wave incident
on the layer with the same k�. The thin lines in all the diagrams
show the corresponding results if the spheroids are replaced by
spheres of equal volume �S=c /�p�.

FIG. 5. Transmittance �upper diagram� and absorbance �lower
diagram� of a square array, with lattice constant a=6.5c /�p, of
absorbing metallic oblate spheroids �A=2.065c /�p, B=1.877c /�p�,
in air, for k� = �0.3� /a ,0� and p polarization. The thin lines in the
diagrams show the corresponding results if the spheroids are re-
placed by spheres of equal volume �S=c /�p�.
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on the right of this layer with respect to an origin Ar on the
right of the layer at dr from its center, i.e., a plane wave on
the left of the layer will be written as Eg

s exp�iKg
s · �r−Al��

and a plane wave on the right of the layer will be written as
Eg

s exp�iKg
s · �r−Ar��. With the above choice of origins the

transmission �reflection� matrix elements of a layer become

Qgi;g�;i�
I = Mgi;g�i�

++ exp�i�Kg
+ · dr + Kg�

+ · dl�� ,

Qgi;g�;i�
II = Mgi;g�i�

+− exp�i�Kg
+ · dr − Kg�

− · dr�� ,

Qgi;g�;i�
III = Mgi;g�i�

−+ exp�− i�Kg
− · dl − Kg�

+ · dl�� ,

Qgi;g�;i�
IV = Mgi;g�i�

−− exp�− i�Kg
− · dl + Kg�

− · dr�� . �37�

The transmission �reflection� matrices for a multilayer slab
are obtained from the corresponding matrices of the indi-
vidual layers, in the manner described in Ref. 2. For a plane
wave �Ein�g�i�

+ exp�iKg�
+ · �r−AL��êi�, incident on the slab

from the left, we finally obtain a reflected wave
�gi�Erf�gi

− exp�iKg
− · �r−AL��êi on the left of the slab and a

transmitted wave �gi�Etr�gi
+ exp�iKg

+ · �r−AR��êi on the right
of the slab, where AL �AR� is the appropriate origin at the left
�right� interface of the slab. We have

�Etr�gi
+ = Qgi;g�i�

I �Ein�g�i�
+ , �38�

�Erf�gi
− = Qgi;g�i�

III �Ein�g�i�
+ , �39�

where QI and QIII are the appropriate transmission and re-
flection matrices of the slab. After calculating the transmitted
and reflected waves on the right and left of the slab, we can
obtain the corresponding transmittance T�� ,k� +g� , i�� and
reflectance R�� ,k� +g� , i�� from Eqs. �32� and �33�, respec-
tively. On the other hand, the change in the number of states
between the slab and the homogeneous host medium extend-
ing over all space can be calculated from Eqs. �34� and �36�,
where the elements of the S matrix in the plane-wave repre-
sentation are given by

Sgi;g�i�
++ = exp�− i�Kg

+ · AR − Kg�
+ · AL��Qgi;g�i�

I ,

Sgi;g�i�
+− = exp�− i�Kg

+ · AR − Kg�
− · AR��Qgi;g�i�

II ,

Sgi;g�i�
−+ = exp�− i�Kg

− · AL − Kg�
+ · AL��Qgi;g�i�

III ,

Sgi;g�i�
−− = exp�− i�Kg

− · AL − Kg�
− · AR��Qgi;g�i�

IV �40�

for the given � and k�. The phase factors in Eq. �40� arise
from the need to refer all waves to a common origin.

Alternatively, one can calculate the complex frequency
band structure of the EM field in an infinite photonic crystal,
using the Q matrices of the unit slice, in the manner de-
scribed in Ref. 2.

We consider a simple cubic �sc� crystal, with lattice con-
stant a=6.5c /�p, of nonabsorbing metallic spheroids �A
=2.065c /�p, B=1.877c /�p�, in air, and view the crystal as a

sequence of �001� planes of particles. In the left panel of Fig.
6 we show the photonic band structure of this crystal along
the �001� direction �k� =0�, together with the corresponding
results for the same system with the spheroids being replaced
by spheres of equal volume �S=c /�p�. The symmetry of the
bands along this direction, for both crystals, is that of the C4v
group: 
1, 
2, 
1�, 
2�, and 
5.37 The bands 
1, 
2, 
1�, and

2� are nondegenerate, and 
5 is doubly degenerate. We note
that the �001� surface of the crystals under consideration is a
plane of mirror symmetry and, therefore, the frequency
bands appear in pairs: kz�� ,k�� and −kz�� ,k��; for this rea-
son, in Fig. 6, we show the bands only for positive kz.

In the long-wavelength limit we obtain a linear dispersion
curve, of 
5 symmetry, as expected for propagation in a ho-
mogeneous effective medium with a frequency-independent
dielectric constant �̄=lim�→0	��s�1+2f�+2�1− f�� / ��s�1− f�
+ �2+ f��
=1.05, which is the same for both crystals. This
extended effective-medium band is folded within the first
Brillouin zone and a Bragg gap opens up at the Brillouin
zone boundaries. In each case, within the gap, there are two
relatively flat bands, a lower band of 
5 and a higher one of

1 symmetry, which originate from the dipole surface-
plasmon modes of the metallic particles: these bands are
formed from the corresponding modes of the individual
�001� planes of particles, weakly interacting between them.
In the case of the crystal of spheres, the two flatbands are
close to each other and converge at the center of the Bril-
louin zone to a threefold degenerate point of �15 symmetry,
while in the crystal of spheroids the two flatbands are well
separated from each other. This important difference between
the two crystals may be useful in the design of �polarization-
selective� filters and single-mode coupled-resonator optical
waveguides38,39 based on photonic crystals of nonspherical
particles. According to the discussion in the previous section,
the nondegenerate bands along the �001� direction of these
crystals cannot be excited by an externally incident wave
because they do not have the proper symmetry. However,
these bands survive for k��0, where they couple with an
incident wave of the same k� leading to measurable transmit-

FIG. 6. Left panel: The photonic band structure of a sc photonic
crystal, with lattice constant a=6.5c /�p, of nonabsorbing metallic
particles �thick lines, oblate spheroids, with A=2.065c /�p and B
=1.877c /�p; thin lines, spheres with S=c /�p�, in air, along the
�001� direction. Right panel: Transmittance at normal incidence of a
slab of eight �001� planes of the above crystal of spheroids.
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tance �see Fig. 7 below�. In the right panel of Fig. 6 we show
the transmittance of a slab of the crystal of spheroids con-
sisting of eight �001� planes. The transmittance opposite the
extended band is about unity and exhibits the well-known
Fabry-Pérot oscillations due to multiple scattering between
the surfaces of the slab; the period of these oscillations cor-
responds to kza /�=1/8, as expected for the given slab thick-
ness. In the gap regions and also within the region of the 
1
band the transmission coefficient practically vanishes.

In the right panel of Fig. 7 we show the photonic band
structure of the crystal of spheroids in more detail, over a
limited frequency region about the dipole surface-plasmon
resonances, for k� = �0.3� /a ,0�. Apart from the ordinary fre-
quency bands �kz is real� we show, over the gap regions, the
real-frequency lines with the smallest imaginary part of kz.
For k� = �kx ,0�, 0�kx�� /a, the point group of the wave

vector is the C1h group, and, according to group theory, we
obtain from the 
1 band �for k� =0� one Q1 band and from
the 
5 band one Q1 and one Q2 band, as shown in the right
panel of Fig. 7. A s- or p-polarized EM wave incident on a
finite �001� slab of the crystal with k� = �kx ,0� excites bands
of Q2 or Q1 symmetry, respectively, and through them is
transmitted to the other side of the slab. In the regions of
frequency gaps there are no propagating Bloch modes, and
there the transmission coefficient is determined from the
complex band of the proper symmetry which has the smallest
imaginary part: the wave decreases exponentially within the
slab with an attenuation coefficient equal to Im kz��� of this
band, as shown in the left panel of Fig. 7.

V. CONCLUSIONS

In summary, we presented an extension of the LMSM to
photonic crystals consisting of nonspherical particles in a
homogeneous host medium. We incorporated the EBCM into
the LMSM formalism and showed that the method retains its
efficiency and accuracy, at least in cases where the shape of
the particles does not deviate strongly from the sphere. We
demonstrated the applicability of the method on a specific
example of a photonic crystal of metallic oblate spheroids.
We analyzed transmission and absorption spectra of finite
slabs of this crystal by reference to relevant complex-band-
structure and density-of-states diagrams, and showed that
nonspherical particles provide an additional degree of free-
dom for tailoring the characteristics of localized resonant
modes of photonic crystals. This may be useful in a variety
of applications, e.g., the design of light absorbers, filters, and
single-mode waveguides.
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