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We have addressed one of the most important and basic results in disordered systems, namely the complete
localization of noninteracting electrons in two dimensions even at infinitesimal disorder. We present a proof of
this assertion by combining some finer aspects of the behavior of self-avoiding random walks with Anderson’s
original approach to localization where a renormalized perturbation expansion of self-energy, whose terms
have the self-avoiding random-walk character, was analyzed.
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Anderson’s demonstration that an electron can be spa-
tially localized in a medium of random potential1 has had far
reaching impact on a number of areas of physics. One result
that significantly guided the development of the subject, not
only in respect to electrons, but also in respect to localization
in disparate circumstances such as that of light and other
classical waves,2 is that all states in two dimensions ought to
be localized no matter how weak the disorder is.3,4 Interest-
ingly this result, in spite of being widely applied to rather
general situations like a theorem, lacks a proof.

The sensitivity of localization to the dimensionality of the
medium was realized soon after its discovery by Mott and
others.5 In one dimension there is Borland’s theorem5 that
states that infinitesimal disorder can cause all eigenstates of a
noninteracting electron to be localized. It took nearly two
decades to realize that the situation in two dimensions could
be similar to that in one dimension. However, a substantive
formal demonstration of complete localization in two dimen-
sions has eluded us all along.

The two-dimensional localization came in focus when the
quantum Hall effect was discovered in two dimensions be-
cause extended states were required to carry the Hall current.
Soon it was found that the magnetic field could delocalize at
least those electrons in two dimensions that were weakly
localized.6 As this source of delocalization was found in two
dimensions the question whether all the rest of the electrons
were indeed localized in the Anderson’s sense1 was appar-
ently not probed further. Another situation where the need to
scrutinize the two-dimensional localization theorem was felt
rather urgently arose when some recent experiments showed
a distinct metal-insulator transition in two-dimensional elec-
tron systems, albeit as a function of the electron concentra-
tion in very dilute electron systems.7 Studies8 do indicate that
the newly found metal-insulator transition is due to very dif-
ferent conditions than those that were responsible for the
previous result4 that showed absence of the metal-insulator
transition in two dimensions. However, notwithstanding the
mechanism of the recent result, a convincing way of showing
that it has a different origin than the previous result4 is to
show that the previous result can be proven to be well
founded and correct within the conditions in which it was
predicted and observed.

We take this approach and scrutinize Anderson’s original
theory of localization rather than the scaling theory4 because

of the following dichotomy. Anderson’s original tight-
binding approach,1 which was expected to favor localization,
did not show the absence of a metallic phase in two dimen-
sions, whereas the scaling theory did, although at the outset
it appeared to favor delocalization. Anderson considered an
electron as initially localized on a site and then turned on the
nearest-neighbor interaction to allow it to diffuse away,
whereas the scaling theory treated the electron as a plane
wave which was perturbed by disorder. So it should be inter-
esting to take a close look at Anderson’s original approach
and examine where two-dimensionality plays a special role.
We will outline essentials of Anderson’s approach, highlight
the role of self-avoiding random walks, and invoke their sta-
tistics to address the problem at hand.

The renormalized perturbation theory
Anderson1 studied the diffusion of a noninteracting elec-

tron in a lattice whose site energies are random and suffi-
ciently local, overlapping only with those on the nearest-
neighbor sites. Whether the electron would be spatially
localized or diffuse indefinitely was shown to depend on the
convergence or otherwise of the following renormalized per-
turbation series �RPS� for self-energy Si on site i:

Si�Z� = �
j�i

�Vijgj
iVji + � �

k�i,j
Vijgj

iVjkgk
i,jVki + ¯ �¯ � .

�1�

Here gn
i,j,. . .,n−1= �Z−en−Sn

i,j,. . .,n−1�−1 is the Green function; en

is the site energy on site n, which varies randomly from one
site to another; Vnm is the transfer integral between the
nearest-neighbor sites n and m and takes a fixed nonrandom
value, say V; Z is the complex energy E± is. The RPS con-
verges and is defined term by term if the electron is spatially
localized and is unable to diffuse away to infinity.1 Note that
the terms in the RPS have the character of self-avoiding ran-
dom walks �SAWs� since the superscripts denote the sites
excluded once they are traversed in the course of a random
walk �i.e., a site is replaced by an infinite potential after the
walker steps out of it�.

The structure of the RPS is quite involved—not only does
it extend to infinity, but each denominator expands into a
hierarchy of infinite continued fractions. Each level of the
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continued fractions is an infinite series in which each term
sends down infinite continued fractions. This is evident in the
following expanded version of Eq. �1�:

Si�Z� = �
j�i

Vij

Z − ej − �k�i,j

Vjk

Z − ek − ¯

�Vkj + �l�i,j,k
, . . . 	

�
Vji + �
k�i,j

�Vjk

. . .
�Vki + ¯ 	�¯ � . �2�

While each term of the RPS represents a closed self-avoiding
ring originating and terminating on a particular site �such as
i→ j→ i, i→ j→k→ i, etc.�, a continued fraction represents
an open SAW diverging away from a site in a self-avoiding
ring without ever returning to it. The latter walks proceed
along a hierarchy of rings joined to each other �for an illus-
tration see Ref. 9�.

In spite of its complicated structure the RPS has simple
convergence properties1,10,11 as summarized below.

�1� If the RPS for Si converges then it implies that �a�
each term in it is well defined; �b� all the self-energies that
appear in the denominators of Eq. �1�, i.e., Sj

i, Sk
i,j , . . ., neces-

sarily converge. For if, say, one of these did not converge,
then it would not be defined term by term and since the terms
appearing in it also appear in the RPSs of other S’s �includ-
ing the Si�, all the RPSs would cease to be defined term by
term; �c� all the S’s, i.e., Sj

i, Sk
i,j , . . ., must be nonzero. If, say,

Sj
i is zero, then it will have to be due to the divergence of Sk

i,j,
in which case the latter will not be defined term by term and
in turn, as argued above, all the S’s will cease to be precisely
defined.

�2� The RPS for Si can diverge �and cease to be defined� if
one of the denominators, say �Z−en−Sn

i,j,. . .,n−1�, vanishes.
But such a pole acquired by Si will be of no consequence,
since it will coincide with a zero of the Green function,
gi�Z�= �Z−ei−Si�−1, which lies outside the energy spectrum.

�3� However, the complex singularities like branch cuts
will be of interest. Note that the branch cut of Si coincides
with that of the Green function gi and therefore represents
the spectrum of extended states. Also, the branch cuts of all
the S ’ s−Si, Sj

i, Sk
i,j , . . . coincide with each other over the

same range of the real Z axis. �In fact this is another way of
saying that if there is a range of energy over which the RPS
of Si is not defined, then the RPSs of all the S’s will not be
defined in the same energy range.�

It is apparent that the extended states will exist in a dis-
ordered system, i.e., Si will have a branch cut, only if the
continued fractions in its RPS extend to infinity and they do
not converge. This will be possible only if there are SAWs in
the system that grow indefinitely. It is in this connection that
the dimensionality of the lattice underlying the system plays
the central role. The growth of the SAWs as they appear in
the RPS is crucially different in two dimensions than in the
higher dimensions and this, we will show, is responsible for
the special status of localization in two dimensions.

To address the question of complete localization in two
dimensions we should first explore if both the RPS of Si and
all the continued fractions emanating from it extend to infin-

ity for all the energies in the spectrum, and if they do, then
study their convergence. Their infinite extent would imply
that all the S’s in the denominators of the Si RPS, namely Sj

i,
Sk

i,j , . . ., are finite and nonzero. If the RPS and the continued
fractions were of finite extent, then the RPS would converge
trivially. So we should know the conditions under which the
SAWs could grow indefinitely in the two dimensions.

It is important to realize at the outset that the higher terms
in the RPS’s of Si ,Sj

i ,Sk
i,j , . . ., etc. appear with rapidly de-

creasing probability because as the number of steps n in-
creases the probabilities for a SAW to �i� cross itself before
returning to the origin, or �ii� end up in a cage12 at one stage
or another, build up rapidly. In fact, the probability of initial
ring closure �i.e., of a SAW terminating at its origin� de-
creases as n−� with �=11/6 in two dimensions and 23/12 in
three dimensions.13 So the higher terms in the RPS contrib-
ute with the weights vanishing as n−�, and the RPS can be
treated as effectively finite. Thus, we ought to only check if
the continued fractions in the RPS can be of infinite extent in
spite of the above, and if so, whether they would converge.

To visualize the hierarchical arrangement of the RPS
terms, which form self-avoiding rings and open SAWs, we
represent the RPS of Si as a cactus, shown in Fig. 1. All the
possible SAW rings that originate and terminate at a particu-
lar site are represented by a lobe. A lobe is characterized by
two sites, the origin and its nearest neighbor to which the
walker takes the first step, e.g., the lobe attached to the site j
represents all those SAW rings that originate and terminate at
j and necessarily pass through the nearest-neighbor site k. To
distinguish between the stepping-out and stepping-in por-
tions of the SAWs, the latter is shown by thicker lines. Note
that the set of lobes joined to a site, say i, represents the full
RPS and the sets of lobes attached to them represent the
RPSs with the site i excluded. The open SAWs that grow
along the continued fractions are formed as the walker leaves
a lobe after taking the first step and hops on to an adjoining
one, and moves on like this.

If we follow the SAWs in a real lattice and map them on
to the SAWs in the cactus of Fig. 1, we will realize that the
number of SAWs in the cactus is in fact far too large for the

FIG. 1. Schematic representation of the RPS of Eqs. �1� and �2�
as a cactus for a square lattice. The SAW rings that make a typical
lobe shown are explained in the text.
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SAWs that can be actually performed in the lattice,9,14 but
the latter form a subset of the former. The situations outlined
above require many of lobes in the cactus to be cut off. If, by
stepping on a site, the walker is led into a cage, or it tries to
cross its path by stepping on a site a second time, then the
lobes attached to such sites would become unapproachable
and consequently cannot contribute to the RPS. Such lobes
and the whole hierarchies of lobes underneath them would
become redundant and would have to be cut off. Thus, the
cactus of our interest would be a highly trimmed one and
would include only those SAWs that can grow indefinitely in
the given lattice. These SAWs contribute to the denominators
of the RPS. Consequently, a rather sparse set of continued
fractions in the RPS is of infinite extent and therefore rel-
evant if the extended states have to exist.

An unrestricted SAW is certain �with probability 1� to be
trapped well before diverging to infinity in a lattice of any
dimensionality.15 In these SAWs the probability of taking a
step is 1 /q0, where q0= �lattice coordination number 1�.
However, these SAWs are not the ones that appear in the
RPS of Si. Since in the RPS a traversed site is replaced by an
infinite potential, and it becomes inaccessible to the walker
when it comes near it, the “one step probability” for the
SAWs is 1/�number of unoccupied sites�. These SAWs are
referred to in the literature as growing SAWs �or GSAWs�.16

The short-range memory of these SAWs makes them behave
very differently in two dimensions than in three dimensions.
We will see in the following that while the probability that a
GSAW can grow indefinitely approaches 1 in three dimen-
sions as the number of steps n diverges, in two dimensions it
approaches zero as approximately n−0.64. Our strategy is to
make it as convenient as possible for a GSAW to grow in-
definitely and then study its growth behavior. If in spite of
this it shows a tendency to return to a traversed site with
probability 1, then we should conclude that a continued frac-
tion in the RPS must terminate at one stage or another as n
→�.

Indefinitely growing SAWs (IGSAWs)
A GSAW can get terminated if it steps into a cage.12 By

constraining it from entering into a cage we can isolate the
SAWs that grow indefinitely �the IGSAWs� from those that
get terminated in the cages and get the upper bounds on the
probability for a GSAW to grow indefinitely �and therefore
for the existence of the infinite continued fractions in the
RPS� in two dimensions and three dimensions. We will call
this the “smartness condition” because such a walker can
sense and avoid going in the direction that leads into a cage.
The latter is achieved by setting the probability to step in the
direction of the cage to zero. In the present context this
would mean that in two dimensions, the smartness condition
will have to be applied with probability approaching 1 as n
→� for a GSAW to grow indefinitely, whereas in three di-
mensions this probability approaches 0 as n→�. The argu-
ments are as follows.

Recall the number of SAWs of n steps is given as

ZSAW � n�−1qef f
n , �3�

where qef f is the effective connectivity of the SAWs �or the
number of unoccupied sites� and �=43/32 for two-

dimensional SAWs as well as GSAWs since they belong to
the same universality class.16 For the number of IGSAWs we
make the following ansatz:

ZIGSAW � n��−1q�n, �4�

where q� is the effective connectivity of the IGSAWs; 1
�q��qef f. To determine �� and q� we use the data in the
Table 2 of Kremer and Lyklema.17 By eliminating q� in Eq.
�4� we can write �� for an n-step IGSAW as

���n� = 1 +

ln� ��n + 1�
��n − 1�� − ln� ��n�

��n − 2��
ln

�n + 1��n − 2�
�n − 1�n

. �5�

For brevity we have used � for ZIGSAW. Table I lists ���n� for
up to n=21. Taking the odd-even fluctuations into account,
we get

0.695 � �� � 0.720. �6�

To estimate q�, we plotted the ratio of the successive terms in
the second column of Table 2 of Ref. 17 as a function of 1/n
and found that q�=qef f =2.638 for the square lattice, which is
very close to the best estimate, 2.638 16 of Ref. 18, as ex-
pected. We can safely assume that in general, q�=qef f for two
dimensions. Thus, we will have

ZIGSAW/ZSAW � n��−�  n−0.64. �7�

This is a crucial result, as it shows that the fraction of
existing SAWs of length n that are able to grow indefinitely
in two dimensions approaches zero as n→�. That is, the
infinite continued fractions in the RPS for two dimensions
contribute with vanishing weights. The reason for this is the
drastic decrease in the value of the exponent � as we isolate
the IGSAWs from the SAWs. This is due to the long-range
correlation in two dimensions between the tip of a walk
�which is the leading point of a walk that moves forward�
and the bead �which is a traversed point that compels the tip
to make the decision to keep away from it� and is responsible
for the walker to return to the traversed sites no matter how
far away it has gone from them. It therefore increases the
frequency of the need for the application of the smartness
condition in two dimensions as n increases to force a walk to
grow. However, in spite of this, eventually, in the limit of
n→�, the probability that a SAW can grow indefinitely goes
to zero due to the result in Eq. �7�.

While in two dimensions a closed loop automatically de-
fines a trap or a cage, the situation in three dimensions is

TABLE I. The IGSAW exponent �� of Eq. �4� as a function of
number of steps n.

���n� n

0.7258877 21

0.6920597 20

0.7328707 19

0.6911360 18
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much different. In order to define a cage in three dimensions,
a closed “basket” has to be present, which does not allow
the walk to leak out. A cage the walker can be trapped in,
has to be a part of the hull of a connected three-dimensional
cluster. The simplest version, which requires the
smallest number of steps, is a hole with a
surface made of Hamiltonian walks �a completely surface
covering SAW in two dimensions�.19 For such cages,
however, qef f�Ham. walk��qef f�SAW, two dimensions�
�qef f�SAW, three dimensions�.20 The probability that a re-
gion of size L3 �say� forms a cage goes to zero at least as
�qef f�Ham. walk in D−1 dimensions�/qef f�SAW in D dimen-
sions�	L2

. Thus the probability of forming a large cage in
three dimensions, in contrast to two dimensions, converges
rapidly to 0. So, in three dimensions a cage can always be
avoided with the help of the smartness condition and a SAW
can grow indefinitely without ever returning to its origin.
This would also imply that �� should be the same as � in
three dimensions.

In conclusion, we have investigated one of the most fun-
damental questions in condensed matter physics and its al-
lied areas: why should an infinitesimal disorder in potential
cause all states of an electron to be localized in two dimen-

sions? We find that the answer was embedded in Anderson’s
original paper1 on electron localization. The clues lay in the
fact that the number of SAWs contributing to the RPS of the
self-energy is far too small than what Anderson considered.
Besides, and more importantly, in two dimensions these
SAWs have the intrinsic tendency to rapidly return to their
origin in spite of the severe constraints we can put to facili-
tate their growth. This accounts for the convergence of the
RPS under all circumstances relevant to the noninteracting
electrons in a tight-binding Hamiltonian. The result is appli-
cable to all the situations that can be mapped on to the
framework of the electronic problem.

It is also important to note that new insights into the lo-
calization in three dimensions can be gained if q� is com-
puted for the IGSAWs in different three-dimensional lattices.
This will enable the exact calculation of a number of local-
ization properties using the formalisms developed in Refs. 21
and 22.
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