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A modified one-phonon confinement model is developed for the calculation of micro-Raman spectra in Si
nanocrystals, permitting the simultaneous determination of the Raman frequency, intensity, and linewidth.
Using a specific spatial correlation function and the Si phonon dispersion relations, the Raman spectra are
calculated under the limitations imposed on the wave vector by the spatial confinement. Results are obtained
as a function of the Si nanocrystal size in the range 1.2–100 nm. The frequency shift and line broadening of
the Raman spectra are compared with experimental results reported in the literature.
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The optical properties of Si quantum dots are, at present,
deeply investigated for their potential technological applica-
tions. Of course, a great effort is dedicated to the interpreta-
tion of the experimental results, related to quantum confine-
ment effects, in the light of current theories developed for
specific cases. Among the various investigation techniques,
Raman spectroscopy is a very sensitive tool for probing
semiconductor nanostructures and in particular Si quantum
dots �QD’s� in the nanometer range.1–18 Here, the vibrational
properties of the nanostructures—i.e., the acoustic and opti-
cal phonon modes in confined systems—and the interaction
with a photon and the modification of selection rules play a
fundamental role for the understanding of a basic scattering
process with a short wave vector.

From an experimental point of view, with reference, e.g.,
to the specific case of Si bulk crystal, the Raman spectrum
exhibits a peak at 521 cm−1 due to the optical phonon dis-
persion curves, with a linewidth �. In nanocrystals, valuable
experimental information can be obtained by Raman spec-
troscopy, as a function of the size, through the energy shift of
the Raman peak and the correspondent line broadening, both
size dependent.

In order to obtain a good interpretation of these experi-
mental data, several models have been developed. Among
them we recall the microscopic force model,5 the bond po-
larization model,6,7 and the spatial correlation model;16 in
some cases, phenomenological approachs, considering opti-
cal and/or acoustic phonons, have been attempted.3,4,17

However, none of these models gives a satisfactory de-
scription of the phonon confinement within the dot, capable
of determining simultaneously the frequency shift and the
linewidth. Furthermore, poor agreement between experimen-
tal data and theoretical calculations has been obtained,11 al-
though some phenomenological theory can give the qualita-
tive trend of the Raman shift as a function of the size, using
ad hoc confinement phonon functions. In the literature, spa-
tial correlation models which use arbitrary confinement func-
tions such as Gaussian,17 exponential,4,15–17 and sine
functions3,6,17 have been adopted, without any justification

concerning the possible phonon wave vectors and their dis-
tribution in the dot.

We recall that the momentum selection rule q=0 of first-
order Raman spectra of bulk crystals is violated for nanodots
because of the strong size confinement. This implies a great
care in the superposition of possible phonon wave vectors,
which play an important role not only in the wave function
of the confined system but also in the integration limits of the
final Raman spectrum.

In the present study we criticize some of the assumptions
of current Raman spatial correlation theories for semicon-
ductor nanocrystals. In particular, for Si QD’s, we develop an
improved expression for the Raman spectrum, allowing the
determination of the frequency shift and of the line broaden-
ing, as a function of the QD size. Moreover, the optical pho-
non Raman scattering is investigated; finally, we compare the
present theory with some of the previous models and with
current experimental results.

In a perfect crystal the first-order Raman scattering of a
photon selects contributions of phonons obeying the equation
q�0 �q being the phonon wave vector�, because of the mo-
mentum conservation law. Therefore, this selection rule im-
plies the contributions of phonons at the center of the Bril-
louin zone. However, when the size of the crystal is quite
limited, the previous rule q�0 is no longer valid. Conse-
quently, the Raman spectrum is calculated3,17 by the follow-
ing integral over the momentum vector q:

I�����n��� + 1� � �C�q��2L��,q�dq ,

where the integral is extended to the entire first Brillouin
zone, � is the Raman frequency, n+1 is the Bose-Einstein
factor, C�q� are Fourier coefficients of the phonon wave
function, and L�� ,q� is the Lorentzian function related to the
phonon dispersion curve ���q�, with a natural Lorentzian
line shape �.

The following questions now arise.
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�i� Which phonon wave vectors are possible in a QD and
how is the phonon spectrum modified?

�ii� Of the possible phonon wave vectors, which are con-
tributing to the scattering process and with which probability
distribution?

�iii� How should the Raman spectrum be calculated and is
an integration range extended over the entire Brillouin zone
still correct?

These are very critical points. In a linear vibrating string
of length D the possible wave vectors of confined phonons
can be assumed19 as kn=n� /D, with wave functions requir-
ing a vanishing vibrational amplitude at the border. Of
course, in a QD a simple picture of parallel vibrating planes
with boundaries at the QD border is oversimplified; short-
and long-range interactions, surface effects, bond length, and
bond angles5 are important in a microscopic treatment. In
some models this difficult task was overcome6,10,17 using a
confinement function Fc�r ,D� in the real space with an arbi-
trary choice of analytical forms instead. The Fourier trans-
form �FT� of Fc�r ,D�, i.e.,

C�q� =
1

�2��3 � Fc�r,D�exp�− iq · r�d3r ,

was assumed as the phonon amplitude in the nanocrystal—
i.e., as a superposition of plane-wave eigenfunctions with q
wave vectors; the final Raman spectrum in the dot was there-
fore written as

I�����
0

2�/a �C�q��2dq

�� − ���q��2 + ��/2�2 ,

where the limits of the integral were extended to the Bril-
louin zone �a being the Si lattice parameter a=0.543 nm�.

We modify the previous approach, observing that a func-
tion Fc�r ,D� actually corresponds to a single-phonon wave
vector, which is not realistic. We should instead have a wave
packet extended over the QD size, with a spread �r�D in
real space and �q�1/D in q space according to the Heisen-
berg uncertainty principle.

In our approach we assume the phonon wave function in a
dot as a weighted superposition of sinusoidal waves with
kn=n� /D, n=2,4 ,6 . . .nmax �nmax is equal to the maximum
integer smaller than 2D /a�:

Fc�r,D� = �
n

sin�knr�
knr

, for r � D/2, or 0 otherwise.

This is justified by the following considerations.
�1� The wave vectors are consistent with the vibrational

behavior of a linear vibrating atomic chain of length D,
where D should be a multiple of the wavelength �.

�2� The function Fc�r ,D� has components centered at r
=0, strongly decaying and going to zero at the QD border;
note that this annulation at the QD border excludes even
values of n.

�3� As shown in Ref. 6 for a Si cluster with D=2.35 nm,
the first component of Fc�r ,D� is the most appropriate for
simulating the vibrational amplitude of the most Raman-
active modes in a Si QD.

�4� The function Fc�r ,D� implies probability distributions
�see Fig. 1� as a function of r depending on kn.

�5� The Fourier transform of Fc�r ,D� gives the probability
amplitude of the phonon contribution with a value q in the
range �n�−1� /D, �n�+1� /D, as imposed by the Heisenberg
uncertainty principle. This means that a phonon with an ini-
tial wave vector kn can contribute to the photon scattering
process with an effective wave vector q with the spread al-
lowed by the Heisenberg uncertainty principle around the
initial value of kn. The adimensional FT of each component
of Fc�r ,D� is

Cn�q� = 3
sin�qD/2�

�3D3q�kn
2 − q2�

.

According to the previous remarks, we calculate the Ra-
man spectrum as

I�����
n
�

�n�−1�/D

�n�+1�/D Cn
2�q�dq

�� − ���q��2 + ��/2�2 ,

where � is the natural Lorentzian line shape, including the
instrumental resolution, and the phonon dispersion curve
����q��2 adopts the analytical form of Ref. 20: ����q��2=A
+B cos�aq /4� with q in the range 0, 2� /a, A=1.714
	105 cm−2, B=1.00	105 cm−2.

A similar expression is reported by Paillard et al.3 for the
average optical phonons in bulk silicon, in the q range
0–� /a:

����q��2 = 5222 −
126100q2

q + 0.53
.

Notwithstanding the apparent different analytical form,
the phonon dispersion curves look very close to each other in
the common range of interest; of course, these dispersion

FIG. 1. Upper plot: probability distribution Pn�r� as a function
of the radial distance r from the dot center of some components of
the phonon wave function. These distributions go to zero at the dot
border and have their maximum at the center. Lower plot: confine-
ment coefficients in logarithmic scale for a few values of n as a
function of q.
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curves, determined for bulk silicon, are assumed to be valid
also for Si nanocrystals.

In Fig. 1 we also plot the confinement coefficients, Cn
2�q�,

for n=2,4 ,6; note the logarithmic scale and the fast decrease
of the coefficients with q.

With the previous assumptions, Raman spectra have been
calculated as a function of the QD size; we obtain both fre-
quency shift and line broadening size dependent.

In Fig. 2 we display the Raman curve calculated accord-
ing to our assumptions for three sizes. At D=100 nm the
peak is not shifted at all and presents the natural width
�3 cm−1�; at lower size, the curve shifts and broadens. In Fig.
3 we synthesize the Raman frequency redshifts for QD di-
ameters in the range 1.2–100 nm. In the same figure, some
data reprinted from the literature are reported. For compari-

son, the bond polarizability �BP� model and the Richter
�RWL� model are plotted using their analytical forms:3

�� = − 
�a/D��,

where �� indicates the Raman frequency shift, a is the Si
lattice parameter �a=0.543 nm�, and D is the cluster diam-
eter, whereas 
 and � are the following parameters: �i� for
the Richter model 
=52.3 cm−1 and �=1.586; �ii� for the
bond polarization model 
=47.41 cm−1 and �=1.44.

We observe the close agreement at large sizes between all
the models and the experiments; at low sizes, however, the
experimental data show a shift higher than the calculated
one, with a rapid increase around 2–3 nm. Of course, the
large scatter of the experimental data for the Raman fre-
quency redshift does not allow a definitive conclusion as
regards the comparison of the theoretical approaches with the
experiments. In fact, only single-size QD data could indicate
whether the phonon dispersion curve and/or the phonon
wave function should be refined. In any case the present
model is close enough to the data, which could be also af-
fected by surface effects.4

As stated above, whereas the current theories are limited
to the shift calculation, our expression permits us to calculate
also the linewidth of the Raman spectrum. Here, only the
broadening due to the limited size is included with the natu-
ral width, while the experimental size spread can be eventu-
ally taken into account by an average over the correspondent
sizes.

In Fig. 4 the line broadening is displayed as a function of
the size; an instrumental linewidth FWHM of 3.0 cm−1 is
assumed; this is the minimum width presented by the Raman
curve at large cluster size. We observe also that a higher
instrumental resolution would raise the calculated curve ac-
cordingly, with a minor influence on the curve shape. In Fig.
4, the data reported in the literature are also reproduced.

FIG. 2. Calculated Raman spectrum according to the present
theory; for each plot the QD size is indicated; the spectra are nor-
malized to the same height, taken equal to unity. The natural line-
width full width at half maximum �FWHM� �=3.0 nm

FIG. 3. Plot of the Raman frequency redshift as a function of the
QD size, according to the present model. Also reported are the BP
model and the RWL model. Experimental data from several authors
are displayed for comparison.

FIG. 4. Plot of the Raman linewidth, as a function of the QD
size, according to the present model. The natural linewidth FWHM
�=3.0 nm. Experimental values from the literature are displayed
for comparison.
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We now briefly discuss the results obtained as outlined
above. We note the better agreement of our calculations with
the experimental results in comparison to similar models. Of
course the experimental data are affected by a size spread not
included in the theory. This size broadening influences both
the redshift and the linewidth as it corresponds to a wide
average over some calculated curves. In any case the present
model is able, for the first time, to extract from the formulas
two parameters such as the Raman shift and the peak width,
giving quite a good trend which is very close to the one
experimentally obtained. It should be stressed that the ex-
periments could include possible contributions from nano-
structures of arbitrary shape and/or strained bonds and
surface-enhanced broader agglomerates with substoichiomet-
ric oxide;11,21,22 for such reasons some data can present a
shift and width larger than the calculated ones. The present
calculations can be also used to deduce the absolute intensity
of the Raman features for each QD size. Unfortunately the

experiments, being performed on deposited clusters, usually
cannot obtain a uniform layer of well-known thickness and
controlled size spread. For this reason experimental intensi-
ties cannot be compared with each other, and here, we only
mention this further information, although it can be easily
extracted by our formulas. A final remark should be dedi-
cated to the Raman peak shape, which appears so asymmet-
ric, mainly at small sizes, that it could be possible to distin-
guish a right linewidth from a larger left linewidth; this
asymmetry, well reproduced by the theory, has been ob-
served in the experiments.16

In conclusion we used a novel formulation of the Raman
scattering, permitting the simultaneous calculation of the ab-
solute intensity, peak position, and linewidth. The present
model is in fair agreement with microscopic theory5 for what
concerns the redshift. The comparison with the experiments,
although qualitatively good, can still be improved including
the specific experimental size dispersion.
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