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I. INTRODUCTION

In the past several years the linear and nonlinear proper-
ties of side-coupled waveguiding structures have attracted
the attention of many researchers.1–11 These structures con-
sist of one or more waveguiding elements in which forward
and backward propagating waves are indirectly coupled to
each other via one or more mediating resonant cavities. Per-
haps the most common proposals for realizing these struc-
tures involve photonic crystal �PC� waveguides with defect
modes slightly displaced from the waveguiding region �Fig.
1�a�, left�,2,5 or microring resonator structures in which two
channel waveguides are side coupled to microring resonators
�Fig. 1�a�, right�.6 In the PC structure the forward and back-
ward propagating modes within the waveguide are coupled
via the defect; for the microring structure, the forward going
mode in the lower �upper� channel waveguide is coupled, via
the microring, to the backward going mode in the upper
�lower� channel. The linear and nonlinear properties of both
types of structures have been studied.2,5–8

The electromagnetic properties of these structures can be
accurately determined in great detail using numerically in-
tensive methods such as finite-difference time-domain
�FDTD� simulations.13 An analysis in terms of Wannier func-
tions can substantially reduce computation time for the PC
structure,14 but the numerical problem remains daunting. In
particular, full FDTD calculations of the microring structures
have to date been confined to two-dimensional analogs of the
actual structures of interest.13 Furthermore, direct numerical
simulation, while valuable for design purposes, offers little
insight into the physics of the structures. Consequently, semi-
analytical techniques, such as the scattering-matrix approach
of Fan et al.2 and Xu et al.,5 have been proposed. Using these
techniques the optical properties of side-coupled structures
can be understood in terms of the interactions between a
small number of modes.

In this paper we concentrate our attention on periodic,
side coupled structures �Fig. 1�b��. Our primary objective is
to derive coupled-mode equations �CMEs� that describe
pulse propagation in such structures. Coupled-mode theory
has long been used as an effective design tool for grating
structures where forward and backward propagating waves
are directly coupled via an index grating.15 In directly

coupled structures, it is well known that a Bragg gap opens
in the dispersion relation of the structure when the phase
accumulated in one round trip through a period of the grating
is an integer multiple of 2�, so that the slight reflections that
are incurred due to the grating are coherently enhanced.
Structures possessing a Bragg gap have found a variety of
uses, such as dispersion compensation16 and wavelength di-
vision multiplexing.17 In the side-coupled structure the Bragg
feedback mechanism, and hence the Bragg gap, does exist,
although it is now mediated by the coupling cavity. However,
there is also a second type of gap: a resonator gap, which is
associated with the resonance frequencies—and therefore the
geometry—of the mediating cavity. For the microring reso-
nator structure the interpretation of this gap is straightfor-
ward: when the phase accumulated in a round trip through

FIG. 1. �Color online� �a� Waveguide-resonator structure con-
taining �left� photonic crystal microcavity and �right� microring
resonator. On the right the microring resonator is coupled to two
waveguides, with the forward �backward� propagating light in the
lower �upper� waveguide; on the left the structure containing dielec-
tric rods is embedded in air, the singly degenerate microcavity is
coupled to the photonic crystal waveguide, formed by removing a
row of rods in the photonic crystal. �b� Periodic waveguide resona-
tor structure containing �top� microring resonator and �bottom� pho-
tonic crystal microcavity.
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the microring resonator is an integer multiple of 2�, then the
coupling between the forward and backward going waves is
resonantly enhanced. Of these two gaps, the resonator gap is
perhaps the more important, because it exhibits a deep trans-
mission dip seen even in a structure with only one unit cell.

Because side-coupled structures exhibit both Bragg and
resonator gaps, it is to be expected that a CME description of
optical pulse propagation will be more complicated than in
Bragg gratings. The CMEs for Bragg gratings involve two
fields �forward and backward going� interacting via a cou-
pling coefficient. For side-coupled structures, the most inter-
esting situation is when a resonator gap lies near one of the
Bragg gaps, and we show in this paper that the relevant CME
then involves three fields: a cavity field and forward and
backward going fields.

We derive our CME using a phenomenological Hamil-
tonian approach, which distills the essential physical interac-
tions of the structure, and hence provides a simple physical
picture of optical interactions. We build the fields in our
CME as Fourier superpositions of the modes in the Hamil-
tonian. Hence, our CMEs are derived for infinite, periodic
structures in which the coupling to each cavity is the same.
Nevertheless, we show that our CMEs can be generalized to
describe finite, apodized structures, in which the coupling
�but not the period� varies from cavity to cavity. Therefore,
the CME can be used to describe finite structures with only a
small number of cavities. Indeed, the general Hamiltonian
approach we advocate can be applied even to structures with
only one or two cavities, if the formalism we introduce in
Sec. II is extended to a discrete number of �not necessarily
identical� cavities. In both discrete and periodic scenarios,
the Hamiltonian approach exhibits the similarities of the op-
tical dynamics of these artificially structured materials to
more traditional problems in solid state physics, and thus
helps clarify the basic physical concepts. As well, it allows
for an easy quantization of the description to address the
quantum optics of these structures. We plan to turn to this, as
well as the direct derivation of our phenomenological Hamil-
tonian from the underlying electrodynamics, in future publi-
cations.

The present paper is organized as follows. In Sec. II we
describe the Hamiltonian model for a system with a single
microresonator, investigate the transmission/reflection spec-
trum of the structure, and indicate how the parameters in our
phenomenological Hamiltonian can be set from more com-
mon models of cavity resonators. In Sec. III we discuss how
the Hamiltonian can be used to model a periodic waveguide-
resonator structure. We then discuss methods of reducing the
number of fields and interactions in our Hamiltonian while
retaining the basic physics. In Sec. IV we derive the coupled
mode equations in terms of effective fields built as Fourier
superpositions of the modes in the Hamiltonian of Sec. III,
and we show how to modify these CMEs to describe finite,
apodized structures. In Sec. V we conclude.

II. HAMILTONIAN MODEL AND TRANSMISSION FOR A
SINGLE CAVITY STRUCTURE

In this section we construct a Hamiltonian model for a
structure in which forward and backward propagating waves

are indirectly coupled to each other via a cavity centred at
z=z0. We will focus on classical optics here, but because its
easy generalization to quantum optics is one of the strengths
of this approach, we adopt a quantum notation and, for the
classical Poisson bracket �..,..�, we write �i��−1 �..,..�; we also
use † to indicate complex conjugation. We will also often
speak of operators rather than variables, especially when it
makes the physics more clear. For example, we introduce ak

†

and ck
† as creation operators for photons propagating with

wave number k in the forward and backward direction, re-
spectively. Nonetheless, we stress that the derivation pre-
sented here applies equally well at both the classical and
quantum levels.

Because k�0 �k�0� indicates that the photons are propa-
gating in the forward �backward� direction, ak

† exists for k
�0 and ck

† for k�0. For a given k, the energy in these fields
is ��kak

†ak and ��kck
†ck, with �k=c�k� /n, where c is the

speed of light in a vacuum, and n is a constant effective
index, equal for the forward and backward propagating
waves. By ignoring the frequency dependence of n we are
neglecting the underlying material dispersion within the
waveguides; we discuss the validity of this approximation
after Eq. �5� below. To describe light in the cavity, we define
a creation operator b†, and identify the energy in the field as
��0b†b, where �0 is the resonant frequency of the cavity.
For the microring resonator structure of Fig. 1�a� �right�, the
ak

† and ck
† could represent creation operators for light propa-

gating in the forward direction in the lower waveguide and
the backward direction in the upper waveguide, while b†

could represent the field circulating in the counterclockwise
direction in the microring resonator. Our notation implies
that the two waveguides have a common mode index n, but
this could easily be generalized. For the PC structure of Fig.
1�a� �left�, the ak

† and ck
† would represent creation operators

for light propagating in the forward and backward direction
in a waveguide mode of the PC waveguide, and b† would
represent the creation operator for the field inside the single
mode defect. Regardless of their interpretation, the operators
satisfy the commutation relations

�ak,ak�
† � = ��k − k�� ,

�ck,ck�
† � = ��k − k�� ,

�b,b†� = 1, �1�

with all other commutation relations vanishing. Assuming
that no light couples directly between the propagating modes
governed by ak

† and ck
†, but that light can couple from these

modes to the cavity, we use the following model Hamiltonian
for the system:2,5

H = Ho + Hcoupling, �2�

where

Ho = �
0

�

dk��kak
†ak + �

−�

0

dk��kck
†ck + ��ob†b , �3�
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Hcoupling = − ��
0

�

�k�ak
†be−ikz0 + b†ake

ikz0�dk

− �− 1�q��
−�

0

�−k�ck
†be−ikz0 + b†cke

ikz0�dk . �4�

The quantities �k and �−1�q�−k characterize the strength of
the coupling between cavity field and waveguide fields,
propagating in the forward and backward direction; q is an
integer that depends on the symmetry of the cavity mode.5

Note that, except for the factor �−1�q, our notation implies
that the coupling to forward and backward propagating
waveguide modes is identical. In the microring structure, for
example, this means that we assume equal coupling to the
two waveguides; generalization of this is straightforward, but
for simplicity we will not do it here. The time evolution of
the operators is given by the Heisenberg equations of motion

i�
dO

dt
= �O,H� , �5�

where O is any operator.
In writing down Eqs. �2�–�4� we have implicitly assumed

that the cavity supports only one mode, with resonant fre-
quency �0, and that the waveguides guide light in only a
single spatial mode profile. Strictly speaking, of course, nei-
ther of these assumptions is valid. In general, cavities sup-
port more than one mode, oscillating at one or more reso-
nance frequencies, and for sufficiently high frequencies a
waveguide will support multiple transverse modes. However,
we are primarily interested in the physics of these structures
for frequencies at or near a specific resonant frequency �0.
We then assume that within this frequency range only one
resonance of the cavity exists or, alternatively, that only a
single mode of a multi-mode cavity is excited, and that the
waveguides of the structure are single mode. Furthermore,
we assume that the underlying material or modal dispersion
of the structure is negligible within the frequency range of
interest. For our purposes, the inclusion of material disper-
sion would lead to quantitative, but not qualitative changes.

In Appendix A we show that our Hamiltonian formulation
leads to a Lorentzian transmission and reflection across the
cavity for frequencies in the vicinity of �0

t��� 	
− i	


 − i	
, �6�

r��� 	 �− 1�q
 



 − i	
� , �7�

where 
=2�n��̃0

2 /c, and ��̃o
is the coupling coefficient be-

tween the cavity and waveguides evaluated at k= �̃0
�n�0 /c, and where 	= ��−�0−����� characterizes the de-
tuning from the renormalized resonance frequency �0
+����. An expression for the quantity ���� is given in Ap-
pendix A. For our structures of interest ���� is sufficiently
small that �−�0−����	�−�0 to a good approximation.

The transmission and reflection coefficients in Eqs. �6�
and �7� are of precisely the form that follows from simple
transfer matrix models of resonant cavities or ring
resonators.5,6 In the latter structure, for example, the cou-
pling of the cavity to the waveguides is described by self-
coupling and cross-coupling coefficients � and , respec-
tively, which in a simple case �where the coupling is
assumed to occur at the point of smallest separation� are real
and satisfy �2+2=1. Comparing the transmission and re-
flection coefficients found there with Eqs. �6� and �7�, we
find that they become equivalent if we put


 =
c

2�n̄R

1 − �2

�2 � , �8�

where n̄ and R are the effective index and radius of the
resonator, respectively. Thus if a given resonator is param-
etrized by � and , as well of course by the resonance fre-
quency �0, then relation �8� allows one to determine the
effective coupling coefficient ��̃0

and thus set what will be,
as we will see, the crucial elements in the phenomenological
Hamiltonian �2�. The appropriate values of coupling coeffi-
cients for a single resonator could be determined by experi-
ment, or directly calculated from the underlying channel and
resonator geometries, as discussed by Waks and Vuckovic.11

A typical spectrum for a single cavity structure is shown
in Fig. 2. On resonance, the reflection induced by the cavity
reaches 100% �albeit only for a single wavelength�, and re-
mains significant as long as the detuning, 	, is on the order
of 
. The width of the spectrum is dictated by 
, and the
larger the coupling to the cavity, the broader the resonance.
In physical terms, this means that as the waveguides are
brought closer to the cavity of Fig. 1�a�, the resonance width
increases.

FIG. 2. �Color online� Transmission �solid line� and reflection
�dotted line� spectrum for the one cell structure obtained using Eqs.
�6� and �7�. The structure can demonstrate 100% reflection and 0%
transmission when the frequency is matched to the resonance fre-
quency of the microresonator. For comparison with later plots, the
frequency is normalized with a distance �, which we use as the
distance between resonators when we consider a periodic array.
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III. HAMILTONIAN FOR A PERIODIC STRUCTURE

We now generalize the single-cavity Hamiltonian to de-
scribe a periodic structure, in which the forward and back-
ward propagating modes are coupled to an infinite series of
periodically spaced cavities �Fig. 1�b��. We assume that the
resonators are not directly coupled to each other, although of
course they do couple indirectly via the waveguides. Gener-
alizing the Hamiltonian �2� to include the periodic sequence
of resonators, we write

H = �
0

�

dk��kak
†ak + �

−�

0

dk��kck
†ck + 

l

��obl
†bl

− �
l
�

0

�

dk�k�bl
†ake

ikzl + ak
†ble

−ikzl�

− �− 1�q�
l
�

−�

0

�−kdk�bl
†cke

ikzl + ck
†ble

−ikzl� , �9�

where ak
† �ck

†� are again the creation operators for light propa-
gating in the forward �backward� direction. The main differ-
ence between Eqs. �9� and �2� is that we have now included
a countably infinite number of resonators, each with the
same resonance frequency, �0, and associated with the cre-
ation operator bl

†, where l indexes the resonator. The resona-
tors are evenly spaced at zl= l�, which gives a fundamental
reciprocal lattice vector G0=2� /�. The Hamiltonian �9� can
be rewritten as

H = 
G
�

B.Z.

dk��k+Gak+G
† ak+G + 

G
�

B.Z.

dk��k−Gck−G
† ck−G

+ 
l

��obl
†bl − �

l

G
�

B.Z.

dk�k+G

��bl
†ak+Gei�k+G�zl + ak+G

† ble
−i�k+G�zl�

− �− 1�q�
l


G
�

B.Z.

dk�−k+G

��bl
†ck−Gei�k−G�zl + ck−G

† ble
−i�k−G�zl� , �10�

where G represents the summation over an infinite number
of positive reciprocal lattice vectors �with G=0,G0 ,2G0 , . . .�,
and where in the integrations we restrict the wave number k
to the first Brillouin zone �−G0 /2�k�G0 /2�; We sum only
over the positive reciprocal lattice vectors so that ak+G

† and
ck−G

† retain their association with forward and backward
propagation modes, respectively. The operators satisfy com-
mutation relations

�ak+G,ak�+G�
† � = ��k − k���G,G�,

�ck−G,ck�−G�
† � = ��k − k���G,G�,

�bl,bl�
† � = �l,l�, �11�

with all other commutators vanishing; the first two of these
follow immediately from Eq. �1�. Because the system is pe-
riodic, we can identify a countably infinite set of Bragg fre-
quencies in Eq. �10�. These are the frequencies �k±G evalu-
ated at k=0 or G0 /2. Hence, since �k±G=c�k±G� /n for ring
resonator structures, the Mth Bragg frequency occurs at
�b

�M�=M�cG0 /2n� �with M �0 an integer�.
To simplify Eq. �10�, we introduce the collective operator

bk =� �

2�


l

ble
−ikzl, �12�

where k is now a continuous variable that ranges over the
first Brillouin zone. In Appendix B we introduce this opera-
tor by first considering only excitations of the resonators
periodic over a length L=N�, and then taking N→�. We
find in that limit


l

��0bl
†bl → �

B.Z.

dk��obk
†bk

and that

�bk,bk�
† � = ��k − k��

for k and k� in the first Brillouin zone, with all other com-
mutators vanishing. In terms of this collective operator the
Hamiltonian �10� becomes

H = 
G
�

B.Z.

dk��k+Gak+G
† ak+G + 

G
�

B.Z.

dk��k−Gck−G
† ck−G

+ �
B.Z.

dk��obk
†bk − �

G
�

B.Z.

dk�+k+G�bk
†ak+G + ak+G

† bk�

− �− 1�q�
G
�

B.Z.

dk�−k+G�bk
†ck−G + ck−G

† bk� , �13�

where �±k±G��2� /��±k±G. In Table I we give typical val-
ues for parameters characterizing side-coupled structures.
There and for the rest of this paper we assume that the cou-
pling �±k±G� is approximately constant at wave vectors cor-
responding to frequencies within our region of interest, and
take �±k±G���. This approximation is reasonable if the

TABLE I. Parameters used for dispersion relation calculation.

Physical parameters �=0.98 �=32.0 �m n=3.0 2�R=26.3 �m

Numerical parameters �

c
= 0.0023�m−1 �0n�

�c
= 124.156

�bn�

�c
= 124.0

�n�

�c
= 0.07
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G of interest satisfy G�	k, where 	k is the range over
which the �k varies significantly. We can expect 	k
�2� / �1 �m� for the structures of interest �see Appendix A�,
and since G is at most a few times G0=2� /� �=2� / �32 �m�
from Table I�, this inequality is indeed satisfied.

The dispersion relation of the system can be determined
by traditional transfer matrix methods, using Eqs. �6� and �7�
for the transmission and reflection coefficients of a single
resonator. However, to see the connection with the coupled
mode equations we will derive, we consider determining the
dispersion relation directly from the Hamiltonian �13�, by
applying the Heisenberg equation of motion to generate
equations for the time derivatives of ak+G, ck−G and bk. As-
suming harmonic time dependence e−i�t for the operators, we
determine an expression for � as a complicated function of
the countably infinite set of �±�k�±G, and the discrete value
�0. Alternately �and equivalently� we can exhibit the Hamil-
tonian in a matrix form �13�

H = ��
B.Z.

dkfk
† · Vk · fk, �14�

where

fk
† = �ak+G0

† ,ak+2G0

† , . . . ,ck−G0

† ,ck−2G0

† , . . . ,bk
†� , �15�

and Vk contains all of the interactions between the ak+G, ck−G
and bk. Then, by diagonalizing the �infinite-dimensional� ma-
trix Vk we can in principle determine the dispersion relation
of the structure. In Fig. 3 we consider a typical uncoupled �in
the limit where �=0� and coupled dispersion relation for the
structure. The dotted line shows the uncoupled dispersion
relation, and the solid line shows the dispersion relation of
the coupled system, as determined by the transfer matrix
approach.

If one of the Bragg frequencies is close to the resonant
frequency �0, then we show below that a truncation of the
matrix Vk to three terms is a good approximation. The re-
stricted Hamiltonian that results is

H 	 ��
B.Z.

dk�ak+G�
† ck−G�

† bk
†���k+G� 0 �

0 �k−G� �− 1�q�

� �− 1�q� �0
�

��ak+G�

ck−G�

bk

� . �16�

where G� is the reciprocal lattice vector associated with the
forward �backward� band that has �k+G� ��k−G�� closest to
�0. Here we have assumed that the resonant frequency is
very close to a Bragg frequency with its associated gap at the
Brillouin zone centre, and so �G�=�−G���b, where �b is
the Bragg frequency closest to the resonance frequency.8 We
refer to eqn. �16� as the “three-mode model.” Its validity near
a resonance frequency for any particular structure can be
formally investigated by including the omitted terms in a
multiple scales analysis, or by simply comparing the disper-
sion relation following from eqn. �16� with a full solution of
the dispersion relation using a transfer matrix approach. This
is done in Fig. 4, using the parameters in Table I. In Fig. 4
we also plot the imaginary part of k within the gaps. Note
that the exact solution and that from the three mode model
are in good agreement for the frequency range shown in Fig.
4. Such agreement fails at other Bragg frequencies that are
further from the resonant gap, of course, since the three
mode model �eqn. �16�� only contains the physics of the
Bragg gap closest to �0. It is to frequencies near �0 that we
henceforth restrict ourselves.

IV. COUPLED-MODE EQUATIONS IN THE THREE-MODE
MODEL

In this section we derive a set of coupled-mode equations
which describe pulse propagation in the periodic structure,
based on the three-mode Hamiltonian �16�. We then demon-
strate that, although these coupled-mode equations are de-
rived for an infinite periodic system with equal coupling at
each resonator, they can, with only slight modifications, be
used to describe finite systems with varying coupling at each
resonator. We start by defining effective fields20 in terms of
the amplitudes ak+G�, ck−G� and bk:

g+�z,t� = �
B.Z.

dk
�2�

ak+G�e
ikz,

g−�z,t� = �
B.Z.

dk
�2�

ck−G�e
ikz,

b�z,t� = �
B.Z.

dk
�2�

bke
ikz, �17�

FIG. 3. Typical dispersion relation for coupled microresonator
system as depicted in Fig. 1 �solid line�. For comparison, the dis-
persion relation of the system in the limit of no coupling �dotted
line� is also shown. Here the resonance frequency of the cavity is
given by �0n� /�c=124.58
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where G� indexes the reciprocal lattice vector that is retained
within the three-mode approximation. These fields can be
interpreted as a forward propagating field, a backward propa-
gating field, and the field distribution in the resonators, re-
spectively. Using the definitions in Eq. �17�, the effective
fields satisfy the equal time commutation relations

�g±�z,t�,g±
†�z�,t�� = �̂�z − z�� ,

�b�z,t�,b†�z�,t�� = �̂�z − z�� , �18�

with all other commutation relations vanishing. The function

�̂�z−z�� is an effective delta function such that �−�
� f�z��̂�z

−z��dz= f�z�� when the function f�z� has its wave number
restricted to the first Brillouin zone of the system. In terms of
the effective fields, the Hamiltonian in Eq. �16� becomes

FIG. 4. �Color online� Dispersion relation ob-
tained using the transfer matrix technique �solid
line� and the Hamiltonian in Eq. �16� �circles�. �a�
The real part of the dispersion relation. �b� The
imaginary part of the wave number for frequen-
cies within the Bragg gap. �c� The imaginary part
of the wave number for frequency within the
resonator gap.
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H = ��b� dzg+g+
† + i

�c

2n
� dz
 �g+

†

�z
g+ − g+

† �g+

�z
�

+ ��b� dzg−g−
† − i

�c

2n
� dz
 �g−

†

�z
g− − g−

† �g−

�z
�

+ ��0� dzbb† − ��� dz�b†g+ + c.c.� − �

− 1�q��� dz�b†g− + c.c.� , �19�

where �b denotes the Bragg frequency centered at the Bril-
louin zone center and closest to �0.12 Using the Heisenberg
equations of motion for the effective fields, we obtain the
coupled equations


 �

�t
+

c

n

�

�z
�g+�z,t� = − i�bg+�z,t� + i�b�z,t� ,


 �

�t
−

c

n

�

�z
�g−�z,t� = − i�bg−�z,t� + i�− 1�q�b�z,t� ,

�

�t
b�z,t� = − i�ob�z,t� + i�g+�z,t� + i�− 1�q�g−�z,t� .

�20�

One can obtain the dispersion relation directly from Eqs.
�20� by assuming that each field is a plane wave eikz−i�t, with
k restricted to the first Brillouin zone. The results are equiva-
lent to those in Fig. 4, obtained by diagonalizing Eq. �16�.

Although the CMEs �Eq. �20�� were derived assuming an
infinite medium, they can be used to describe a structure
where the coupling constant � varies slowly over a distance
on the order of the spacing between the resonators. A mul-
tiple scale analysis can be used to identify this limit and
corrections to it. A more striking inhomogeneous structure is
one beginning with a region where there are no resonators,
followed by a length L over which resonators are placed with
an equal spacing and equal coupling to the channel�s�, fol-
lowed by a region where again there are no resonators. A
simple model for such a region would be to use the Eqs.
�20�, but replacing � with a position dependent coupling
constant ���z�−��z−L���, where � is the usual step func-
tion. It can be easily seen that this model formally violates
our assumptions. Consider, for example, fields with a station-
ary time dependence, so g+�z , t�=g+�z�e−i�̄t, and similarily
for all other fields. Then the first equation gives

− i�̄g+�z� +
c

n

�

�z
g+�z� = − i�bg+�z� + i���z� − ��z

− L���b�z,t� , �21�

where in fact the factor ���z�−��z−L�� could be omitted,
since the third of Eqs. �20� together with the position depen-
dent coupling constant guarantees that b�z� will only be non-
zero in the region between z=0 and z=L. Note, however, that
at z=0 and z=L the Eq. �21� leads to a discontinuous
�g+�z� /�z if it is assumed that g+�z� is everywhere continu-

ous. This violates, of course, the assumption that fields such
as g+�z , t� are of the form �17�.

Despite such a formal violation of our assumptions, this
simple model in fact gives a good description of the optical
response of a finite structure. To see this, consider first the
fields g±�z , t� within the structure. It is clear from Eqs. �20�
that for a supposed frequency �̄ there are two Bloch wave
numbers, which equivalently follow from Eq. �16�; they are

given by k��̄�= ± k̄, where

k̄ =
n

c
��	o	1 − �2�2 − �4

	0
2 . �22�

In the equation above 	0= ��̄−�0� is the detuning from the
resonance frequency and 	1= ��̄−�b� is the detuning from
the Bragg frequency that lies closest to �0. As a result, one
can write the forward and backward propagating effective
fields, g±�z , t�, as

g±�z,t� = g±�z�e−i�̄t,

g±�z� = g±
�1�eik̄z + g±

�2�e−ik̄z. �23�

Once g+
�1� and g+

�2� are set, g−
�1� and g−

�1� are determined by the
dispersion relation, or equivalently Eqs. �20�. Hence there
are only two independent constants. Outside the structure
��=0� there are also two independent constants in each of
the regions z�0 and z�L, but the solution of Eqs. �20� is
simpler. There it takes the form

g±�z,t� = g±�z�e−i�̄t,

g+�z� = g+eiqz,

g−�z� = g−e−iqz,

where g+, g− are independent and q= �̄n /c. For z�0 we
denote the constants by g+

� and g−
�, and for z�L we denote

them by g+
� and g−

�. Now we consider the boundary condi-
tion at z=L, and note that since no field is incident from z
�L, we have g−

�=0; an incident field is specified by g+
�. Our

independent unknowns are then g−
� ,g+

�, and the constants
g+

�1� and g+
�2� that specify the field in the structure. We solve

for these four unknowns by requiring the continuity of g±�z�
at z=0 and z=L. The resulting transmittance of the structure
can be written as

T��� = � g+
�eiqL

g+
�1� + g+

�2��2

�24�

with

g+
�1� =

e−ik̄L

2 �1 +
�2

k̄	o


	o	1

�2 − 1�n

c�g+
�eiqL,

g+
�2� =

eik̄L

2 �1 −
�2

k̄	o


	o	1

�2 − 1�n

c�g+
�eiqL.

In Fig. 5 we compare the transmission spectrum of a two
channel microring resonator structure with 30 cavities, cal-
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culated both using the transfer matrix technique,7 and using
the coupled mode equation result Eq. �24�. Again we adopt
the parameters of Table I. Generally there is good qualitative
agreement, with the main features of the spectrum well de-
scribed by the coupled-mode equation result �Eq. �24��, al-
though as noted above it is being applied beyond its strict
range of applicability. An extension of this approach leads to
the use of the CMEs �Eqs. �20�� to treat a finite structure
where the coupling constant � varies from one resonator to
the next. To describe this we simply allow � in Eqs. �20� to
adopt a z dependence


 �

�t
+

c

n

�

�z
�g+�z,t� = − i�bg+�z,t� + i��z�b�z,t� ,


 �

�t
−

c

n

�

�z
�g−�z,t� = − i�bg−�z,t� + i�− 1�q��z�b�z,t� ,

�

�t
b�z,t� = − i�0b�z,t� + i��z�g+�z,t� + i�− 1�q��z�g−�z,t� .

�25�

In Fig. 6 we plot the transmission spectrum for a
five-cavity structure apodized such that the cavities �from
left to right� are characterized by coupling constants
��1 , . . .�5�= �0.993,0.986,0.98,0.986,0.993�, corresponding
to ��1�n /�c , . .�5�n /�c� = �0.042, 0.057, 0.07, 0.057,
0.042�. The transfer matrix results are presented, as well as a
very simple application of the CMEs �Eqs. �25�� using a
piecewise uniform function to represent �, where in the nth

unit cell we set �=�n. Again there is good qualitative agree-
ment, although the CMEs are being applied beyond their
strict range of applicability. Besides the difference between
the CME and transfer matrix results with respect to the
Fabry-Pérot-type oscillations, as seen in Fig. 5, here the

FIG. 5. �Color online� Transmission spectrum
for finite structure that contains 30 cavities, using
parameters depicted in Table I. �a� Solid line rep-
resents the transmission spectrum obtained using
coupled mode equations and circles represent the
transmission spectrum obtained using transfer
matrix. �b� Transmission spectrum in the vicinity
of the resonator gap using coupled-mode equa-
tions �solid line� and transfer matrix �solid line
with circles�.
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CME solution also consistently overestimates the transmis-
sion on the high-frequency side of the stop gap. This can be
traced back to the effects on the band curvature induced by
the next highest Bragg gap, which are implicitly included in
the transfer matrix solution but not in the CME calculation.

Finally, we note that while at least three coupled mode
equations are necessary to describe the kind of structures we
consider here if we deal with both their space and time de-
pendence, if we instead restrict ourselves to a stationary time
dependence, g±�z , t�=g±�z�e−i�̄t and b�z , t�=b�z�e−i�̄t, then in
fact we can eliminate the variable b�z , t� and construct
coupled mode equations involving only g+�z , t� and g−�z , t�.
They are

�

�z
g+�z� = i����g+�z� + i�− 1�q����g−�z� ,

�

�z
g−�z� = − i����g−�z� − i�− 1�q����g+�z� , �26�

where

���� =
n

c
� �2

��0 − ��
− ��b − ��� ,

���� =
n

c

�2

��0 − ��
. �27�

These equations are valid for ���0. It is well known that
a photonic band gap opens in the dispersion relation de-
scribed by these equations when ������� ������,19 and that
the width of the gap is larger for larger values of ������.
Consequently, we see from these equations an analytic con-
firmation of features that our dispersion relation displays.
Within our three-mode model, one edge of the resonator gap
occurs at �→�0 �in which case � and � both diverge
equally quickly and are hence equal in the limit as � ap-
proaches �0�, and one edge of the Bragg gap occurs at �
→�b, because then the second term in the expression for
���� vanishes, and ���b�=���b�.

FIG. 6. �Color online� Transmission spectrum
for short, finite, apodized structure with five unit
cells. �a� Solid line represents the transmission
spectrum obtained using transfer matrix and
squares represent transmission spectrum obtained
using coupled mode equations. �b� Transmission
spectrum in the vicinity of the resonator gap us-
ing transfer matrix �solid line� and coupled-mode
equations �solid line with squares�.
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V. CONCLUSION

We have presented a phenomenological Hamiltonian de-
scription of light propagation in side-coupled resonators.
This formulation is appealing in its simplicity, since it cap-
tures the basic physics of the structures via a set of readily
understandable parameters. The most interesting special case
is perhaps where a resonator gap is close to a Bragg gap, and
at frequencies close to these gaps a three-mode model gives
a good description of the dynamics of a periodic structure of
resonators. Coupled mode equations based on these capture
the dispersion relation even deep within the gaps, and a naive
extension of these equations to describe finite structures, al-
though not within the strict range of applicability of the
model, gives a good qualitative description.

A hallmark of the kind of approach we have taken here is
the connection of theoretically calculated or experimentally
observed parameters, such as the coupling coefficient �, to
the parameters that appear in our phenomenological Hamil-
tonian. Such a strategy is particularly amenable to the de-
scription of quantum and nonlinear optical effects. The
Hamiltonian description leads to straightforward quantiza-
tion, of course, and appropriate nonlinear terms can easily be
added to the Hamiltonian. In a previous study by Grimshaw,
Malomed, and Gottwald,21 it was shown that three nonlinear
coupled-mode equations support stationary solitary wave so-
lution in the presence of Kerr nonlinearity. Numerical studies
have indicated that soliton-like waves exist in resonator
structures.18 In future work we plan to apply the approach we
have detailed here to study such field excitations, where a
Hamiltonian framework provides the ability to characterize
conserved quantities in terms of the symmetries of the non-
linear field theory.
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APPENDIX A

In this appendix we use the Hamiltonian �2� to determine
the transmission properties of a single-cavity structure. These
transmission properties have been intensively studied using
various methods such as finite difference, time domain
simulations,13 and scattering matrix techniques,22 and it is
well known that a Lorentzian function gives an excellent
approximation to the response of the structure. Here we
show that our Hamiltonian also leads to a Lorentzian spec-
trum. To discuss transmission and reflection, we assume that
there is a time-dependent source, u�t�, coupled to the forward
propagating modes at zs�z0. We therefore modify the
Hamiltonian �2� to include a source term

H = Ho + Hcoupling + Hsource �A1�

with

Hsource = − ��
0

�

�ak
†u�t�e−ikzs + aku

*�t�eikzs�dk , �A2�

where eikzs accounts for the fact that the light is generated at
z=zs. Using the Hamiltonian �A1� and the commutation re-
lations �1� in the Heisenberg equations of motion �5� we find

ak�t� = i�k�
−�

t

b�t��e−i�k�t−t��e−ikzodt�

+ i�
−�

t

u�t��e−i�k�t−t��e−ikzsdt�,

ck�t� = i�− 1�q�−k�
−�

t

b�t��e−i�k�t−t��e−ikzodt�,

db�t�
dt

= − i�ob�t� + i�
0

�

�kak�t�eikzodk

+ i�− 1�q�
−�

0

�−kck�t�eikzodk . �A3�

where we have formally integrated the Heisenberg equations
for dak /dt and dck /dt, so that both ak�t� and ck�t� are ex-
pressed entirely in terms of b�t� and u�t�. Using the expres-
sions for ak�t� and ck�t� in the equation for db /dt, and ex-
panding b�t� and u�t� in terms of Fourier components,

b�t� =
1

2�
�

−�

�

b���e−i�td� ,

u�t� =
1

2�
�

−�

�

u���e−i�td� , �A4�

we obtain

b��� = � − 2�n��̃/c

2�n��̃
2 /c − i	�u���ei�̃�zo−zs�, �A5�

where 	= ��−�o−����� and �̃=�n /c, with

���� = − 2�
0

�

�� �k
2

c

n
k − ��dk �A6�

describing the small shift in the resonance frequency of the
cavity due to the presence of the waveguide. To estimate the
effect of ����, we assume �k takes a Gaussian form in k
space with a peak centered at k= �̃0. We take the width of the
Gaussian profile to be about 1 �m−1, associated with a typi-
cal length over which the coupling between the waveguide
and resonator is significant. Using this approximate form for
�k in the expression for ���� and numerically evaluating the
integral, we have verified that ���� is much smaller than the
resonance frequency �0 for structures of interest. Note that in
Eq. �A5� we have switched our notation for wave number
from k to �̃=n� /c= �k� to stress that we are now considering
the frequency response of the structure. To determine the
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transmission and reflection spectrum of the structure we de-
fine a set of effective fields

f+�z,t� =
1

�2�
�

0

�

dkak�t�eikz,

f−�z,t� =
1

�2�
�

−�

0

dkck�t�eikz. �A7�

We then substitute the values �A3� for ak�t� and ck�t� in the
effective fields �A7�, and use the Fourier transforms �A4� of
b�t� and u�t� to simplify the integrals. We are specifically
interested in the following two quantities:

lim
z→�

f+�z,t� =
i

c
�

0

� � − i	

2�n��̃
2 /c − i	�u���eik�z−zs�e−i�td� ,

lim
z→−�

f−�z,t� =
i

c
�− 1�q�

0

� � 2�n��̃
2 /c

2�n��̃
2 /c − i	

�
�u���eik�z+zs�ei2�̃zoe−i�td� . �A8�

Note that in the absence of coupling we would have

lim
z→�

f+�z,t� =
i

c
�

0

�

u���eik�z−zs�e−i�td� ,

lim
z→−�

f−�z,t� = 0. �A9�

The first �second� of the expressions in Eq. �A8� is the trans-
mitted �reflected� field built as a superposition of the Fourier
components of the source term, u���. We can therefore de-
fine the transmission and reflection coefficients as

t��� =
− i	

2�n��̃
2 /c − i	

,

r��� = �− 1�q
2�n��̃

2 /c

2�n��̃
2 /c − i	

.

From these coefficients, it is clear that the cavity affects the
transmission/reflection of the structure when the detuning, 	,
is on the order of 2�n��̃

2 /c. In the limit of very weak
coupling-that is, when the value of 2�n��̃

2 /c is approxi-
mately constant over a frequency range centered at �0 and
spanning several multiples of 2�n��̃

2 /c, then the transmis-
sion and reflection are well approximated by a Lorentzian
line shape

t��� 	
− i	


 − i	
, �A10�

r��� 	 �− 1�q
 



 − i	
� , �A11�

where 
�2�n��̃o

2 /c. This condition yields 
�c	k /2n; for
our assumed 	k	2� / �1 �m� this gives the requirement 


�300 ps−1, which is met by typical values of 
 �see Eq. �8�
and Table I�.

APPENDIX B

In this appendix we build the continuous collective opera-
tor bk �12� that applies for an infinite system of discrete
resonators by first considering only excitations that are peri-
odic over a length L=N�, and then passing to the limit N
→�. In the periodic case there are still an infinite number of
resonators, but only N of the bl are independent. Assuming N
is even, we can take them to be

l = −
N

2
+ 1,−

N

2
+ 2, . . . ,

N

2
− 1,

N

2
. �B1�

We denote this range by R. For an l outside Rl, we have bl
=bl−pN where p is an integer such that l− pN is within the
range �B1�. If we now introduce discrete wave vectors km
=2�m /L, where

m = −
N

2
+ 1,−

N

2
+ 2, . . . ,

N

2
− 1,

N

2
�B2�

�that is, m�R�, we can introduce Fourier amplitudes b̄m ac-
cording to

b̄m �
1

�N

l�R

ble
−ikmzl, �B3�

where zl= l�. We then find immediately that

bl =
1

�N


m�R

b̄meikmzl

and that


l�R

bl
†bl = 

m�R

b̄m
† b̄m, �B4�

while

�b̄m, b̄m�
† � = �mm�,

for example, so


m�

�b̄m, b̄m�
† � = 1

or

2�

L

m�

�� L

2�
b̄m,� L

2�
b̄m�

† � = 1, �B5�

a form that we will presently find useful.
We now consider letting N→�, with L→� such that � is

fixed. Then the range R approaches all the integers from −�
to +�, while km become more closely spaced and approach a
dense distribution of points ranging from −� /� to � /�; this
is the first Brillouin zone, and we denote it by B.Z. In the
usual way, then, we take
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2�

L

m�

→ �
B.Z.

dk�, �B6�

and, if we introduce bk such that

� L

2�
b̄m → bk, �B7�

where the k in bk is first identified with km but then allowed
to vary continuously as N→�, from �B5� we have

�
B.Z.

dk��bk,bk�
† � = 1,

and so we can identify

�bk,bk�
† � = ��k − k�� ,

for k and k� within B.Z. In this limit, using �B6� and �B7�, we
find


l

bl
†bl → �

B.Z.

dkbk
†bk

from �B4�, where the integer l now ranges from −� to �, and
we recover �12� from �B3�.
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