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We present a study of electric transport at high temperature in a model of strongly interacting spinless
fermions without disorder. We use exact diagonalization to study the statistics of the energy eigenvalues,
eigenstates, and the matrix elements of the current. These suggest that our nonrandom Hamiltonian behaves
like a member of a certain ensemble of Gaussian random matrices. We calculate the conductivity ���� and
examine its behavior, both in finite-size samples and as extrapolated to the thermodynamic limit. We find that
���� has a prominent nondivergent singularity at �=0 reflecting a power-law long-time tail in the current
autocorrelation function that arises from nonlinear couplings between the long-wavelength diffusive modes of
the energy and particle number.
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I. INTRODUCTION

The subject of transport in strongly correlated electron
systems is of considerable current interest, motivated, for
example, by recent experiments on cuprate and cobaltate ma-
terials measuring electrical and thermal transport
properties.1,2 Traditionally, much of the work has focused on
the behavior of quantum systems at low temperatures,3

where transport properties can be used to characterize a ma-
terial’s ground state. Under these conditions, the excitations
responsible for transport are often dilute and weakly interact-
ing �“quasiparticles”�, thus allowing for a straightforward de-
scription of transport, e.g., using the Boltzmann �kinetic�
equation formalism.4 Interestingly, in the opposite extreme,
when temperature is high and no well-defined elementary
excitations exist, transport properties remain nontrivial and
difficult to calculate and understand.5 Additionally, what
makes studying this regime worthwhile is the fact that some-
times interesting phenomena take place over a broad tem-
perature range, extending up to temperatures so high that
direct interpretations in terms of low temperature universal
properties �either conventional or exotic� can be questioned,
thus leaving the high temperature regime addressed in this
work as a promising starting point of analysis. Although we
attempt no detailed comparisons with experiments here, it
may be of interest to note that the optical conductivity we
find is very broad, extending over frequencies of order the
bare bandwidth, with dc resistivity growing linearly with
temperature. These features are remarkably reminiscent of
what is often observed in the normal state of correlated ma-
terials as diverse as organic salts, charge density wave
�CDW� systems, C60, and even high temperature supercon-
ductors. However, further work is necessary to elucidate pos-
sible implications of our high temperature approach to any
specific material.

In this paper, we study the conductivity, �, as a function
of frequency � and temperature T. For a finite quantum sys-
tem with a discrete spectrum, the real part of the conductivity
at nonzero frequency is given by the following Kubo for-
mula:

���,T� = �
1 − e−���

�Z �
n,m

e−�En�Jnm�2��En − Em − ��� ,

�1�

where n and m are eigenstates of the Hamiltonian, En and Em
are the corresponding energy eigenvalues, Jnm is the matrix
element of the total current operator between these two
states, �=1/kBT, and Z is the partition function. Note that we
do not include any “external” dissipative bath; what we are
studying is the absorption of energy from an infinitesimal
applied ac electric field by transitions between eigenstates of
the Hamiltonian.

One thing we investigate here is how the above singular
expression for the conductivity converges to a continuous
function in the thermodynamic limit. It is a sum of delta
functions, one for each pair of energy eigenstates that are
connected by the current operator. The number of eigenstates
scales exponentially in the number of degrees of freedom in
the system �esLd

, where L is system’s linear extent and s is
the entropy density, with average level spacing ��e−sLd

. For
a generic nonintegrable Hamiltonian there are only a few
good quantum numbers. These include the total number of
particles, the Bloch �lattice� momentum for systems with dis-
crete translational invariance, and in some models of interest
the total spin. All pairs of states with the same quantum
numbers generically contribute a delta function to the con-
ductivity, and so the total number of terms in the sum scales
as �e2sLd

. Thus the number of delta functions in ���� grows
very rapidly both with increasing system size and with in-
creasing temperature �and thus s�; away from zero frequency,
a good approximation to the thermodynamic limit is rapidly
approached with only very fine binning or other smoothing
of the delta functions. However, there are significant and
interesting finite-size effects present near zero frequency, and
elucidating them is one of the main topics of this paper.

For models where a finite-sized system has a bounded
spectrum and a finite-dimensional Hilbert space, such as the
one-band model of interacting lattice fermions that we will
study here as our example Hamiltonian, the above expression
simplifies in the high temperature limit to
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kBT���� �
��

Z
�
n,m

�Jnm�2��En − Em − ��� . �2�

We will mostly focus on this limiting behavior of the con-
ductivity, since it is already nontrivial. However, all of the
features we will discuss appear to apply at finite tempera-
tures as well. One basic noteworthy feature of this high T
limit is that the resistivity is proportional to the temperature.

Such a simple statistical characterization of the conduc-
tivity breaks down at low temperatures and frequencies. At
low temperatures both thermodynamics and dynamics are
dominated by comparatively few transitions from low energy
states residing in the tail of the Hamiltonian’s full spectrum,
and their properties may depend on specific details of the
system and its ground state. The low frequency part of the
high temperature conductivity, on the other hand, shows vari-
ous finite-size effects that can be understood based on rather
general considerations:

�i� Level repulsion reduces the number of pairs of states
with a very small energy difference, producing an underesti-
mate of the macroscopic low frequency conductivity �in fact,
� vanishes as �→0�;

�ii� If the above formula �1� for the conductivity of a finite
system is applied precisely at �=0, we find a delta function
due to the current’s diagonal matrix elements Jnn. For inte-
grable Hamiltonians this delta function has a nonzero weight
in the thermodynamic limit, hence the macroscopic dc con-
ductivity appears to be infinite at all temperatures. In weakly
nonintegrable systems this delta function is weakly broad-
ened; it is the celebrated Drude peak. In our case, and in
nonintegrable systems more generally, the weight of the pre-
cisely elastic delta function in the conductivity scales expo-
nentially to zero with increasing system size, as discussed in
Sec. IV below.

�iii� Finally, in the infinite system there is a nondivergent
zero-frequency singularity of the form ���=0�−����
��d/2 due to nonlinear couplings between the long-
wavelength diffusive energy and particle density modes. This
singularity is rounded by finite-size effects.

We discuss and disentangle all of these effects �as well as
demonstrate the general validity of considerations away from
�=0� using a simple one-dimensional �1D� model as a case
study. While some of the results are special to the particular
model, e.g., the dependence of the low frequency nonanaly-
ticity on dimension and range of interactions, the overall
picture that emerges is clear and robust against variations in
parameters, and most features are not special to one dimen-
sion. It also appears to apply at all temperatures in the dis-
ordered phase provided ��	1. In Sec. II we present the
Hamiltonian under study as well as the numerical procedures
employed to solve the problem exactly for finite sizes. In
Sec. III we use the exact numerical results to study statistical
properties of the spectrum and the eigenstates, including the
matrix elements of the current operator. The conductivity is
computed and discussed in Sec. IV, and its diffusion-induced
nonanalyticity is analyzed in Sec. V. Finally, we conclude
with a brief overview and list of open questions.

II. t-t�-V MODEL AND EXACT DIAGONALIZATION

Although much of what we find is rather generic to non-
integrable quantum many-body solid-state systems, the spe-

cific model we consider here is a one-dimensional chain of
spinless fermions with a single tight-binding orbital at each
site. The Hamiltonian is

H = − t�
j

cj
+cj+1 − t��

j

cj
+cj+2 + h.c. + V�

j

njnj+1, �3�

where cj
+, cj, and nj =cj

+cj are fermion creation, annihilation,
and density operators, respectively. This is one of the sim-
plest nonintegrable �quantum chaotic� many-particle models.
For spinless lattice fermions the size of the Hilbert space is
small, with only two states per site, and thus 2L states for a
chain of length L sites. We have a short-range �nearest-
neighbor� interaction V �spinless lattice fermions cannot have
an on-site interaction�. The second-neighbor hopping t�
makes the Hamiltonian nonintegrable and also breaks
particle-hole symmetry. This system’s good quantum num-
bers �conserved quantities in addition to the energy� are total
particle number and total crystal momentum. As written
above, with the periodic boundary conditions that we use, it
also has parity symmetry. We have chosen to break parity
with an irrational phase twist at the boundary �equivalent to
threading a fraction of a magnetic flux quantum through the
loop�. This minimizes the number of distinct symmetry sec-
tors to those labeled by the two good quantum numbers. We
have also looked at the model where the second-neighbor
hopping is replaced by a second-neighbor interaction; this
latter model is equivalent to that studied by Rabson et al.6

We chose to focus instead on our model because we did not
want particle-hole symmetry. However, the results we
present are generally independent of the presence or absence
of any of these symmetries other than conserved particle
number. Similar models have been used in earlier studies of
charge, heat, and/or spin transport and the crossover from
integrability to nonintegrability.5–7

For this model, the operator for the total particle current is

J =
it

�
�

j

cj
+cj+1 +

2it�

�
�

j

cj
+cj+2 + h.c. �4�

We have also looked at heat transport and thermopower, with
similar preliminary results; this work will be reported later.
We work for convenience at half filling, and average over the
different total crystal momentum sectors. It appears, as we
expect, that the behavior is statistically the same in each such
momentum sector, and that there is nothing special about
half filling for the regimes and properties we examine. We
specifically take t= t�=1 and V=2, so the interaction is
roughly equal to the single-particle bandwidth, and thus
strong. All energies are measured in units of t= t�=1, fre-
quencies in units of t /�=1, and lengths in units of the lattice
spacing.

We use a Householder diagonalization routine to exactly
diagonalize the Hamiltonian within each momentum sector.
We examine sizes up to L=18, mostly for even L with ex-
actly half filling. The results we find do not depend strongly
on L �although there are some finite-size effects that we dis-
cuss in some detail below�, while the computer time and
memory requirements grow exponentially with L. This is
why we have stopped at the size L=18, which is the largest
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size that is readily diagonalized on the modest computer we
are using. We also examined the odd lengths L=15 and L
=17 at the fillings closest to half filling, seeing no differences
from the even lengths and no apparent odd-even effects. For
convenience, we choose to work in the basis of single-
particle momentum eigenstates. These states are also eigen-
states of the total current operator, so this is one of the two
“natural” bases for this problem. The other natural basis is
less simple; it is that of the eigenstates of the other operator
that enters in determining the conductivity, namely the
Hamiltonian itself.

III. STATISTICS OF THE SPECTRUM, EIGENSTATES,
AND CURRENT MATRIX ELEMENTS

One of the common measures used to characterize the
spectrum of a nonintegrable quantum Hamiltonian is the
�Wigner-Dyson� distribution of level spacings. Our Hamil-
tonian is a real matrix �this is true in our basis of single-
particle momentum eigenstates even with a magnetic flux
through the loop�, so the probability distribution of the level
spacing should be that of the Gaussian orthogonal ensemble
�GOE� of random matrices,

P�s� =
�s

2
e−�s2/4, �5�

where s here is the level spacing in units of the mean level
spacing at that energy. To compare to this prediction we first
have to measure the density of states, which sets the mean
level spacing. The average density of states N�E� in each
sector of total crystal momentum is shown in Fig. 1 for the
case of chain length L=18. Thus we obtain an energy-
dependent mean level spacing ��E�=1/N�E�. The spacing of
each pair of adjacent levels within one sector is divided by
��E� to yield the scaled level spacing s. The resulting prob-
ability distribution P�s� for L=18 is shown in Fig. 1, where
we can see it agrees very well with the GOE form �5�.

The Kubo formula �1� shows that a relevant statistical
quantity that enters the conductivity at a given frequency �
is the mean-square value of the current matrix elements Jmn
between energy eigenstates separated by an energy ��
= �Em−En�. �Note that our eigenstates all have real ampli-
tudes, so these matrix elements are all real here.� Thus we
were interested in characterizing the probability distribution
of these current matrix elements. What we find is that the
distribution is consistent with a Gaussian, with mean zero
and a variance that depends on both the initial and final
energies. The variance has a strong dependence on �, giving
���� its dependence on � �see below�. The variance also has

a weaker dependence on the average energy Ē= �Em+En� /2.
To examine the probability distribution of Jmn, we bin the

matrix elements by both � and Ē, and look at all the Jmn’s
that fall in one such bin of energies, accumulated over all
total momentum sectors. We measure the first through fourth
moments, M1 through M4, of these distributions, observing
that the odd moments are consistent with zero, and looking
particularly at the ratio R=M4 /M2

2 that is equal to 3 for the
Gaussian distribution. If the bins are chosen too wide, the

variance changes over the bin and the resulting distribution
has a ratio R larger than 3. But as the bins are made nar-
rower, R converges to 3, indicating that the current matrix
elements do indeed have Gaussian probability distributions.
Since the variance depends much more strongly on � than on

Ē, the bins are taken to be much narrower along the � direc-
tion.

Thus we conclude that the total current operator, as writ-
ten in the basis of the eigenstates of the Hamiltonian, is
effectively a Gaussian random matrix that is, loosely speak-
ing, “banded,” meaning the variance of the matrix elements
Jmn depends smoothly on Em and En. The “bands” of con-
stant variance in this case do not run exactly parallel to the
diagonal of the matrix. Of course, neither our Hamiltonian
nor the current operator contains any random variables; the
apparent randomness comes from the statistical properties of
the highly excited eigenstates of our nonintegrable �and thus
“quantum chaotic”� Hamiltonian. The total current operator,
on the other hand, is integrable, with its eigenstates being the

FIG. 1. �Top� The average density of states in each symmetry
sector. �Bottom� The probability distribution of the scaled level
spacing for the L=18 system �data points� and the GOE form for
this distribution �line�, showing the excellent agreement.
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simultaneous eigenstates of all the single-particle momenta.
When we write the Hamiltonian as a matrix in the basis of
the eigenstates of the current operator, which is precisely
what we do to diagonalize it numerically, it is a highly regu-
lar sparse matrix. �We have also looked at the energy current
operator, which enters in the thermal conductivity and ther-
mopower; the energy current operator is nonintegrable, and
the Hamiltonian does look like a Gaussian random matrix
when written in terms of the eigenstates of the total energy
current.�

The final statistical characterization we have done is of
the amplitudes �n �
� when the eigenstates �n� of H are writ-
ten in the basis of the eigenstates �
� of J �and vice versa�.
These amplitudes, like the current matrix elements Jmn dis-
cussed above, appear to be mean-zero Gaussian random vari-
ables with a variance depending on two energies, namely En
and the kinetic energy K
 of the current eigenstate. Each
current eigenstate is also an eigenstate of the kinetic energy
operator, which is the sum of the hopping terms in the
Hamiltonian. As expected, a state �n� of high �low� total en-
ergy En consists primarily of states �
� of high �low� kinetic
energy K
, but it appears to be quite uniformly and randomly
extended over all the current eigenstates at each particular
kinetic energy. Thus we find that both the eigenstates of H,
and their current matrix elements appear to behave as Gauss-
ian random variables with energy-dependent variances.

IV. THE CONDUCTIVITY

The conductivity is given by the Kubo formula �1�. As
remarked earlier, it is a series of delta functions for a finite-
sized system, which can be binned to produce a smooth
curve for ����. Since the limit of zero frequency is of par-
ticular interest, we will focus much of our attention on low
frequencies. Although the expression �1� does not apply at
strictly zero frequency, it does contain a delta function there
that all levels contribute to. This zero-frequency feature has
often been called �ambiguously� the “Drude peak,” and ap-
pears to have finite weight in the thermodynamic limit for
integrable models. However, for nonintegrable quantum cha-
otic models such as we study here, the weight in this strictly
elastic Drude peak vanishes strongly in the thermodynamic
limit; see Fig. 2, top panel. This can be roughly understood
by noting that the full conductivity �1�, which has a finite
large L limit, is a sum of �e2sL delta functions, where s here
is the entropy density. Of these, only esL are at zero fre-
quency �since there are no degeneracies within any symme-
try sector�. We find that the weight of the zero frequency
terms in the sum are of the same order as those at small
frequency, so the relative strength of the so-called Drude
peak at zero frequency drops as e−sL with increasing L. A
more careful analysis gives power law in L prefactors to
these exponential dependences. But the presentation on a
semilog plot in Fig. 2 shows that our results are consistent
with a Drude weight that vanishes exponentially with in-
creasing L.

The conductivity is shown in Fig. 2 for our longer chains,
of lengths 14, 16, and 18. To obtain fairly smooth functions,
the delta functions are binned �see caption�, and the elastic

�=0 Drude peak is left out of these plots. At high frequen-
cies, the finite-size effect is clearly very small, indicating that
the processes that enter in determining the conductivity at
these frequencies do not involve length scales larger than our
system sizes, so these short chains do give a good approxi-
mation to the thermodynamic limit. An interesting question
that we do not yet have an answer for is: What is functional
form of the conductivity at high frequencies �say, �� t�, and
what is the physics determining it? We find that ���� appears
to decrease faster than any power of � in this regime. It can
be argued that this must be the case, by showing that the
moments of the function ���� are all finite.

FIG. 2. �Top� Drude weight as a function of L. The Drude
weight is expected to vanish exponentially with L. �Bottom� Con-
ductivity as a function of frequency for L=18, L=16, and L=14.
The agreement among different system sizes is good at high fre-
quencies but significant finite-size effects can be seen at low fre-
quency. �Inset� Closer view of the low frequency regime. The dip in
the conductivity around �=0 is due to level repulsion. This dip
rapidly narrows with increasing system size. The bins used here
have a width equal to the mean level spacing at the maximum of the
density of states for that L, except in the case of the main panel for
L=14, where the bins widths are instead chosen proportional to �
in order to reduce the scatter.

MUKERJEE, OGANESYAN, AND HUSE PHYSICAL REVIEW B 73, 035113 �2006�

035113-4



While there appears to be good convergence to the ther-
modynamic limit of ���� at high frequencies for these chain
lengths, clear finite-size effects are seen at low frequencies.
We find two sources of these finite-size effects: level repul-
sion, and diffusive “long-time tails.” The former is expected
and has been discussed before in this and many other con-
texts, but the latter appears to be a new observation for this
type of quantum many-body system. Level repulsion causes
a reduction of ���� at frequencies of order or less than the
mean level spacing, because there are fewer pairs of levels
with those energy differences that can produce the dissipa-
tion. The level spacing vanishes exponentially in the system
size, so this feature, which appears as a dip in ���� around
zero frequency, narrows very rapidly with increasing L, as is
apparent in the inset in Fig. 2.

Naively, one might expect �as we did when we started this
project� that in this high temperature disordered regime with
no long-range spatial correlations the conductivity of the in-
finite system would be a smooth analytic function of fre-
quency in the vicinity of zero frequency. However, examina-
tion of our results in Fig. 2 shows that this does not appear to
be the case. The conductivity appears to have a sharp maxi-
mum at �=0 that gets steadily sharper as L is increased. This
sharp peak is apparent in published numerical data from
other one-dimensional quantum models,5 but the reason for it
appears not to have been discussed. As we show in the next
section, long-wavelength diffusive modes of the energy and
particle density generically interact nonlinearly to produce a
nondivergent zero-frequency singularity of the form ����
=a−b	���+¯ in these one-dimensional systems. In the top
panel of Fig. 3 we show that our data appear to be consistent
with such a form for the low frequency conductivity in the
large L limit. This behavior arises from a long time tail in the
autocorrelation function of the total current that decays with
time difference as �J�0�J�t��� t−3/2 at long times. We show in
the bottom of Fig. 3 that our data for this autocorrelation for
L=18 do show such a power-law decay over a significant
time range. However, with the modest sizes that we can di-
agonalize, the numerical evidence for this precise form of the
long-time tail is not compelling; but the numerics do support
the much more compelling hydrodynamic arguments given
in the following section.

V. LONG-TIME TAILS DUE TO DIFFUSIVE MODES

Here we first give a more general argument inspired by
our one-dimensional system. Consider an infinite many-body
system in a disordered phase. If it has any conserved densi-
ties, such as energy, momentum, angular momentum, particle
number, etc., we may ask about the transport properties for
these quantities. A long-wavelength disturbance in the con-
served quantities relaxes at a �possibly complex� rate ��q�
where q is the wave vector of the disturbance, and this rate is
in general different for different linear combinations of the
various conserved quantities. In the absence of long-range
interactions or propagating modes, the relaxation is diffusive:
��Dq2 for small q. These long-wavelength diffusive modes
in general produce singular behavior of the transport proper-
ties in the zero-frequency �long-time� limit, as discussed, for

example, by Kirkpatrick et al.8 This has been discussed in
the context of fluids9 where momentum conservation makes
these effects quite strong, and in systems where quenched
randomness appears to play an essential role.8

For the Hamiltonian that we are studying, there are two
conservation laws that give diffusive modes: energy and par-
ticle number. The lattice �umklapp� breaks the momentum
conservation down to just the conservation of crystal mo-
mentum, which does not appear to produce any slow modes
in the disordered phase.

To be a little more general, let us first consider a transla-
tionally and rotationally invariant system in a disordered
phase with some number of conserved densities n
�r , t� in
possibly more than one dimension. The conservation laws
then dictate

FIG. 3. �Top� Conductivity plotted vs 	� for L=16 and L=18.
The straight line is a linear fit on this plot. The conductivity appears
linear in 	� at low frequencies before it rounds off at very low
frequency due to finite-size effects. The finite-size effects are, as
expected, more pronounced for L=16 than L=18. �Bottom� Auto-
correlation function of the total current vs time on a log-log plot.
There is a long-time tail with �J�0�J�t��� t−3/2.
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�n


�t
= − � · j
, �6�

where j
�r , t� is the current of conserved quantity 
. Let us
define the local densities n
 as the deviations from the aver-
age densities, so that our system has zero average densities
�n
�=0. We assume the long-wavelength, low frequency dy-
namics is diffusive, and expand the equilibrium coarse-
grained dynamics in the densities and the wave vectors �spa-
tial gradients�. The currents are expanded as

j
 = − D
� � n� + E
�n� � n + ¯ + �
, �7�

where D is the diffusivity matrix, � is noise �due to nonlinear
couplings to short-wavelength modes� with an intensity
given by a fluctuation-dissipation relation �e.g., Ref. 10�, and
repeated subscripts are summed over. The lowest order �in
density and gradient� nonlinear correction to the diffusive
behavior has also been shown explicitly; for example, the
term E
� corresponds to the linear dependence of the local
diffusivity matrix element D
 on the local density n�.

What should be the low frequency behavior of a transport
coefficient like ����? By the Kubo formula, this is given by
the time Fourier transform of the autocorrelation function of
the total �zero wave vector� current. Integrating the above
expression, and thus leaving out any terms that are total de-
rivatives, the total current is

J
�t� =
 j
dr =
 �E
� − E
�

4
�n� � n − n � n��

+ ¯ + �
�dr . �8�

Note that the total current is correlated with the densities
only through the nonlinear corrections to simple diffusion;
we will consider the generic case when these corrections are
indeed nonzero. Through this nonlinearity, the zero-wave-
vector current is coupled to the slow, small-wave-vector dif-
fusive density modes; this is what produces the long-time
tails. However, since the leading nonlinear coupling that we
show explicitly here must be an antisymmetric combination
of the conserved densities, for a system with only one con-
served density �and thus no antisymmetric combinations of
densities�, one has to go to significantly higher order nonlin-
earities ���n�2�n� to obtain the leading long-time tail in the
current autocorrelations.

Writing the total current in terms of the long-wavelength
density fluctuations in reciprocal space, we have

J
 =
E
� − E
�

2i

 qn��q�n�− q�dq + ¯ + �
, �9�

where n��q� and n�q� are the spatial Fourier transforms of
n��r� and n�r�. The low momentum fluctuations in n��q�
and n�q� decay diffusively. The eigenmodes of that decay
are the linear combinations of the densities that diagonalize
the diffusivity matrix. What we are doing here is considering
the correction due to nonlinearity to the linear diffusive
“fixed point” theory. These nonlinearities are irrelevant in a
renormalization group approach, but give singular correc-

tions to the leading diffusive behavior. The long-time tail we
discuss here is one of those corrections. At this diffusive
fixed point, in the basis of densities that diagonalize the dif-
fusivity matrix, the autocorrelations of the long-wavelength
density fluctuations decay as

�n��q,0�n�q�,t�� � e−D�q2t����q + q�� �10�

for small q and large t, where D� is the diffusivity for eigen-
mode �. Thus at long times, the autocorrelation of the total
current behaves as

�J�0�J�t�� � 
 dqq2 exp�− Dq2t� + ¯ � 1/t�d+2�/2

�11�

in d dimensions, where D=D�+D is the sum of the two
smallest diffusivities. Fourier transforming this to get the
conductivity, we see that for one dimension and small �,
�����a−b	���+¯, our numerical results �Fig. 3� are quite
consistent with this. In our finite-sized systems, the integrals
on q are replaced by sums, which has the effect of rounding
out this singularity at a frequency of order D /L2. This round-
ing is apparent in Fig. 3, and it can be seen to be reduced
with increasing L. Note that the characteristic frequency of
this diffusive finite-size effect vanishes only as L−2 with in-
creasing size, in contrast to the scale for the level repulsion,
which vanishes exponentially in L.

This explanation of the long-time tail in the autocorrela-
tion of the total current makes certain assumptions and pre-
dictions about the dynamics and correlations of the long-
wavelength modes, which we have checked numerically
within our model. First, it assumes that the dynamics of the
long-wavelength fluctuations in the particle density n and the
energy density e are diffusive. We have checked this by cal-
culating their dynamic correlations: ��n�q ,���2�, ��e�q ,���2�,
and �n�q ,��e�−q ,−��� for the chain of length L=18. At
small q and � these fit quite well to the expected diffusive
behavior. The two diffusivities differ by approximately a fac-
tor of 2. The faster eigenmode of the diffusion has a larger
component of particle density than energy density, and vice
versa for the slower mode.

Another assumption is that the long-wavelength modes
interact nonlinearly to contribute to the total �zero-
momentum� current, as given by Eq. �10� above. For our
finite-size 1D system with discrete momenta and just the two
densities, n and e, this may be rewritten for the particle cur-
rent as

J = C�
q�0

i�sin q�n�q�e�− q� − n�− q�e�q�� + ¯ + � ,

�12�

where C is the nonlinear coupling. Thus we have measured C
to check that it is indeed nonzero. To do this, we define the
nonlinear combination of the densities at momentum q,

N�q� = i�sin q�n�q�e�− q� − n�− q�e�q�� , �13�

and measure its correlations with itself �N�q�N�q��� and with
the current. We find that the correlations between N’s at dif-
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ferent q’s are quite small compared to the variances �N2�q��.
To get estimates of the coupling C, we thus note that

�N�q�J� � C�N2�q��; �14�

this gives us an estimate of C for each q, and we find that
these estimates agree well with one another at small q and
are indeed nonzero, as expected.

The specific form of the long-time tails that we derive
above are for the case of relaxational dynamics and short-
range interactions, where the conserved densities relax diffu-
sively. Of course, charge carriers in real materials interact via
the long-range Coulomb interaction, and the long-
wavelength mode corresponding to the charge density, the
plasmon, does not show diffusive relaxation; it is likely over-
damped at high T, relaxing at a nonzero rate. Thus conserved
energy and charge are not alone sufficient to produce the
long-time tails discussed above once Coulomb interactions
�or other sufficiently long-range interactions� are included.
What is needed is at least two conserved densities that relax
diffusively. One possibility is ionic conductors, where there
are multiple conserved charge carriers that can combine to
produce another neutral, diffusively relaxing hydrodynamic
mode in addition to the energy.

VI. CONCLUSIONS

We have studied the frequency-dependent conductivity of
a nonintegrable fermionic chain with short range interac-

tions. Our studies show that such a system can be regarded as
quantum chaotic in the sense of random matrix theory, as can
the current matrix elements that go into the Kubo formula for
the conductivity. We have confirmed that charge transport in
this system is not ballistic but diffusive with nonlinearities.
These nonlinearities give rise to a nonanalytic behavior for
the optical conductivity at low frequencies which we under-
stand through hydrodynamic arguments. We observe that the
system shows finite-size effects at low frequency arising
from Wigner-Dyson level repulsion and from the low mo-
mentum fluctuations of the conserved quantities in the
Hamiltonian.

The methods used to obtain these results are readily gen-
eralizable to further explorations of the finite temperature
behavior. The list of open questions includes other dynamic
response functions and transport coefficients �e.g., Peltier
and heat conductivities�, an extension to two dimensions, a
systematic investigation of the high temperature series for
transport, whose first term for the conductivity has been
computed here, and an extension to long-range interactions.
We shall report on some of these in the near future.
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