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Stability of the photonic band gap in the presence of disorder
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The photonic eigenmodes near a band gap of a type of one-dimensional disordered photonic crystal have

been investigated statistically. For the system considered, it is found that the tail of the density of states

entering the band gap is characterized by a certain penetration depth, which is proportional to the disorder
parameter. A quantitative relation between the relative penetration depth, the relative width of the photonic
band gap, and the disorder has been found. It is apparent that there is a certain level of disorder below which
the probability of the appearance of photonic eigenstates at the center of the photonic band gap essentially
vanishes. Below the threshold, the ensemble-averaged transmission at the center of the photonic band gap does
not change significantly with increasing disorder, but above threshold it increases much more rapidly. A simple
empirical formula has been obtained which describes how the logarithm of the transmission relates to the

periodic refractive index modulation and the disorder.
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At present it is impossible to produce an ideal photonic
crystal for use at optical wavelengths. The deviation of the
sphere diameters in opals' and the roughness of the walls in
lithographically produced structures lead to departures from
the intended periodic spatial distribution of dielectric
constant.” Such imperfections can damage the photonic band
gap (PBG) significantly and result in a finite value of the
density of states across the whole of the intended gap.’ As a
result, much effort has been spent on investigations of the
influence of disorder on the PBG and the related problem of
wave localization in disordered optical media, which is
called Anderson localization in analogy with electron
localization.*

As has previously been pointed out® the term localization
is commonly viewed in different ways in different areas of
physics. For example, in quantum mechanics particle local-
ization is usually discussed in terms of the existence of so-
lutions of the Schrédinger wave equation which decay expo-
nentially from a certain region of space,® while in optics it is
more natural to consider the propagation of light, and total
reflection from a disordered medium is taken to be indicative
of photonic localization.>’

Nevertheless in an infinite one-dimensional (1D) disor-
dered photonic system, each state is localized in the sense
that the density of electromagnetic energy &(z) (or equiva-
lently probability density in the particle case) has the form
lim__,..&,(z) ~exp(-|z|/y;) where z is the position relative to
the region of localization.>®? No definite conclusion about
system behavior can be made for limited values of |z| but a
consequence of such localization is that for a finite disor-
dered system the transmission coefficient averaged over an
ensemble of structures (T) decays exponentially with in-
creasing system size L, and can be described by an attenua-
tion length ¢ through the relation (In(7)) ~—L/ & However, it
is important to realize that similar transmission properties
can be observed in perfectly ordered systems—photonic
crystals—if the frequency corresponds to the photonic band
gap (PBG). In this case the exponential decay is described by
the imaginary part of the Bloch wave vector. A distinction
between the two phenomena is that the localization length
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for Anderson localization decreases with increasing disorder,
while for photonic crystals at frequencies corresponding to a
PBG, & grows with increasing disorder.'?

There have been numerous attempts to apply scaling
theory in the analysis of localization in disordered photonic
crystals.!! However Deych et al'> have demonstrated
anomalous behaviour of the variance of the Lyapunov expo-
nent &' and concluded that although states at frequencies
corresponding to bands of the photonic crystal have regular
Anderson behavior, there are gap states that do not. They
have also shown that there is a critical value of disorder,
above which the anomalous behavior of the Lyapunov expo-
nent disappears and all the states exhibit normal Anderson-
like behaviour. Therefore the exponential dependence of the
ensemble-averaged transmission coefficient on the length of
the structure does not allow us to make any definite conclu-
sions about the modal structure of electromagnetic field.

In 1987 John stated that the “photonic band gap is filled
with localized photonic states even in the case of weak
disorder,”!® but no quantitative estimate of the density of
states or other characteristics of the gap states were provided.
However, in 1999 Vlasov and co authors!'? found that as long
as the disorder does not exceed a certain threshold value, the
attenuation length within the PBG does not change signifi-
cantly with increasing disorder. As a result, they suggested
that, in contrast to John’s statement, localized states do not
appear in the PBG for disorder below threshold, but they did
not demonstrate that explicitly by calculating the mode spec-
trum.

Therefore, in an effort to clarify the physical picture of
light localization in disordered photonic crystals we have
conducted ab initio calculations of both the mode structure
of the electromagnetic field and the photon transport proper-
ties of 1D disordered photonic crystals.

We consider a one-dimensional periodic structure, which
is a sequence of a pair of layers A and B of the same thick-
ness D/2, whose refractive indices are ngogznot g where g is
the modulation of the refractive index, and ng is the average
refractive index. An infinite structure possesses PBGs, whose
positions can be determined by solving the dispersion equa-

tion 2 cos(KD)=tr[T(w)], where K is the Bloch wave vector
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and T is the transfer matrix for one period. The center of the
first PBG is at wy=mc/nyD, and the relative width of the gap
is Aw/wy=4g/mmn. In the case of a structure of finite size,
the mode spectrum is discrete and the eigenfrequencies can
be obtained by setting outgoing wave boundary conditions,
corresponding to light not being incident on the structure,

using the equation | |
A( ) = 1\71( ) (1)
- }’lf n;

Here ny and n; are the refractive indices of the semi-infinite

media surrounding the structure, M is the transfer matrix
through the whole structure, and A is a constant. Note that
the frequencies of the eigenmodes w; will have nonzero
imaginary parts, due to the leakage of the light through the
boundaries. In other words, the lifetime of the eigenmodes
7=1/Im(w;) will be finite. By analyzing the value of the
lifetime, one can conclude whether the mode is localized or
not, according to the Thouless criterion.!* For electrons the
Thouless criterion considers a state to be localized if the
width of the energy level (proportional to the inverse life-
time) is less than the separation of energy levels; otherwise
the state is extended.

The squares in Fig. 1 denote the frequencies and lifetimes
of the states in an ideal periodic structure of the length L
=200D with ny=2 and g=0.025, surrounded by semi-infinite
media with refractive indices ny=n;=1. An infinite structure
with such parameters possesses a PBG of relative width
Aw/wy=0.016, whose boundaries are shown by vertical
lines in Fig. 1. The lower horizontal line in each plot gives
the lifetime of the modes in the structure for which g=0 (i.e.,
the Fabry-Pérot modes of a uniform structure). For these
modes the inverse lifetime is comparable to the frequency
interval between modes, and such states are delocalized. Pe-
riodic modulation of the refractive index leads to an increase
of the lifetime of the eigenmodes, and the increase is more
pronounced for the states close to the PBG edges. The states
closest to the edge of the PBG are called edge states, and
were first described by Kogelnick and Shank!® in the context
of distributed feedback lasers. According to the Thouless cri-
terion the edge states are localized, but the density of elec-
tromagnetic energy decays to the edges of the structure more
slowly than exponential.

For the study of the properties of disordered structures we
introduce random fluctuations of the refractive indices: for
each pair of layers A and B in the unit cell, the refractive
indices are defined by the formula n, p=ny=g+n,oP, where
P takes random values in the interval from —% to % and J'is
constant for a particular structure that specifies the level of
disorder. Thus the optical lengths D; of the unit cells in a
particular disordered structure are given by

D;=D(ny+np)/2=Dny(1 + 6P) =Dy(1 + 6P), (2)
where Dy=nyD and the range of the random fluctuations in
D,/ Dy is given by &.

The dots in Fig. 1 represent the solutions of Eq. (1) and
are plotted as [Re(w,),1/Im(w,)] for 10° disordered struc-
tures with different configurations of the disorder character-
ized by the value of 8. For 6=0.035, the eigenfrequencies
Re(w;) and their lifetimes 7 fluctuate near the values corre-

PHYSICAL REVIEW B 73, 033106 (2006)

104—— T ; T T ; T
0.98 1.0 1.02
ol o,

FIG. 1. White squares denote the frequencies Re(w;) and life-
times 7=1/Im(w;) for an ideal structure (5=0). Dots show frequen-
cies and lifetimes for eigenmodes obtained by solving Eq. (1) for
103 disordered structures with 6=0.035, 0.07, 0.1, and 0.15. The
thickness of the structure is L=200D and the modulation of refrac-
tive index is g=0.025.

sponding to the eigenmodes of the ideal structure, but the
fluctuations of the lifetime of the edge states near the PBG
are larger than for those further away. Some of the modes
penetrate into the PBG but there is no qualitative change of
mode spectrum, as illustrated in Fig. 2, where the density of
states (DOS) averaged over an ensemble of 10* structures is
shown by circles. The fluctuation of D, can also be obtained
by varying the layer thicknesses as described above for the
refractive index, and for this case the resulting DOS is shown
by squares in Fig. 2.

When the refractive indices and thicknesses of the layers
are taken to fluctuate simultaneously and independently, and
the fluctuation of each quantity is characterized by a top-hat
distribution of relative width &, the distribution function of
the optical length D; of a period of the structure will be
almost a Gaussian with width close to &, as shown in the
inset to Fig. 2 by the dotted line. The resulting DOS is shown
in Fig. 2 by stars. Note that due to similar widths of the
top-hat and Gaussian distributions of D;, the densities of
states are practically identical for all the types of disorder
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FIG. 2. Density of states averaged over ensembles of 10* struc-
tures with 6=0.035, 0.07, 0.1, and 0.15, plotted on a logarithmic
scale. Circles (squares) correspond to the case of fluctuation of the
optical length of the periods D; with a square distribution function,
shown in the inset of the lower graph by the solid line, due to
fluctuations of the refractive indices (widths) of the layers. Stars
correspond to the near Guassian distribution of D; shown in the
inset by the dotted line. Vertical solid lines show the boundaries of
the PBG for the ideal structure. Dashed lines show the fit for the
density of states within the PBG using Eq. (3). Vertical dotted lines
indicate the penetration depth () for each case.

considered. Thus we conclude that the density of modes in a
disordered photonic crystal is defined by the relative fluctua-
tion of the optical length of one period of the structure.
The shape of the tails in the density of modes within the
PBG is described with very high accuracy by the formula

w—w 2
ool -] o

where w, is the angular frequency of the relevant band edge
in the crystal and () is penetration depth. The penetration
depth Q is found to be proportional to & but does not depend
on the length of the structure (as is to be expected since the
density of states is a self-averaging quantity).

When 6 is increased to 0.07, the edge states penetrate
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FIG. 3. The quantity (£2/dwy)Vwy/Aw for structures character-
ized by different values of the average refractive index ny. The
vertical bars indicate the standard deviation of this quantity. 10*
structures were modeled for each set of the parameters n, g, and &.
The parameters g and 6 are varied over the ranges 0.0125 to 0.125
and 0.01 to 0.2 respectively.

further into the PBG and the fluctuations of the lifetime of
the modes increase. The width of the PBG is reduced but
nevertheless remains substantial. Eventually, when & is in-
creased to 0.1, the probability of the appearance of eigen-
modes in any part of the original PBG becomes substantial
and the fluctuations in the lifetimes of the eigenstates are
greater.

An increase of §to 0.15 leads to a decrease in the dip of
the density of states, an increase of the fluctuations of the
lifetime, and a slight decrease of its mean value. Further
increase of O leads to the disappearance of the effects asso-
ciated with the periodic modulation of the refractive index,
and the system becomes completely disordered. We believe
that the filling of the PBG with states is the reason for the
transition from anomalous to normal behavior of the
Lyapunov exponent observed in Deych et al.'?

For all the structures considered, the penetration depth ()
is proportional to the square root of the relative band gap
width Aw/ w,.

In Fig. 3 the dimensionless quantity (Q/dwj)Vwy/Aw is
plotted as a function of the average refractive index in the
structure n which is related to the frequency of the center of
the PBG. The plot leads us to conclude that the penetration
depth is decribed by the formula

Q 6 [Aw
=2y @)
[O%) 5 )

i.e., the relative penetration depth exhibits a universal depen-
dence on the relative gap width.

Equation (4) provides a means to specify a practical cri-
terion for the resilience of the PBG to the presence of disor-
der. Assuming that for a particular application there is a cer-
tain acceptable level of the density of states at the center of
the gap described by a suppression factor S,,, which is de-
fined as the ratio of the densities of states at the center and
the edge of the PBG, the threshold value of the disorder J, is

5 Aw
51‘11 = I . (5)
2\— 1[1 Sth (O

For example, suppression of the density of states at the
center of the PBG by a factor 10~® would correspond to ()
~Aw/9, and a threshold disorder parameter given by 9,
=~ /(Aw/wy)/3. Note that the square root of the logarithm in
Eq. (5) varies very slowly with the change of the argument,
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FIG. 4. Dependence of the attenuation length ¢ at the center of
the PBG on the disorder parameter & for structures with modulation
of that of the refractive index g=0.025 (dotted line); g=0.05
(dashed line); g=0.1 (solid line). Symbols show the dependences
obtained for the case by the transformation (§¢— &/ a, 6— 6\@) of
the results for the structures with g=0.025 (circles) and g=0.05
(squares). Here « is the ratio of the attenuation lengths for the
structures with g=0.025 or g=0.05 and the attenuation length for
the structure with g=0.1. Arrows indicate the threshold values of 6.
The thickness of the structure is L=200D.

and the above estimate can be considered as an almost uni-
versal criterion for the stability of the PBG in one-
dimensional photonic crystals in the presence of disorder.

At the center of the PBG, the transmission coefficient
decays exponentially with the increase of the structure
length. The dependence of the attenuation length &, defined
as é&=—L/In(T), on the fluctuation parameter & for structures
with g=0.025, g=0.05, and g=0.1 is shown in Fig. 4. For all
the cases considered, the dependences are characterized by a
threshold; when 6< &, £ grows very slowly with increasing
6, and the attenuation length £ is virtually unchanged. When
dreaches Jy,, a threshold occurs in the dependence of & on &,
and ¢ grows much faster with increasing 6. Such behavior
can be easily explained. The increase of (T), and hence £ is a
consequence of the appearance of sharp spikes, correspond-
ing to localized eigenmodes in the transmission spectrum of
individual structures.'® When 8<§,, the increase of the
transmission coefficient is provided by the tails of such
spikes and therefore is very small. When 6> J,,, localized
states and corresponding peaks in transmission spectra can
appear in the center of the PBG, and (T) starts to grow faster
with increasing o.
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The dependence of §,, on the relative width of the PBG
(or on the attenuation length &, in the ideal structure) in Eq.
(5) has an interesting consequence. If a=g"/g® is the ratio
of modulations of the refractive indices gV and g for two
ideal structures, then the dependences of the attenuation
length & on 6 for the two structures are coupled remarkably
well by the relation

aéV(8) = £2(8Va). (6)
In Fig. 4 the crosses show the result of the transformation (6)
on &(8) for the structure with g=0.05, when a=§)(g
=0.05)/&)(g=0.1). The circles show the result of the corre-
sponding transformation for the structure with g=0.025, and
a=§&)(g=0.025)/&)(g=0.1). For the structures with g
=0.025 and g=0.1, the transformation (6) couples the depen-
dences &(6) with very high accuracy. For the structure with
g=0.025, when ¢ is larger than the threshold value, some
deviation occurs at the higher values of & due to the fact that
the attenuation length is comparable to the sample size, and
the influence of boundaries is substantial.

The transformation in Eq. (6) reflects a universal behavior
of the attenuation length (and transmission coefficient) in
disordered photonic crystals, and could be useful in the de-
velopment of analytical theories of such systems. Finally we
note that the thresholdlike behavior of a transmission coeffi-
cient on the disorder parameter has also been demonstrated
for two-dimensional photonic crystals.'®!7

To conclude, we have analyzed quantitatively the penetra-
tion of states into the band gap of a type of one-dimensional
disordered photonic crystal. We have shown that the tail of
the density of states in the band gap has a Gaussian form
characterized by a penetration depth parameter and there is
an allowed level of disorder below which the probability of
the appearance of photonic eigenstates at the center of pho-
tonic band gap essentially vanishes. A relationship between
the relative penetration depth, relative gap width, and disor-
der parameter has been found and a scaling formula relating
the attenuation length to the gap width and disorder has also
been obtained.
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