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The non-Ohmic effect of a high electric field on the out-of-plane magnetoconductivity of a layered super-
conductor near the superconducting transition is studied in the frame of the Langevin approach to the time-
dependent Ginzburg-Landau equation. The transverse fluctuation conductivity is computed in the self-
consistent Hartree approximation for an arbitrarily strong electric field and a magnetic field perpendicular to
the layers. Our results indicate that high electric fields can be effectively used to suppress the out-of-plane
fluctuation conductivity in high-temperature superconductors and a significant broadening of the transition
induced by a strong electric field is predicted. Extensions of the results are provided for the case when the
electric field is applied at an arbitrary angle with respect to the layers, as well as for the three-dimensional
anisotropic regime of a strong interlayer coupling.
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I. INTRODUCTION

Outside the critical region above Tc, in the absence of
magnetic field and for small electric fields, the excess con-
ductivity due to fluctuations of the superconducting order
parameter can be explained by the Aslamazov-Larkin1

theory, subsequently extended by Lawrence and Doniach2

for two-dimensional layered superconductors, a situation
very much resembling the crystal structure in high-
temperature superconductors �HTSC�. In the presence of a
magnetic field, the fluctuation transport properties of super-
conductors were initially treated3–6 in the noninteracting
�Gaussian� fluctuation approach, which predicted a diver-
gence at Tc�H� that is, however, not observed. The physical
reason is the motion of vortices providing dissipation and
hence a finite flux-flow conductivity. Ikeda et al.7 and Ullah
and Dorsey8 showed that the theoretical divergence can be
eliminated by using the Hartree approximation, which treats
self-consistently the quartic term in the Ginzburg-Landau
�GL� free-energy expansion. This approach was applied for
the longitudinal7,8 and Hall conductivity,8,9 as well as for the
out-of-plane conductivity,10 in the linear-response approxi-
mation for a layered superconductor under perpendicular
magnetic field.

The fluctuation transport properties can be calculated in
the linear-response approximation only for sufficiently weak
electric fields that do not perturb the fluctuation spectrum.11

At reasonably high values of the electric field, the accelera-
tion of the paired electrons is so large, that on a distance of
the order of the coherence length they change their energy by
a value corresponding to the fluctuation Cooper pair binding
energy.12 This results in an additional, field dependent, decay
mechanism, and leads to deviation of the current-voltage
characteristics from the Ohm’s law. In connection with the
low-temperature superconductors, the non-Ohmic fluctuation
conductivity in the absence of magnetic field has been stud-
ied theoretically for the isotropic case13,14 and found experi-
mentally on thin aluminum films.15,16 For a layered super-
conductor the issue has been more recently addressed for the
in-plane conductivity, starting from a microscopic approach17

and subsequently in the frame of the time-dependent
Ginzburg-Landau �TDGL� theory, in the Gaussian18 as well
as in the self-consistent Hartree approximation.19 Several ex-
perimental investigations of the fluctuation suppression ef-
fect of high electric fields in HTSC were performed for the
in-plane paraconductivity in zero magnetic field,20–24 and a
good agreement with the theoretical models17,19 was proven.

The nonlinear effect of a strong electric field under the
simultaneous application of a perpendicular magnetic field
on the in-plane fluctuation conductivity and Hall effect was
recently addressed by the authors of the present paper,25,26

for a layered superconductor in the Hartree approximation of
the TDGL theory. It has been revealed that the simultaneous
application of the two fields results in a slightly stronger
suppression of the superconducting fluctuation conductivity,
compared to the case when the fields are applied individu-
ally, while the relative suppression of the excess Hall con-
ductivity turns out to be stronger than for the longitudinal
one. Experimental investigations of the fluctuation suppres-
sion effect of strong electric fields under simultaneous appli-
cation of a magnetic field are however lacking so far.

Also the out-of-plane conductance of a layered supercon-
ductor in the non-Ohmic regime of high electric fields has
been, to our knowledge, neither experimentally nor theoreti-
cally investigated up to the present. The purpose of this pa-
per is to provide a theoretical approach to this issue, in the
frame of the TDGL equation solved in the Hartree approxi-
mation, when both the magnetic and the electric field are
applied perpendicular to the layers. We shall thus be able to
find the expression of the Aslamazov-Larkin �AL� contribu-
tion to the out-of-plane fluctuation conductivity at any values
of the magnetic and electric fields, and predict for the AL
term a significant supplementary suppression induced by a
strong electric field in layered HTSC. Based on the propor-
tionality between the Cooper pair concentration and the
density-of-states �DOS� part of the out-of-plane conductivity,
known from the microscopic theory in the linear response
approximation,6,12 we shall also give an estimate of the non-
Ohmic effect on the DOS contribution. The work will be
completed by extending the calculation of the non-Ohmic
fluctuation conductivity to the case when the electric field is
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applied at an arbitrary angle with respect to the layers. This
calculation, particularly useful for investigations on vicinal
thin films,27 is necessary because the non-Ohmic current pro-
duced by a tilted electric field cannot be calculated as the
superposition of the non-Ohmic currents produced separately
by the in-plane and out-of-plane field components, as it was
the case in the linear response approximation. Eventually, the
results of the paper will be extended also to the three-
dimensional �3D� anisotropic regime of a strong interlayer
coupling.

II. NON-OHMIC OUT-OF-PLANE FLUCTUATION
CONDUCTIVITY

In order to calculate the non-Ohmic out-of-plane conduc-
tivity under the presence of a magnetic field perpendicular to
the layers, we shall adopt the Langevin approach to the
gauge-invariant relaxational TDGL equation8,13 governing
the critical dynamics of the superconducting order parameter
in the lth superconducting plane:

�0
−1� �

�t
− i

e0sl

�
E��l + a�l + b��l�2�l

−
�2

2m
��x

2 + ��y −
ie0

�
xB�2��l

+
�2

2mcs
2 �2�l − �l+1 − �l−1� = �l�x,y,t� , �1�

where m and mc are effective Cooper pair masses in the ab
plane and along the c axis, s is the distance between super-
conducting planes, and the pair electric charge is e0=−2e.
The order parameter �l has the same physical dimension as
in the three-dimensional case, and SI units are used. The GL
potential a=a0� is parametrized by a0=�2 /2m�0

2

=�2 /2mc�0c
2 and �=ln�T /T0�, with T0 being the mean-field

transition temperature, while �0 and �0c are, respectively, the
in-plane and out-of-plane coherence lengths extrapolated to
T=0. The order parameter relaxation time �0

−1 is given
by28,29 �0

−1=��3 /16m�0
2kBT. The magnetic field B, perpen-

dicular to the layers, is generated by the vector potential in
the Landau gauge A= �0,xB ,0�, with x and y the in-plane
coordinates. Since we are interested in the out-of-plane con-
ductivity, we consider the electric field E as being applied
along the z axis, and generated by the scalar potential 	l
=−Esl. The Langevin white-noise forces �l�x ,y , t� that de-
scribe the thermodynamical fluctuations must satisfy the
fluctuation-dissipation theorem, ��l�x ,y , t��l�

* �x� ,y� , t��	
=2�0

−1kBT
�x−x��
�y−y��
�t− t��
ll� /s.
The quartic term in the thermodynamical potential will be

treated in the Hartree approximation,8,30 which results in a
linear problem with a modified �renormalized� reduced tem-
perature

�̃ = � + b���l�2	/a0. �2�

The out-of-plane fluctuation conductivity ��zz will be even-
tually found by calculating the Josephson current density be-
tween the lth and �l+1�th layers, which in the chosen gauge
writes

��jz
�l�	 = −

i�e0

2mcs

��l

*�l+1	 − ��l�l+1
* 	� , �3�

and further

��zz = ��jz
�l�	/E . �4�

It is worth mentioning, at this point, that a slight modifi-
cation of the GL free-energy functional for the layered su-
perconductors was recently proposed,31 which, besides the
BCS-type Josephson coupling, allows for additional inter-
layer interactions that can contribute to the condensation en-
ergy and give rise to energy savings that enhance T0. The
fluctuation spectrum of the proposed functional and conse-
quently the fluctuation-induced observables like in-plane
paraconductivity and magnetoconductivity were found to be
the same as for the usual Lawrence-Doniach free-energy,
once the transition temperature of each bare layer is renor-
malized to its value enhanced through the interlayer energy
savings.31 It can be easily verified that this fact is valid also
for the out-of-plane fluctuation conductivity, since the addi-
tional terms in the GL functional of Ref. 31 do not involve
the phase of the superconducting parameter, and conse-
quently do not influence the definition �3� of the transversal
current density. The results of the present paper will be thus
applicable also for the kind of interlayer coupling proposed
in Ref. 31.

We proceed further by introducing the Fourier transform
with respect to the in-plane coordinate y, the layer index l,
and also the Landau level �LL� representation with respect to
the x-dependence, through the relation

�l�x,y,t� =� dk

2�
�

−�/s

�/s dq

2�

n0

�q�n,k,t�e−ikye−iqls

�un�x −
�k

2eB
� , �5�

where the functions un�x� with n�N build the orthonormal
eigenfunction system of the harmonic oscillator Hamiltonian,
so that �−�2�x

2+4e2B2x2�un�x�=2�eB�2n+1�un�x�. The
TDGL equation �1� will write in the new variables:

��0
−1 �
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+ �

�

�q
+ a0�̃n + a0

r

2
�1 − cos qs���n�k,q,t�

= �n�k,q,t� , �6�

where the new noise terms �n�k ,q , t� are delta-correlated as

��n�k,q,t��n�
* �k�,q�,t��	 = 2�0

−1kBT�2��2
�k − k��

�
�q − q��
�t − t��
nn�.

We have also introduced the notations:

�̃n = �̃ + �2n + 1�h, h =
B

Bc2�0�
=

2e�0
2B

�
,
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r = �2�0c

s
�2

, � =
2eE

��0
, �7�

with h denoting the reduced magnetic field and r the aniso-
tropy parameter.

Equation �6� can be solved with the aid of the Green
function technique and has the solution

�n�k,q,t� = �0�
0

�

d��n�k,q −
2eE

�
�,t − ��

�exp�− �0a0���̃n +
r

2
��

−
r�

4seE
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2eE

�
��s��� , �8�

so that the correlation function between the order parameter
in two layers l and l� will be given by

��l�x,t��l�
* �x,t�	 =

kBT
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0
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2
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2

sin pu

p
cos�qs − pu�� , �9�

where the electric field enters the parameter

p =
�es

16kBT
E =

s�3

�0

E

E0
, �10�

with E0=16�3kBT /�e�0 being the characteristic electric field
defined as in Refs. 17 and 18.

We point out that the sum over the LL in Eq. �9� must be
cut off at some index Nc, reflecting the inherent UV diver-
gence of the Ginzburg-Landau theory. The classical13,30 pro-
cedure is to suppress the short wavelength fluctuating modes
through a momentum �or, equivalently, kinetic energy� cutoff
condition, which, in terms of the LL representation writes8,30

�2e�B /m��n+ 1
2

��ca0=c�2 /2m�0
2, with the cutoff parameter

c of the order of unity. A total energy cutoff was also recently
proposed,32 whose physical meaning was shown to follow
from the uncertainty principle, and whose importance is re-
vealed especially at high reduced temperatures and magnetic
fields close to Bc2�0�.33 Formally, the total energy cutoff can
be obtained from the momentum cutoff by replacing c with
c−�. However, for low magnetic fields with respect to Bc2�0�
and in the critical fluctuation region, the two cutoff condi-
tions almost coincide quantitatively, so that we shall apply
for simplicity the momentum cut-off procedure. In terms of
the reduced magnetic field h, it writes thus h�Nc+ 1

2
�=c /2.

Now we are able to apply expression �9� in Eqs. �2� and
�3� in order to write, respectively, the self-consistent Hartree
equation and the out-of-plane current density. Thus, after
performing the q integral in the correlation function �9� taken
for l= l�, one obtains the renormalizing equation for the re-
duced temperature �̃,

�̃ = ln
T

T0
+ 2gTh

n=0

Nc �
0

�

du e−u��̃n+r/2�I0� r

2p
sin�pu�� ,

�11�

where I0�x� is the modified Bessel function and the param-
eter

g =
2�0�GL

2 e2�0
2kB

��2s
�12�

was introduced according to the expression of the quartic
term coefficient8 b=�0�GL

2 e0
2�2 /2m2, with �GL being the in-

plane Ginzburg-Landau parameter �GL=�0 /�0.
In an analogous manner, after computing the correlation

function �9� for l�= l+1, and using the current density defi-
nition �3�, one can eventually obtain the out-of-plane fluctua-
tion conductivity under arbitrary magnetic and electric fields,

��zz
AL�E,B� =

e2srh

32��0
2 

n=0

Nc �
0

�

du e−u��̃n+r/2�sin�pu�
p

�I1� r

2p
sin�pu�� , �13�

with I1�x� the modified Bessel function of first order. The
integrals in Eqs. �11� and �13� are convergent provided �̃
+r /2+h�0, so that �̃n+r /2�0 for any LL index n. This
condition is however assured while solving Eq. �11� for the
parameter �̃ at any temperature T.

It is useful to write Eq. �13� also when the cutoff is ne-
glected, i.e., for c , Nc→�:

��zz
AL−no cut�E,B� =

e2sr

64��0
2�

0

�

du
2hue−uh

1 − exp�− 2hu�

�e−u��̃+r/2�sin�pu�
pu

I1� r

2p
sin�pu�� .

�14�

This slightly simpler formula provides a good approxima-
tion for Eq. �13� in the temperature region close to the tran-
sition �where �̃�c� and for small magnetic fields 
for which
Nc= �c−h� /2h is already high�. The cutoff procedure remains
however essential for calculating the Cooper pairs density
���l�x , t��2	 contained in the renormalization equation �11�,
since the u integral would be divergent for c , Nc→�. As we
shall see in Sec. VII, Eq. �14� can also be directly trans-
formed in order to find the three dimensional limit �i.e., for
s→0� of the non-Ohmic fluctuation conductivity ��zz

AL�no cut
�3D�

parallel to the magnetic field, when the cutoff is neglected.
In Eq. �13� we have explicitly specified that the out-of-

plane fluctuation conductivity ��zz
AL corresponds to the

Aslamazov-Larkin �AL� fluctuation process, since the phe-
nomenological Ginzburg-Landau theory cannot account for
indirect contributions like the density-of-states �DOS� and
Maki-Thompson �MT� terms, which can be found only from
a microscopical approach. However, whereas the DOS and
MT contributions to the in-plane paraconductivity and Hall
effect coefficient are known to be negligible near the super-
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conducting transition with respect to the AL term due to the
more singular behavior of the latter, an investigation of the
out-of-plane conductivity needs taking into account also the
DOS term, which can compete with the AL one especially
for highly anisotropic materials, as pointed out by Larkin and
Varlamov.12 The reason is that the DOS contribution to the
out-of-plane fluctuation conductivity turns out to be propor-
tional to a lower order of the interlayer transparency than the
AL one, as shown by the microscopical approach in the lin-
ear response approximation.6,12 We shall tentatively give in
Sec. IV an estimate of the DOS contribution to ��zz also for
an arbitrarily strong electric field, after discussing the limit
values of expressions �11� and �13� in the cases of a vanish-
ing magnetic or electric field.

III. LIMIT CASES B\0 AND/OR E\0

The Ohmic out-of-plane fluctuation conductivity in the
presence of a magnetic field but in an infinitesimally small
electric field can be easily obtained by taking the limit p
→0 in Eq. �13�, which acquires thus the form

���zz
AL�B��E→0 =

e2sr2

64��0
2h

n=0

Nc


�̃n��̃n + r��−3/2. �15�

The expression �15� thus matches the result previously ob-
tained within the diagrammatic microscopic approach, for
Gaussian fluctuations �i.e., with �̃=��, in the linear response
approximation.6 Analogously, the self-consistent equation
�11� becomes, in the same limit,

��̃�E→0,B�0 = ln
T

T0
+ 2gTh

n=0

Nc


�̃n��̃n + r��−1/2, �16�

which represents the Hartree renormalization equation in the
linear response approximation under an applied magnetic
field found in Ref. 8.

The other limit case, namely for vanishing magnetic field
but under a finite applied electric field, needs taking the limit
h→0 in Eqs. �11� and �13� after performing the sum over
Landau levels and taking into account the cutoff condition,
so that the Hartree self-consistent renormalization �11� and
the out-of-plane fluctuation conductivity �13� become, re-
spectively,

��̃�E�0,B=0 = ln
T

T0
+ gT�

0

�

du
1 − e−cu

u
e−u��̃+r/2�I0� r

2p
sin�pu�� ,

�17�

���zz
AL�E�0,B=0 =

e2sr

64��0
2�

0

�

du�1 − e−cu�e−u��̃+r/2�sin�pu�
pu

�I1� r

2p
sin�pu�� . �18�

It can be easily verified, by using the integral identities of
the Bessel functions I0 and I1, that in the further limit E
→0, Eq. �17� becomes

��̃�E=0,B=0 = ln
T

T0
+ 2gT ln

��̃ + c + ��̃ + c + r

��̃ + ��̃ + r
, �19�

as also found in Ref. 30, while expression �18� takes, respec-
tively, the form

���zz
AL�E=0,B=0 =

e2s

32��0
2� �̃ +

r

2

��̃��̃ + r�
−

�̃ + c +
r

2

���̃ + c���̃ + c + r�
� .

�20�

If one neglects the cutoff procedure �i.e., c→��, expression
�20� matches the result obtained in Ref. 12 for the AL out-
of-plane fluctuation conductivity in the linear response limit
and in the absence of magnetic field, with the difference that
in Ref. 12, based on the Gaussian approximation, the re-
duced temperature �=ln�T /T0� is present instead of our Har-
tree renormalized �̃.

The Hartree renormalization procedure consists in using
the reduced temperature parameter �̃ instead of �=ln�T /T0�,
by solving Eq. �19�. This procedure causes the critical tem-
perature to shift downwards with respect to the bare mean-
field transition temperature T0. In analogy with the Gaussian
fluctuation case, we shall adopt as definition for the critical
temperature the vanishing of the reduced temperature, �̃=0,
where the fluctuation conductivity, given by Eq. �20�, di-
verges. In practice, one knows experimentally the actual
critical temperature Tc0 measured at very low electrical field
and with zero magnetic field, so that the relationship between
Tc0 and T0 will be found by putting �̃=0 in Eq. �19�. It
writes19

T0 = Tc0
�c/r + �1 + �c/r��2gTc0. �21�

Now, having T0 one can use Eq. �11� for any temperature T
and fields E and B in order to find the actual renormalized
�̃�T ,E ,B�.

IV. ESTIMATION OF THE NON-OHMIC DOS
CONTRIBUTION

In the microscopic approach of Ref. 6, valid in the linear
response approximation �i.e., for vanishing electric field� and
for noninteracting �Gaussian� fluctuations, the DOS contribu-
tion to the out-of-plane fluctuation conductivity under a mag-
netic field is found to amount, in our notations, to

���zz
DOS�E→0,B�0

Gaussian = −
e2s�r

8��0
2 h

n=0

Nc


�̃n��̃n + r��−1/2, �22�

where the parameter � depends on the impurity scattering
time � and temperature:6
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�23�

with ��x� the Euler digamma function. One can notice that
Eq. �22� can be written as

���zz
DOS�E→0,B�0

Gaussian = −
e2���

2mckBT
�����2	�E→0,B�0

Gaussian , �24�

where

�����2	�E→0,B�0
Gaussian =

mkBT

��2s
h

n=0

Nc


�̃n��̃n + r��−1/2 �25�

is the Coooper pairs density for vanishing electric field and
in the Gaussian approximation �i.e., with �̃=��, as one can
infer from the general correlation function �9� in the E→0
limit. The proportionality between the DOS fluctuation con-
ductivity and the Cooper pair concentration in Eq. �24� is
qualitatively easy to be grasped, since the DOS contribution
means in fact the reduction of the normal state conductivity
due to the decrease of the one-electron density of states,
which reduction is in turn proportional to the superfluid
density.12

We may assume that the proportionality �24� will hold
also in the case of an arbitrarily strong electric field and in
the Hartree approximation, so that the DOS contribution to
the out-of-plane fluctuation conductivity can be generally
written

��zz
DOS�E,B� = −

e2s�r

8��0
2 h

n=0

Nc �
0

�

du e−u��̃n+r/2�I0� r

2p
sin�pu�� ,

�26�

where Eqs. �2� and �11� are to be compared in order to reveal
the Cooper pair density ����2	. Analogous with Eq. �18� we
can consequently write the DOS contribution also in the van-
ishing magnetic field limit,

���zz
DOS�E�0,B=0 = −

e2s�r

16��0
2�

0

�

du
1 − e−cu

u
e−u��̃+r/2�

�I0� r

2p
sin�pu�� . �27�

Equations �26� and �27� remain however to be confirmed or
refuted by a microscopic approach.

V. EXAMPLE: OPTIMALLY DOPED YBa2Cu3O6+x

In order to illustrate the main features of our model, we
take as example a common HTSC material, like the opti-
mally doped YBa2Cu3O6+x �YBCO�. Typical characteristic
parameters are then: s=1.17 nm for the interlayer distance,
�0=1.2 nm and �0c=0.14 nm for the zero-temperature-
extrapolated in-plane and out-of-plane coherence lengths, re-

spectively, �GL=70 for the Ginzburg-Landau parameter, Tc0
=92 K for the critical temperature under very small electric
and zero magnetic field, and the parameter �=3.57 that cor-
responds to a scattering time ��30 fs in Eq. �23�. It must be
stated that the form of the normal-state background chosen
for the temperature region masked by the onset of the super-
conductivity can be crucial for an eventual comparison with
the experiment. There is however no consensus whether the
peculiarities of the out-of-plane resistivity, namely its peak
and its non-metallic character just above Tc0, as observed in
the oxygen-deficient YBCO and the more anisotropic
Bi2Sr2CaCu2O8+x, are mainly due to the competition between
the fluctuation AL and DOS contributions, as illustrated in
Ref. 10 by succesfull fits at different magnetic fields in the
Ohmic regime while assuming a metallic linear extrapolation
for the normal-state resistivity, or to the inherent behavior of
the normal-state itself, as suggested by analysis of conduc-
tivity in incoherent layered crystals.34 Since in this paper we
focus on the fluctuation conductivity in the non-Ohmic re-
gime and need the normal-state background only for illustra-
tion purposes of the resistivity characteristics, we shall fur-
ther assume, for simplicity, an out-of-plane normal state
resistivity almost constant near the transition, with a typical
value �c

N=4 m� cm for optimally doped YBCO.35

In Fig. 1�a� the out-of-plane resistivity is presented, when
both AL and DOS contributions are taken into account, while
Fig. 1�b� shows the effect of the AL term alone, if the same
normal state background is assumed. One can notice the
supplementary broadening of the transition induced by a
strong electric field, and also the relative reduction of the
non-Ohmic effect when a magnetic field is simultaneously
applied. The effect of various electric fields, at a fixed mag-
netic field, on the AL and DOS fluctuation conductivities is
detailed in Figs. 1�c� and 1�d�, respectively. It turns out that
the non-Ohmic effect is important only for the AL term,
while the DOS one is little affected by an electric field of
experimentally accessible strength. This behavior stems from
the peculiar dependence of Eq. �26� on the electric field only
in the argument of the Bessel function.

It is worth mentioning that for Bi2Sr2CaCu2O8+x, for
which the DOS contribution as such competes stronger with
the AL one due to the higher anisotropy, the estimate of the
non-Ohmic effect on the DOS term turns out however to be
even more insignificant than for YBa2Cu3O6+x, and thus al-
most undiscernable in the same range of electric fields. The
reason is the much smaller anisotropy parameter r which
reduces the effect of the Bessel function factor in Eq. �26�.

VI. NON-OHMIC CONDUCTION FOR A TILTED
ELECTRIC FIELD

In the linear response approximation, the current pro-
duced by an arbitrarily oriented electric field can be simply
obtained by superposing the currents generated separately by
its components. However, this is not anymore the case in the
non-Ohmic regime of a strong electric field. As we shall see
below, the current components will depend now on all the
field components, and not only to the particular one corre-
sponding to the respective axis. This case requires therefore a

OUT-OF-PLANE FLUCTUATION CONDUCTIVITY OF… PHYSICAL REVIEW B 73, 024502 �2006�

024502-5



special treatment, where both the in-plane and out-of-plane
electric field components are to be included from the begin-
ning in the TDGL equation. This calculation would be par-
ticularly useful if the investigation of the out-of-plane non-
Ohmic conduction were performed on vicinal thin films,27

where a mixture of the in-plane and out-of-plane transport
properties is assessed, since the injected current has a slanted
direction with respect to the crystallographic axes.

We shall consider in the following the case of an electric
field E applied on a layered superconductor at an angle �
with the c axis, having thus the components �Ex

=E sin � ,Ey =0,Ez=E cos ��, and generated by the scalar po-
tential 	=−Exx−Ezsl. Since the presence of a magnetic field
at arbitrary direction would overcomplicate the calculations,
we shall consider in the following the case of a zero mag-
netic field. The TDGL equation analogous to Eq. �6� will
write in this case

��0
−1 �

�t
+ � sin �

�

�k
+ � cos �

�

�q
+ a0��̃ + �0

2k2 + �0
2ky

2�

+ a0
r

2
�1 − cos qs����k,ky,q,t� = ��k,ky,q,t� , �28�

where the Fourier transformed order parameter ��k ,ky ,q , t�
is given by

�l�x,y,t� =� dk

2�
� dky

2�
�

−�/s

�/s dq

2�
e−ikxe−ikyye−iqls��k,ky,q,t� ,

�29�

and the noise terms are delta-correlated such as

���k,ky,q,t��*�k�,ky�,q�,t��	 = 2�0
−1kBT�2��3
�k − k��

�
�ky − ky��
�q − q��
�t − t�� .

It can be verified that with the aid of the Green function in
the three variables �k ,q , t� for Eq. �28�, the solution for the
Fourier-transformed order parameter writes

��k,ky,q,t� = �0�
0

�

d� ��k −
2eEx

�
�,ky,q −

2eEz

�
�,t − ��

�exp�− a0�0����̃ + �0
2ky

2 + �0
2k2 +

r

2
�

− �0
2k

2eEx

�
� +

�0
2

3
�2eEx

�
�2

�2��
�exp�a0�0�r

2eEzs
sin

eEzs�

�
cos�qs −

eEzs�

�
�� .

�30�

FIG. 1. �a� Out-of-plane resistivity as a function of temperature in YBa2Cu3O6+x, for two values of the magnetic field, at several
magnitudes of the electric field, when both AL and DOS fluctuation contributions are taken into account. The material parameters are given
in the text. The arrows show the increasing electric field direction. �b� Same as �a�, when only the AL part is considered. �c� The out-of-plane
AL conductivity, at different magnitudes of the electric field, at B=5 T. �d� The DOS contribution to the out-of-plane conductivity, at
different electric fields and fixed magnetic field.
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Consequently, the general order parameter correlation function that will allow us to calculate the Cooper pair density as well
as the current density along the x and z axes will write

��l�x,y,t��l�
* �x�,y,t�	 =

kBT

a0
�

0

�

du�� dk

2�
� dky

2�
�

�0
2�ky

2+k2��c
�

−�/s

�/s dq

2�
e−ik�x−x��e−iqs�l−l��

�exp�− u��̃ + �0
2ky

2 + �0
2k2 +

r

2
� − 4�E sin �

E0
�2

u3�exp�2�3�0k
E sin �

E0
u2�

�exp� r

2

sin�pu cos ��
p cos �

cos�qs − pu cos ��� ,

where E0 and p are defined in Eq. �10�. One should also
notice the cutoff condition for the in-plane momentum
�0

2�ky
2+k2��c.

We are now able to summarize the results obtained for the
Hartree renormalization equation and for the current density
components as being, respectively,

�̃�Ex,Ez�
= ln

T

T0
+ gT�

0

�

du e−u��̃+r/2�−4�Ex/E0�2u3
I0� r

2

sin�pzu�
pz

�
��

0

c

dw e−uwI0�2�3�w
Ex

E0
u2� , �31�

�jx�Ex,Ez� =
e2

16�s
Ex�

0

�

du u2e−u��̃+r/2�−4�Ex/E0�2u3

�I0� r

2

sin�pzu�
pz

�
��

0

c

dw we−uw�I0 − I2�
„2�3�w�Ex/E0�u2

…

,

�32�

�jz�Ex,Ez� =
e2

16�s
�a

2Ez�
0

�

du e−u��̃+r/2�−4�Ex/E0�2u3 sin�pzu�
pz

�I1� r

2

sin�pzu�
pz

��
0

c

dw e−uwI0�2�3�w
Ex

E0
u2� ,

�33�

where pz= p cos �= �s�3/�0��Ez /E0� , �a=�0c /�0=�m /mc is
the anisotropy factor, and I0, I1 and I2 are the modified
Bessel functions. The current density components can be
written in a simpler form if the cutoff procedure is neglected
�c→��, namely

�jx
no cut�Ex,Ez� =

e2

16�s
Ex�

0

�

du e−u��̃+r/2�−�Ex/E0�2u3

�I0� r

2

sin�pzu�
pz

� , �34�

�jz
no cut�Ex,Ez� =

e2

16�s
�a

2Ez�
0

�

du e−u��̃+r/2�−�Ex/E0�2u3 sin�pzu�
pzu

�I1� r

2

sin�pzu�
pz

� . �35�

Besides the superconducting fluctuation contribution
��jx ,�jz�, also the normal state conduction must be consid-
ered in the total current density, which will thus be given by

jx = �jx�Ex,Ez� + �ab
N Ex,

jz = �jz�Ex,Ez� + �c
NEz, �36�

if one supposes Ohmic in-plane and out-of-plane normal
state conductivities �ab

N and �c
N, respectively. As it is gener-

ally the case for an anisotropic conductor, the current is not
parallel to the field, unless the latter is applied along one of
the principal axes of the material. Moreover, unlike the
Ohmic regime, the current densities components �jx and �jz
in Eqs. �32� and �33� or in Eqs. �34� and �35� depend gener-
ally on both Ex and Ez, so that the non-Ohmic effect of an
arbitrarily oriented electric field cannot be reduced to the
superposition of the non-Ohmic currents produced separately
by the in-plane and out-of-plane field components.

It must be also mentioned that the superconducting fluc-
tuation current ��jx ,�jz� in Eq. �36�, as inferred in the GL
approach, regards only the AL fluctuation process.

VII. RESULTS IN THE 3D LIMIT

A. General case of nonzero magnetic and electric fields

The results obtained in the previous sections for a layered
superconductor cannot be transformed for the three-
dimensional case by directly imposing the 3D condition s
→0 �or r→��, because in the layered model it was assumed
that a cutoff in the z direction is not necessary, since the
out-of-plane momentum q was already confined to the inter-
val 
−� /s ,� /s�. However, in the 3D case, a cutoff condition
is necessary for all the three momentum components,
�kx ,ky ,q�. Assuming isotropy in the xy plane, the 3D cutoff
condition for the total kinetic energy will write thus, in the
absence of a magnetic field,
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�2kx
2

2m
+

�2ky
2

2m
+

�2q2

2mc
� ca0 or �kx

2 + ky
2��0

2 + q2�0c
2 � c .

�37�

If a magnetic field B is applied along the z-axis, the cutoff
condition will be written though in terms of the Landau level
n, as

a0h�2n + 1� +
�2q2

2mc
� ca0 or h�2n + 1� + q2�0c

2 � c .

�38�

The kinetic energy �2q2 /2mc will replace therefore the
interlayer coupling energy a0r�1−cos qs� /2 from the layered
case. This can be formally performed by taking the cosine
function in the small-q limit, such as

r

2
�1 − cos qs� �

rq2s2

4
= q2�0c

2 � q�2, �39�

which can be interpreted by saying that the 3D behavior is
approached when the size of the Cooper pairs along the z
axis is so large that the peculiarities of the layered structure
do not play a role any more, meaning that only small values
of the out-of-plane momentum q are important in the inte-
grations. This regime indeed occurs for the layered supercon-
ductors in the near vicinity of the transition temperature,
where the fluctuations acquire anisotropic 3D character.

In the presence of an electric field E along the z axis, one
must solve now the TDGL equation in the form

��0
−1 �

�t
+ �

�

�q
+ a0�̃n + a0q2�0c

2 ��n�k,q,t� = �n�k,q,t� ,

�40�

so that the solution is found to be

�n�k,q,t� = �0�
0

�

d� �n�k,q −
2eE

�
�,t − ��exp�− �0��a0�̃n

+
e2E2

6mc
�2 +

�2

2mc
�q −

eE

�
��2�� . �41�

The current density along the z direction in the 3D case has
in the chosen gauge the usual form

�jz	 = �−
ie0�

2mc
��z − �z�����x,y,z,t��*�x,y,z�,t�	�

z=z�
,

�42�

where

��x,y,z,t� =� dk

2�
� dq

2�

n0

�q�n,k,t�e−ikye−iqzun�x −
�k

2eB
� ,

�43�

and the correlation function is, according to Eq. �41�,

���x,y,z,t��*�x,y,z�,t�	

=
mkBT

��2�0c
h�

0

�

du��� dq�

2�


n
��

h�2n+1�+q�2�c

�exp�− i
q�

�0c
�z − z�� −

4p�2u3

3
�

�exp�− u
�̃ + �2n + 1�h + q�2 − 2q�p�u�� , �44�

where

p� =
�e�0c

16kBT
E =

�0c
�3

�0

E

E0
. �45�

After careful evaluation of the q� integral and the LL sum,
with consideration of the cutoff condition �38�, one obtains
eventually the Hartree renormalization equation with both
the magnetic and electric fields applied along the z direction,
as

�̃�E=Ez,B=Bz�
�3D� = ln

T

T0
+

g�3D�T

�
�

0

�

du
2uhe−uh

1 − exp�− 2uh�
e−u�̃−�4p�2u3/3��

0

c+h

dw e−uw

sinh�2p�u2�w�c − h

c + h
�

2p�u2 , �46�

g�3D� =
2�0�GL

2 e2�0
2kB

��2�0c
. �47�

One should note that �GL in Eq. �47� is the Ginzburg-Landau parameter in the xy plane �and therefore proportional to the
Cooper pair mass m in the xy plane, which in turn is proportional to 1/�0

2�, so that the g�3D� parameter is in fact proportional
with the product 1 /�0

2�0c, symmetric with respect to the coherence lengths along the three principal axes of the material.
The general expression of the fluctuation conductivity �the AL contribution� in a 3D anisotropic superconductor, when both

the electric and magnetic fields are applied along the symmetry axis, will write in turn
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��zz
AL;�3D��E,B� =

e2�0c

8���0
2� c − h

c + h
�3/2�

0

�

du u2 2uhe−uh

1 − exp�− 2uh�
exp�− u�̃ −

4p�2u3

3
�

��
0

c+h

dw w3/2e−uw� cosh�2p�u2�w�c − h

c + h
�

�2p�u2�w�c − h

c + h
�2 −

sinh�2p�u2�w�c − h

c + h
�

�2p�u2�w�c − h

c + h
�3 � . �48�

The above equation �48� takes a simpler form if one neglects
the cutoff �i.e., for c→��, namely,

���zz
AL�no cut

�3D� �E,B� =
e2�0c

32����0
2�

0

�

du
2uhe−uh

1 − exp�− 2uh�
1
�u

�exp�− u�̃ −
1

3
p�2u3� . �49�

This expression can be also directly inferred from the cor-
responding result of the layered model, if one takes the 3D
limit s→0, r→� in Eq. �14�. In this case p→0, so that
sin�pu� / pu→1, while the sine function can be expanded up
to the cubic term in u in the argument of the modified Bessel
function, which becomes thus I1�ru /2−�0c

2 E�2u3 /�0
2�

���r�−1/2exp�ru /2− p�2u3 /3�, if one takes the asymptotic
expression of the modified Bessel functions In�z��ez /�2�z
for large arguments z→�. It must be reminded, however,
that the general expression �48�, where the cutoff is consid-
ered, can not be directly obtained from the corresponding
result �13� of the layered model, since for the latter the cutoff
procedure is not applied for the out-of-plane momentum.

B. Limit cases of vanishing electric and/or magnetic
field

The linear response limit for the results �46� and �48�, i.e.,
the case of a vanishing electric field and a finite magnetic
field, can be found directly from the correlation function
�44�, by performing the q� integral before the LL sum. They
write

�̃�E→0,B�0�
�3D� = ln

T

T0
+

2g�3D�T

�
h

n=0

Nc 1
��̃n

arctan�c + �̃

�̃n

− 1,

�50�

���zz
AL�E→0,B�0

�3D� =
e2�0ch

16���0
2 

n=0

Nc � 1

�̃n
3/2arctan�c + �̃

�̃n

− 1

+
�c + �̃ − �̃n�3/2

�̃n�c + �̃�2 −
�c + �̃ − �̃n�1/2

�c + �̃�2 � ,

�51�

where the LL cutoff index is Nc= �c−h� /2h and �̃n= �̃+ �2n
+1�h.

In the other limit of a vanishing magnetic field �B=0� but
under arbitrarily strong electric field �E�0�, one obtains

�̃�E=Ez,B=0�
�3D� = ln

T

T0
+

g�3D�T

�
�

0

�

du exp�− u�̃ −
4p�2u3

3
�

��
0

c

dw e−uwsinh�2p�u2�w�
2p�u2 , �52�

which is the 3D equivalent of the renormalization equation
�17�, and

���zz
AL�E�0,B=0

�3D� =
e2�0c

8���0
2�

0

�

du u2e−u�̃−4p�2u3/3�
0

c

dw w3/2e−uw

�� cosh�2p�u2�w�
�2p�u2�w�2

−
sinh�2p�u2�w�

�2p�u2�w�3 � ,

�53�

which is the 3D equivalent of the fluctuation conductivity
�18� from the layered model. Taken in the isotropic case
��0c=�0�, Eqs. �52� and �53� match the corresponding expres-
sions already found in Ref. 19, where the calculations were
performed in 3D limit in connection to the non-Ohmic in-
plane conductivity for the layered model.

If one neglected the cutoff �c→��, the right-hand side
term in Eq. �52� would become divergent, while Eq. �53�
would take the expression

���zz
AL�no cut

�3D� =
e2�0c

32����0
2�

0

� du
�u

e−�̃u−�1/3�p�2u3
, �54�

already known14,18,36 for isotropic bulk supercondutors ��0c

=�0� and Gaussian fluctuations �i.e., with �̃=��.
Taking further the limit E→0, one obtains for the Hartree

renormalization equation:

�̃�E=0,B=0�
�3D� = ln

T

T0
+

2g�3D�T

�
��c − ��̃ arctan�c

�̃
� , �55�
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and the fluctuation conductivity in the z direction,

���zz
AL�E=0,B=0

�3D�

=
e2�0c

48���0
2�3 arctan�c

�̃

��̃
−

3�̃�c

�c + �̃�2 −
5c3/2

�c + �̃�2� .

�56�

The result �56� matches thus the expression found37,38 for
Gaussian fluctuations ��̃=�� in a 3D isotropic supercon-
ductor ��0c=�0�.

Equation �55� taken for �̃=0 gives the relation between
the mean-field transition temperature T0 and the actual criti-
cal temperature Tc0=Tc�E=0,B=0 where the superconductivity
is attained in the absence of external fields,

T0 = Tc0 exp�2g�3D�Tc0
�c/�� , �57�

which represents the equivalent of Eq. �21� from the layered
model.

C. Estimation of DOS term

Supposing that the same proportionality �24� between the
DOS contribution to the fluctuation conductivity ��zz

DOS and
the Cooper pairs density ����2	 holds also in the 3D case, one
can estimate for the different combinations of electric and
magnetic fields,

���zz
DOS�E,B���3D� = −

e2�0c�

4���0
2

��
0

�

du
2uhe−uh

1 − exp�− 2uh�
e−u�̃−4p�2u3/3

��
0

c+h

dw e−uw

sinh�2p�u2�w�c − h

c + h
�

2p�u2 ,

�58�

���zz
DOS�B��E→0

�3D� = −
e2�0c�h

2���0
2 

n=0

Nc 1
��̃n

arctan�c + �̃

�̃n

− 1,

�59�

���zz
DOS�E��B=0

�3D� = −
e2�0c�

4���0
2�

0

�

du exp�− u�̃ −
4p�2u3

3
�

��
0

c

dw e−uwsinh�2p�u2�w�
2p�u2 , �60�

���zz
DOS�B=0,E→0

�3D� = −
e2�0c�

2���0
2��c − ��̃ arctan�c

�̃
� . �61�

Unlike the layered model, where, for instance, the AL
contribution �15� was quadratic in the anisotropy parameter r
while the DOS one �22� was linear, the corresponding 3D
fluctuation contributions �51� and �59� are both proportional
to the ratio �0c /�0

2, while the AL one is more singular in �̃.
The DOS contribution might thus be of less importance in
the 3D case with respect to the layered model. However, the
relations �58�, �59�, �60�, and �61� remain to be confirmed or
refuted by a microscopic approach.

D. Arbitrary orientation of the electric field

The 3D equivalents of Eqs. �31�, �32�, �33�, �34�, and
�35�, valid for an arbitrary orientation of the electric field
with respect to the layers, can be obtained in a simpler man-
ner, without having to solve again the TDGL equation, by
using a special scaling transformation of the coordinates and
field components that reduces the problem to the isotropic
case.12,39 In the isotropic system, the coordinate axes can be
in turn freely rotated so that the electric field acquires again
only one nonzero component, for which the solution is al-
ready known. For the anisotropic 3D model with axial sym-
metry treated in this section, having the zero-temperature-
extrapolated coherence lengths �0c in the z direction and �0 in
the xy plane, corresponding to the anisotropy factor

�a =
�0c

�0
=� m

mc
� 1. �62�

the scaling transformation of the coordinates and vector
potential12,39 writes

x̃ = x, ỹ = y, z̃ =
z

�a
,

Ax
˜ = Ax, Ay

˜ = Ay, Az
˜ = �aAz. �63�

This transformation implies the rescaling of the fields as

Bx
˜ = �aBx, By

˜ = �aBy, Bz
˜ = Bz,

Ex
˜ = Ex, Ey

˜ = Ey, Ez
˜ = �aEz, �64�

and for the order parameter and current density as

��̃�2 = �a���2,

jx
˜ = �ajx, jy

˜ = �ajy, jz
˜ = jz. �65�

Thus the anisotropy is removed from the gradient terms in
the GL equation and reintroduced into the magnetic energy
term, whose fluctuation can however be usually neglected for
hard type-II superconductors.39

In the case of a zero magnetic field and an electric field
�Ex=E sin � ,Ey =0,Ez=E cos �� applied in the anisotropic
material at an angle � with the z-axis, the problem can be
reduced, according to Eqs. �64�, to that of an electric field

�Ex
˜= Ẽ sin �̃ ,Ey

˜=0,Ez
˜= Ẽ cos �̃� applied on an isotropic su-

perconductor having the coherence length �0, such as
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Ẽ = E�sin2� + �a
2cos2��1/2,

tan �̃ =
1

�a
tan � . �66�

Taking now into account Eqs. �52�, �53�, and �54� consid-
ered for �0c=�0, together with Eqs. �65�, one obtains eventu-
ally

�̃�Ex,Ez�
�3D� = ln

T

T0
+

g�3D�T

�
�

0

�

du exp�− u�̃ − 4� Ẽ

E0
�2

u3�
��

0

c

dw e−uw

sinh�2�3
Ẽ

E0
u2�w�

2�3
Ẽ

E0
u2

, �67�

�jx
�3D� = Ex

e2

8���0c
�

0

�

du u2e−u�̃−4�Ẽ/E0�2u3�
0

c

dw w3/2e−uw

�� cosh�2�3
Ẽ

E0
u2�w�

�2�3
Ẽ

E0
u2�w�2 −

sinh�2�3
Ẽ

E0
u2�w�

�2�3
Ẽ

E0
u2�w�3 � ,

�68�

�jz
�3D� = Ez

e2�0c

8���0
2�

0

�

du u2e−u�̃−4�Ẽ/E0�2u3�
0

c

dw w3/2e−uw

�� cosh�2�3
Ẽ

E0
u2�w�

�2�3
Ẽ

E0
u2�w�2 −

sinh�2�3
Ẽ

E0
u2�w�

�2�3
Ẽ

E0
u2�w�3 � ,

�69�

so that neglecting the cutoff,

��jx
�3D��no cut = Ex

e2

32����0c
�

0

� du
�u

exp�− �̃u − � Ẽ

E0
�2

u3� ,

�70�

��jz
�3D��no cut = Ez

e2�0c

32����0
2�

0

� du
�u

exp�− �̃u − � Ẽ

E0
�2

u3� .

�71�

VIII. CONCLUSION

In this work we have theoretically investigated the non-
Ohmic effect of an arbitrarily strong electric field on the
out-of-plane fluctuation magnetoconductivity of a layered
superconductor. Our framework was provided by the Lange-
vin approach to the TDGL equation, and the Hartree approxi-
mation was used in order to take into account the fluctuation
interaction. The main general results of our work, valid when
magnetic and electric fields of arbitrary magnitude are ap-
plied perpendicular to the layers, are the formulas �11� for
the renormalized reduced temperature and, respectively, �13�
for the AL contribution to the out-of-plane fluctuation con-
ductivity, as well as the estimation �26� for the DOS term. In
the limit case of a vanishing electric field, the results were
found to reduce to the expressions already known from the
linear response approximation �Sec. III�. Extensions of the
results have been provided for the case of a tilted electric
field with respect to the crystallographic axes �Sec. VI�, as
well as for 3D anisotropic superconductors �Sec. VII�.

In order to illustrate the predictions of the theoretical cal-
culations, we have taken as example a typical HTSC mate-
rial, like the optimally doped YBa2Cu3O6+x, and evidenced
the nonlinear effect of a strong electric field through com-
parison to the results obtained in the linear response approxi-
mation, in the presence of a finite or of a zero magnetic field.
An important fluctuation suppression in the AL part of the
out-of-plane conductivity has been predicted for electric
fields of hundreds of V/cm, while the non-Ohmic effect on
the DOS contribution turned out to be marginal in the same
range �Fig. 1�.

So far, the effect of a strong electric field on the transport
properties of HTSC has been investigated and proven experi-
mentally only for the in-plane fluctuation conductivity and
only in the absence of magnetic field.20–22,24 The difficulties
lie in the high dissipation in cuprates �of the order of
GWcm−3 at electric fields of hundreds V/cm� that can in-
crease the sample temperature to values where the nonlinear-
ity is no longer discernible. In this connection, applying short
current pulses �tens of ns� at high current densities �a few
MA cm−2�, in combination with using very thin films �under
50 nm thick� in order to enhance the heat transport to the
substrate,24 seems to be a better alternative to the dc and ac
measurements. This procedure, if applied on vicinal films in
order to access also the c-axis conduction, will probably al-
low for the necessary accuracy necessary to detect the non-
Ohmic behavior also for the out-of-plane fluctuation conduc-
tivity.
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