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We introduce an effective scalar field theory to describe the 4He phase diagram, which can be considered as
a generalization of the XY model which gives the usual � transition. This theory results from a Ginzburg-
Landau Hamiltonian with higher order derivatives, which allow one to produce transitions between the super-
fluid, normal liquid, and solid phases of 4He. Mean field and Monte Carlo analyses suggest that this model is
able to reproduce the main qualitative features of 4He phase transitions.
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I. INTRODUCTION

Effective field theory models are widely used to describe
phase transitions in condensed matter systems. The simplest
example is that of the Ginzburg-Landau theory,1 in which a
“Hamiltonian” HGL��i� depending on certain field variables
�i and defined on the sites i of a lattice or at points x ,��x�,
in its continuum formulation, may account for the descrip-
tion of first or second-order phase transitions.

The effective theory is not intended to be a microscopic
theory at all. Instead, it makes use of the fact that critical
phenomena are divided into universality classes which are
determined by a few basic properties of the system only,
such as the dimensionality of the space, the range of interac-
tions, the number of components and the symmetry of the
order parameter. The renormalization-group theory predicts
that, within a given universality class, the critical exponents
and the scaling functions are the same for all systems so that
we can make use of the corresponding simpler effective
theory to calculate such quantities.

In this context, the superfluid transition of 4He, occurring
along the �-line T��P�, where P is the pressure and T the
temperature, belongs to the three-dimensional XY universal-
ity class.2 Its order parameter is related to the complex quan-
tum amplitude of helium atoms,3 so that the O�2� field theory
may serve as an effective description of this transition. In
fact very good agreements between the critical exponents
and scaling functions of this model and the experimental
measurements of the � transition of 4He are found.4

Figure 1 shows the 4He phase diagram in the �T , P� plane.
The O�2� field theory is intended to describe this system in
the vicinity of the � transition, and strictly speaking only
near Tc at zero pressure, because the model presents a
temperature-driven transition only. The whole � line is how-
ever expected to belong to the same universality class for
P�0. The transition lines between the liquid phases and the
solid phase are experimentally observed to be of first order,
with a finite entropy difference between the phases and the
presence of a latent heat.5

In Fig. 1, the solid, superfluid and normal liquid phases
meet at a single point, suggesting the presence of a Lifshitz

point6 in the 4He phase diagram. In order to examine the
critical behavior around this point, it would be very conve-
nient to have an effective theory of this system containing all
the three phases which meet there. This model should then
be able to account for the transitions between the solid and
the superfluid phases, solid and normal liquid phases, and
superfluid and normal liquid phases.

We address the problem of finding such an effective
theory in the present work. We take as an starting point the
O�2� field theory, which describes the transition between the
superfluid and normal liquid phases. In this theory, the su-
perfluid phase corresponds to a ferromagnetic phase, in
which there exists long-range order, while such an order is
absent in the normal liquid phase, which corresponds to an
unordered or paramagnetic phase. In order to generalize the
O�2� field theory to a model including also a solid phase we
should extend the regime of applicability of the effective
theory towards shorter length scales below the lattice spacing
of the solid.

What is the salient feature of the interactions at distances
comparable to this lattice spacing? The periodic ordering in

FIG. 1. Experimental pressure-temperature phase diagram for
4He in the low temperature region. Two liquid phases, He I and
superfluid He II, and a solid phase can be distinguished.
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the ground state underlines the importance of the distance
dependence of the forces acting in this scale regime. What
kind of terms of the effective theory can reproduce an im-
portant distance dependence? The ultralocal polynomials of
the field, without space-time derivatives, represent momen-
tum �i.e., distance� independent interaction strength. When
such a vertex is inserted into a graph then the distance de-
pendence of the propagators can induce distance dependent
vertex functions and therefore forces. But this is an indirect
mechanism, the distance dependence actually originates from
the propagators, the usual O�p2� part of the action. When the
vertices carry explicit momentum dependence then the re-
sulting forces should display more pronounced distance de-
pendence. Therefore one suspects that terms with higher or-
der derivatives might be the key to reproduce the solid phase.

The simplest vertex with higher order derivatives is qua-
dratic in the field variable, meaning the modification of the
free dispersion relation. If the dispersion relation turns out to
be negative at a certain momentum, then the elementary ex-
citation with such a momentum starts to condense in the
vacuum. This condensation will be stopped and the system
will be stabilized by the repulsive O��4� interaction. Starting
from the normal phase, the appropriately chosen mass term
or the coefficient of the higher order derivative term will take
us into the superfluid or the solid phase which will be called
modulated phase. Note that the effective model may also
contain an antiferromagnetic phase, in which the period
length is the shortest possible scale of the theory. Such a
phase will be however non-physical, since effective theories
are supposed to give sensible physical descriptions only at
energies lower than their energy cutoffs.

The universality argument of the normal-superfluid tran-
sition can be extended towards the solid phase at least in the
leading order of the perturbation expansion. In fact, the per-
turbative, one-loop renormalizability at the Lifshitz point7

provides us the universality at this order. It remains to be
seen if the universality can be established nonperturbatively.

The heuristic reasoning above applies to any system with
modulated ground state, such as the usual solid state crystal,
Wigner-lattice of dilute electron gas and charge density wave
state. But there is another consideration which makes the
argument plausible in the context of 4He, namely the exis-
tence of rotons. The higher order derivative terms of the
effective action are present in either phases, their strength
varies only when the phase boundaries are crossed. As we
will see, the existence of rotons, the enhancement of elemen-
tary excitations at a given momentum which corresponds to a
local minimum in the dispersion relation, is naturally repro-
duced by means of an action whose quadratic part in the field
contains higher order derivatives. In fact, the rotons should
correspond to the local minimum of the dispersion relation
which becomes the absolute one as the superfluid-solid tran-
sition is crossed.

It is interesting to notice the formal similarity between the
dynamics which drive the normal-to-superfluid and the
normal-to-solid transitions. The former is spontaneous sym-
metry breaking where the potential energy reaches its
minima at nontrivial, i.e., nonsymmetrical values of the field,
at a nontrivial scale in the internal space. The symmetry
spontaneously broken is an internal one and the dynamics is

modified mainly in the IR domain. Similar phenomenon may
take place in the external space, which leads to the modu-
lated phase. If the dispersion relation reaches its minimum at
nonvanishing momentum then particles with such momen-
tum condense and the vacuum becomes modulated. This
mechanism is driven by the derivative terms and modifies the
dynamics mainly at length scales comparable with the in-
verse momentum of the particles condensing. The symmetry
broken dynamically is an external one, rotations and transla-
tions.

The organization of our paper is the following. In Sec. II
the effective theory for helium-4 is defined both in math-
ematical and physical terms. Section III is devoted to the
mean field solution of the model. In Sec. IV we compare the
mean field predictions with numerical Monte Carlo simula-
tions of the system. We analyze its phase diagram and inves-
tigate the order of the transitions between phases. Finally, the
conclusions are presented in Sec. V.

II. EFFECTIVE THEORY

Our model is an extension of the Ginzburg-Landau model
in three dimensions for a complex scalar order parameter by
adding higher order derivatives to the action,

Sc��� = �
x
�1

2
��� j�x�K�a2�2���� j�x� +

1

2
mc

2� j�x�� j�x�

+
�c

4!
„� j�x�� j�x�…2� , �1�

where j=1, 2, there is an implicit summation over repeated
indices, and the kinetic energy contains the function

K�z� = 1 + c2z + c4z2. �2�

The theory is regularized on a lattice of spacing a �the ultra-
violet cutoff, which will be taken to be smaller than the
period of the solid phase�, so that the integral becomes �x
→a3	x. One uses the dimensionless lattice field variable
�x=
a��x�, and gets

S��� = 	
x
�−

1

2
� j,x�K���� j,x + m2� j,x� j,x +

�

4!
�� j,x� j,x�2� ,

�3�

with ��x=	�=1
3 ��x+�̂+�x−�̂−2�x� ,m2=mc

2a2 ,�=a�c.
Expanding �K��� in S���, we obtain

S��� = − �1S1 − �2S2 − �3S3 − �4S4 − �5S5 − �6S6

+ �	
x

� j,x� j,x +
�

4!	x

�� j,x� j,x�2, �4�

with the following definitions for the different terms and co-
efficients:

S1 = 	
x,�

� j,x� j,x+�̂, �1 = 1 − 12c2 + 123c4, �5�

S2 = 	
x,�

� j,x� j,x+2�̂, �2 = c2 − 18c4, �6�
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S3 = 	
x,�

� j,x� j,x+3�̂, �3 = c4, �7�

S4 = 	
x,���

� j,x�� j,x+�̂+�̂ + � j,x−�̂+�̂�, �4 = 2c2 − 36c4,

�8�

S5 = 	
x,���

� j,x�� j,x+2�̂+�̂ + � j,x−2�̂+�̂ + � j,x+2�̂+�̂

+ � j,x−2�̂+�̂�, �5 = 3c4, �9�

S6 = 	
x

� j,x�� j,x+1̂+2̂+3̂ + � j,x+1̂−2̂+3̂ + � j,x−1̂+2̂+3̂

+ � j,x−1̂−2̂+3̂�, �6 = 6c4, �10�

� =
m2

2
+ 3 − 21c2 + 162c4. �11�

Physical interpretation

This effective model presents a number of parameters: m2,
�, c2, and c4. m2 and � offer the possibility to have a broken
symmetry, as in the standard Ginzburg-Landau Hamiltonian.
Indeed, the polynomial

H�	� =
1

2
r0	2 +

1

4!
u0	4, u0 
 0 �12�

has two minima for r0�0. The coefficient u0 must be posi-
tive so that lim	→±�H�	�= +�, which guarantees the stabil-
ity of the minimum of H�	�.

Therefore, m2�0 and m2
0 will give the broken and the
paramagnetic phases, respectively, in the tree-level approxi-
mation. The parameter m2 has to vanish linearly at the criti-
cal temperature, m2� �T−Tc�.

The other two parameters, c2 and c4, appearing in the
higher order derivative part of the action, will be responsible
for the emergence of the solid phase. Since making c2 ,c4
→0 in Eq. �1� gives the usual O�2� field theory, which de-
scribes the 4He transition at P=0, we will associate the pres-
sure to a linear combination of these two parameters, to be
determined afterwards.

III. MEAN FIELD SOLUTION

The first, simplest step in determining the phase structure
of the model is the tree-level solution which produces an
inhomogeneous mean field in our case. Since this model is
translational and rotational invariant in space we shall look
for a mean field vacuum of the form

��1,x

�2,x
� = ��cos�K�x��

sin�K�x��
� , �13�

where the amplitude � and the numbers K� ,�=1,2,3, serve
as variational parameters to minimize the action.

The action density, s=S /L2, for an homogeneous, ferro-
magnetic vacuum �K�=0∀�� on a lattice Ld is obtained by
minimizing

sFM =
m2

2
�2 +

�

4!
�4, �14�

sFM
min = 
− 3m4/2� , m2 � 0,

0, m2 
 0.
� �15�

In order to study the general case K��0, we shall need
the eigenvector of the lattice box operator,

�� j,x = − P̂2� j,x, �16�

where

P̂2 = 4	
�

sin2�K�

2
� . �17�

One finds

− �K���� j,x = M2� j,x, M2 = P̂2�1 − P̂2c2 + P̂4c4� .

�18�

Then the mean field action is

s =
1

2
�m2 + M2��2 +

�

4!
�4, �19�

with minimum

smin = −
3�m2 + M2�2

2�
at �min

2 = −
6�m2 + M2�

�
,

�20�

where m2+M2=m2+ P̂2�1− P̂2c2+ P̂4c4�. This solution is
valid only if m2+M2
0. The extrema of m2+M2 are
reached at

P̂±
2 =

c2 ± 
c2
2 − 3c4

3c4
�21�

for c4�0, and

P̂0
2 =

1

2c2
�22�

for c4=0. However, P̂+
2 is a local minimum of Eq. �20�, while

P̂−
2 is a local maximum.

The local minimum P̂+
2 will be global or not depending on

the specific values of c2 and c4. Moreover, P̂+
2 could be larger

than 12, which is the maximum allowed value for P̂2 from its
definition Eq. �17�, or it could even be an imaginary number.
It is therefore necessary to carry out a careful analysis of the
absolute minima of Eq. �20�, which will give us the different
mean field vacua in the �c2 ,c4� plane.

A. Ordered mean field phases in the „c2 ,c4… plane

The conditions that will determine the global minimum of
Eq. �20� for given �c2 ,c4� are
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Existence of P̂+
2 ⇔ c4 �

c2
2

3
, �23�

P̂+
2 � 12 ⇔ c4 
 max� c2

36
,

1

432
�− 1 + 24c2�� , �24�

M2�P̂2 = 12� � 0 ⇔ c4 �
1

144
�− 1 + 12c2� , �25�

M2�P̂2 = P̂+
2� � 0 ⇔ c4 �

c2
2

4
. �26�

In terms of these conditions, and supposing a value of m2

such that m2+M2
0, the phases �values of K�� which mini-
mize Eq. �20� are �see Fig. 2 for an specific example of every
case�

�1� If condition �23� does not hold, then Eq. �20� is mini-
mized by K�=0∀�: ferromagnetic vacuum.

�2� If condition �23� holds, but condition �24� does not
hold, then

�a� If condition �25� does not hold, then the mini-
mum is again K�=0∀�: ferromagnetic vacuum.

�b� If condition �25� holds, then the global mini-

mum of Eq. �20� is at P̂+
2 =12 or K�=�∀�: antiferromag-

netic vacuum.
�3� If both condition �23� and condition �24� hold, then

�a� If condition �26� does not hold, then the mini-
mum is the ferromagnetic vacuum.

�b� If condition �26� holds, then the minimum of

Eq. �20� is at the vector K� such that P̂2= P̂+
2: we will call

this a modulated phase.

Note that the plot in Fig. 2, case 3�a�, corresponds to the
dispersion relation of phonons and rotons �Landau
spectrum8�: we are in the ferromagnetic phase �superfluid
phase� and there are two kind of excitations, at zero and
different from zero momenta. At low energies, the curve is a
straight line, corresponding to a phonon dispersion relation,
while at higher energies, the spectrum deviates from a
straight line, passing first through a maximum and then a
minimum. The excitations with energies near this minimum
are called rotons. The existence of the finite energy gap for
rotons is crucial for the superfluidity in He II. The system
enters into the solid phase when this gap tends to zero. The
shape of the Landau spectrum has been confirmed by
neutron-scattering experiments carried out in several differ-
ent laboratories.9

From Eqs. �23�–�26� and the previous discussion, we can
obtain the range of values of �c2 ,c4� for which the mean field
vacuum is ferromagnetic �FM�, antiferromagnetic �AF� or
modulated �MOD�. The result is summarized in Table I, and
the phase diagram which results in the �c2 ,c4� plane is plot-
ted in Fig. 3.

Let us now consider the order of the FM-MOD and
MOD-AF transitions in this mean field approach. To do so,

FIG. 2. M2 as a function of P̂2 for different values of �c2 ,c4� corresponding to the cases signaled in the text �from left to right, top to
bottom�: 1, 2�a�, 2�b�, 3�a�, and 3�b�.

TABLE I. Mean field phases for given �c2 ,c4� values, supposed
that m2+M2
0.

c2

1

12 FM ∀ c4
1

12 
c2

1
6 AF if c4�

1
144�−1+12c2�

FM if c4

1

144�−1+12c2�
1
6 
c2�� AF if c4�

1
432�−1+24c2�

MOD if 1
432�−1+24c2��c4�

c2
2

4

FM if c4

c2

2

4
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we will study the variation of the minimum of the mean field
action Eq. �20� along a line c2=const. Let us take the line
c2=0.5 which is plotted vertically in Fig. 3. The value of smin
along this line depends on M2, which in turn depends on the
value of P̂2� P̂m

2 which minimizes it. This value is P̂m
2 =12,

P̂+ and 0, respectively, for the antiferromagnetic, modulated
and ferromagnetic phases, and is plotted in Fig. 4 along the

c2=0.5 line. From this figure one can see that P̂m
2 has a dis-

continuity when passing from the MOD to the FM phase.
This seems to suggest that smin is also discontinuous and that
the transition FM-MOD will be first order. However, we will
now see that this is not the case.

The value of smin at the FM phase is given by �see Eq.
�20�, with M2=0�

smin
FM = −

3m4

2�
. �27�

This value is independent of c2 and c4. The value of smin at

the MOD phase is given by Eq. �20�, with M2=M2�P̂+
2�.

This gives

smin
MOD = −

�2c2
3 + 2�c2

2 − 3c4�3/2 − 9c2c4 − 27c4
2m2�2

486c4
4�

.

�28�

However, when we evaluate this expression along the curve
separating the FM and MOD phases, c4=c2

2 /4, we obtain

smin
MOD�c2,c4 = c2

2/4� = −
3m4

2�
= smin

FM , �29�

and there is no discontinuity in smin between the two phases.
Therefore, we conclude that the transition FM-MOD is a
second-order transition.

In fact we could already have arrived to this conclusion
just by a careful inspection of Fig. 2. The transition between
the FM and MOD phases in Fig. 3 corresponds to the tran-
sition between cases 3�a� and 3�b� in Fig. 2. In case 3�a�,
M2�P̂+

2�
0 and the minimum of the action is at P̂m
2

=0�M2=0�. In case 3�b�, M2�P̂+
2��0 and the minimum of

the action is at P̂+
2. At the transition, M2=0 and there is no

discontinuity in the action, but there is in its derivative with
respect to the parameter of variation. The transition is
second-order.

With respect to the AF-MOD transition, taking place at
the curve c4= �−1+24c2� /432, it is evident from Fig. 4 that

smin should be continuous since P̂m
2 is continuous at this tran-

sition. In fact, again from Eq. �20�,

smin
AF = −

3�12 − 144c2 + 1728c4 + m2�2

2�
, �30�

and at the transition line

smin
AF �c2,c4 =

�− 1 + 24c2�
432

� = smin
MOD�c2,c4 =

�− 1 + 24c2�
432

�
= −

3�8 − 48c2 + m2�2

2�
. �31�

This transition corresponds to that between the cases 2�b�
and 3�b� in Fig. 2. In the first case, P̂+

2 
12 and then the

minimum is at P̂m
2 =12,M2�P̂m

2 =12��0. When we approach

the modulated phase then P̂+
2 →12. At the transition P̂+

2 =12
and therefore M2 changes in a continuous way between the
two phases. In this case the derivative of M2 is also continu-
ous.

Finally, the transition between the AF and the FM phases
in the second region of Table I � 1

12 
c2

1
6

�, turns out to be

also continuous, in spite of the fact that P̂m
2 jumps from 12 to

0 at the line c4= �−1+12c2� /144 since

FIG. 3. �Color online� Mean field phase diagram in the �c2 ,c4�
plane, supposing that m2+M2
0 at every point of the plane. The
black zone represents the AF phase, the grey zone is the MOD
phase, and the white region, the FM phase.

FIG. 4. Values of P̂2 which minimize M2 at c2=0.5 as a func-
tion of c4. They define the different vacua of the mean field action,
as explained in the text.
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smin
AF �c2,c4 =

�− 1 + 12c2�
144

� = −
3m4

2�
= smin

FM . �32�

This can again be understood as the transition between cases
2�a� and 2�b� in Fig. 2, when we pass from M2=0 at the
minimum of the action in the first case, to M2�0 in the
second case. The change in M2 is then continuous, but its
derivative is discontinuous.

In conclusion, all the transition lines in Fig. 3 turn out to
be continuous transitions. At the FM-AF and FM-MOD tran-

sitions, when there is a jump in P̂m
2 , the derivative of the

action with respect to the parameter of variation in the
�c2 ,c4� plane is discontinuous, while this derivative is con-
tinuous at the AF-MOD transition.

B. Complete mean field phase diagram

In the previous analysis we have made the assumption
that m2 was such that m2+M2
0, which guarantees that we
are in the broken phase, i.e., �min

2 
0 �see Eq. �20��. If this
condition does not hold then the minimum of the action �19�
is at �=0 and we are in the paramagnetic �PM� phase. This
happens at a different value of m2 depending on which or-
dered phase is considered:

m2 
 − M2 ⇔ � FM phase, m2 
 0,

AF phase, m2 
 − M2�12� ,

MOD phase, m2 
 − M2�P̂+
2� .
�

�33�

In the three dimensional plane �m2 ,c2 ,c4� we will have
then four different phases: PM, AF, FM, and MOD. As we
argued in Secs. I and II, we are interested in the physical
region containing only FM, PM and MOD phases, which
will represent the superfluid, normal liquid and solid phases,
respectively, as a function of two parameters: m2, which
would correspond to the temperature T, and a combination of
c2 and c4, which would correspond to the pressure P. Taking
c4 proportional to c2 with an adequate slope gives us a sec-
tion in the �c2 ,c4� plane represented in Fig. 3 where the
qualitatively correct phase diagram appears: a FM phase fol-
lowed by a MOD phase. The exact value of the slope is
arbitrary, and we make the choice c4=0.25c2 so that the tran-
sition line between the MOD and FM phases is located at
c2=1. The complete phase diagram we get in this way is
shown in Fig. 5 in the �m2 ,c2� plane. Note that this physical
region may not be stable under renormalization group �RG�
transformations. Under these transformations, which keep
the physics fixed �unmodified long distance behavior�, the
period length will appear shorter when expressed in lattice
spacing units. This means that they will in general connect
the MOD phase with an antiferromagnetic phase, but with a
quite complicated blocked action containing much more pa-
rameters than simply c2 and c4. Therefore the nonphysical
AF phase which our simple effective model contains will not
be connected by RG transformations with the physical region
and we can safely discard this phase and its vicinity from our
analysis.

It is easy to see that the transitions from an ordered phase
�FM or MOD� to the paramagnetic phase are also continu-
ous. The action inside the PM phase is 0 in the mean field
approximation while in the FM and the MOD phases it is
given by Eq. �19�. However, the transition lines to the PM
phase are just the regions of the parameter space where m2

+M2=0 and consequently the action is vanishing.

IV. MONTE CARLO SIMULATION OF THE MODEL

The preceding mean field study is qualitative only due to
the absence of fluctuations. In order to estimate this error and
to have a more reliable phase structure a numerical simula-
tion of the model was performed as well. We considered a
three dimensional cubic lattice of side L with periodic
boundary conditions and studied the model Eq. �4� as a func-
tion of the two parameters m2 and c2, taking �=0.1 and c4
=0.25c2 as fixed values, in lattices L=6,8,12,16,24 with a
Monte Carlo simulation. The algorithm was a standard Me-
tropolis, and the errors were computed with a jack-knife
method. In the largest simulations, we performed up to 50
million of full-lattice sweeps �measuring every 5 sweeps�.
We checked that the autocorrelation times were small with
respect to the number of measurements performed for every
lattice size.

A. Observables and the phase diagram

In order to identify the possible inhomogeneous conden-
sates we write the field variable �x in terms of its Fourier
transform,

�x = 	
K

eiKx�̃K, �̃K =
1

V
	

x

e−iKx�x, �34�

where Kx�K�x�, and there is summation over the repeated
index �. The possible values of K on each lattice direction

FIG. 5. Mean field phase diagram in the �m2 ,c2� plane, where at
every point c4=0.25c2. Here the phases are PM �white region�, FM
�grey region�, and MOD �black region�.
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are �2� /L�n, with n=0,… ,L−1. The magnetization corre-
sponding to the wave-vector K is defined as the magnitude of
the Fourier coefficient,

MK = 
��̃K�2. �35�

Our mean field solutions are pure Fourier modes, i.e., such
that ��̃K�2=0∀K� ±K0 for a certain K0 which minimizes
the action, and we introduce the corresponding momentum
square as

P̂2 = 4	
�

sin2�K0
�

2
� . �36�

P̂2 is the only combination of the components of the wave-
vector K0 appearing in the mean field solution. But this
means that all different K configurations with the same value

of P̂2�K� are degenerated in energy. The degree of this de-

generation naturally may depend on the value of P̂2. The

surface in K space which corresponds to a given value of P̂2

is depicted in Fig. 6 for three different values P̂2=1,3,6.
The configurations are not single Fourier modes of the

mean field type in the Monte Carlo simulation. A possible

generalization of P̂2 is the average momentum square over
all modes,

P̂2 � 4	
�

	
K

��̃K�2sin2�K�

2
� . �37�

Another useful observable is the energy or in general any
of the eight terms �or any linear combination of them� ap-
pearing in Eq. �4�. Considering the energy as a function de-
fined on the plane �m2 ,c2�, the direction of the fastest change
at a transition will be the one orthogonal to the transition
line. Since the FM-MOD and FM-PM lines are almost hori-
zontal and vertical in the parameter space, respectively, we
considered the coefficients of c2 and m2 in S. Both linear
combinations proved also to give a good signal for the
MOD-PM transition. They can be read from Eqs. �4�–�11�:

Sm �
1

2	
x

� j,x� j,x, �38�

Sc � 56.25S1 − 10.5S2 + 0.75S3 − 42S4 + 9S5 + 6S6 − 39Sm.

�39�

These energies are also the appropriate ones to extrapolate
the mean values of observables in an interval around a cer-
tain simulation point by means of a Ferrenberg-Swendsen
reweighting method.10 The observables Eqs. �35� and �37�,
together with the appropriate energy terms were measured in
Monte Carlo simulations.

We performed two different kinds of simulations. First we
swept the whole parameter space by fixing the value of one
of the two parameters �c2 or m2�, varying dynamically the
other one in small steps �typically 10−3� and measuring ob-
servables after a number of iterations �around 5000 Monte
Carlo steps�. This procedure allows us to locate the transition
point by means of the rapid changes experienced in the dif-
ferent observables. We call this kind of simulation an hyster-
esis owing to the typical signs of metastability observed
when crossing a first order transition �see Figs. 9 and 10
below�. Once the phase diagram had been outlined we per-
formed better statistics simulations at fixed values of the pa-
rameters at the transition lines to get a deeper insight into the
properties of these transitions.

Figure 7 shows the observed phase transitions in an L
=16 simulation, together with the mean field lines. One can
see that the Monte Carlo results agree well with the mean
field phase diagram. It is interesting to see that near the point
where all phases meet, the slopes of the different transitions
are similar to those of the helium phase diagram, see Fig. 1,
after making the correspondence of the MOD, FM and PM
phases to the solid, liquid He II and liquid He I phases, re-
spectively �but note that the model does not pretend to give
the exact slopes of the transition lines�. This effective model
seems therefore to give a good description of the helium
phase diagram around the Lifshitz point when c2 and m2 are
considered to be proportional to the pressure and the relative
temperature, respectively. In the following section we study
the nature of the phase transitions by using a Monte Carlo
simulation and confirm that, in contrast to what we saw in
the mean field analysis, they are of the same type as those of
helium.

FIG. 6. �Color online� Surfaces in K space with the same P̂2, Eq. �17�, for three different values P̂2=1,3,6.
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B. Phase transitions

1. FM-PM transition

The FM-PM transition is clearly second order, as we will
show by calculating its critical exponents. This behavior is
expected in order to reproduce the �-line that separates the
liquid He I and He II states in the phase diagram of 4He.

Here the order parameter is the standard magnetization
M0 and one can perform the usual finite size scaling analysis
in order to extract critical exponents and critical tempera-
tures. A good choice for the scaling variable is the correlation
length. In a finite size lattice it can be defined using a second
moment method11 as

� = �M0
2/MKm

2 − 1

4 sin2��/L�
�1/2

, �40�

where M0
2 and MKm

2 are defined in Eq. �35�, and Km

= �2� /L ,0 ,0� is the minimum wave vector compatible with
the periodic boundary conditions.

For an operator O that diverges as �t�−xO where t is the
reduced temperature the mean value at a temperature T in a
lattice of size L can be written in the critical region by means
of the finite-size scaling ansatz12 as

O�L,T� = LxO/�
„FO���L,T�/L� + O�L−��… , �41�

where FO is a smooth scaling function and � is the universal
leading correction-to-scaling exponent. In order to eliminate
the unknown FO function we use the method of quotients13,14

where one studies the behavior of the operator of interest in
two lattice sizes, L and rL,

QO = O�rL,t�/O�L,t� �42�

and one chooses a value of the reduced temperature t such
that the correlation-length in units of the lattice size is the
same in both lattices. This temperature can be considered as
the apparent transition point for the size L. One obtains eas-
ily

QO�Q�=r = rxO/� + O�L−�� . �43�

We used the quotient method for pairs of lattices of sizes
L and 2L and determined the values of the parameters
�m2 ,c2� where the � /L curves cut each other. This is shown
in Fig. 8 for c2=0.5 and L=8, 12, 16, 24. The critical expo-
nent � ����m2−mc

2��� was measured by using �m2� ��m2�
��m2−mc

2��+1� as the observable O of the quotient method
and the apparent exponents together with the transition
points are shown in Table II. The calculation of the scaling
corrections and the exact extrapolation of the critical point
and exponents have not been carried out since our intention
was just to check that the transition belongs to the university
class of the XY model in 3 dimensions �which corresponds to
c2=0�. More precise calculations of critical exponents would
require the use of update algorithms with smaller autocorre-
lation times in the vicinity of a continuous transition than the
standard Metropolis, such as a single-cluster algorithm �for
the problematics of the application of these algorithms to the
standard Ginzburg-Landau model see, e.g., Ref. 15�. For us it
is enough to confirm that the values of the exponent � re-

FIG. 7. Monte Carlo phase diagram for an L=16 lattice �con-
tinuous line and dots� versus mean field phase diagram �dashed
line�. Error bars which are not shown are smaller than the size of
the points.

FIG. 8. �Color online� � /L for c2=0.5 and lat-
tice sizes L=8, 12, 16, 24.
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ported in Table II turn out to be fully compatible �as ex-
pected� with that of the XY model in 3d,16 0.67155�27�.

2. FM-MOD transition

Hysteresis-type simulations along fixed m2�0 lines show
metastability signs, indicating a first order character of the
FM-MOD transition at c2→1. This is shown in the top part

of Fig. 9. In the small inset of this figure the differences in

the distribution of P̂2 are shown at both sides of the transi-

tion. This distribution is peaked at P̂2=0 in the FM phase,
and changes to a value clearly different from zero �around 2�
when crossing the transition line to the MOD phase, as ex-
pected from the mean field calculation �which gives P̂2=2 at
the transition point for all values of m2�.

An hysteresis might be observed for second order transi-
tions as well when it indicates the sudden increase of the
relaxation time around the critical point. In order to exclude
this possibility we looked into a feature characteristic of the
first order transitions only, the appearance of double-peaks in
the histogram of important observables. The histogram of the
energy, shown in the bottom part of Fig. 9, corresponds to an
L=8 simulation at c2=1.0, m2=−0.55. Such a double-peak
structure is not expected when the fluctuations around the
mean field solution of Sec. III A are considered at one-loop
level. It is well known that fluctuations may change the tran-
sition from second to first order, especially for the so-called

FIG. 9. �Color online� Top:
Hysteresis cycle in c2. Figure
shows Sc, Eq. �39�, versus c2 for
m2=−0.55 in an L=8 lattice. In-

set: P̂2 distribution, Eq. �37�, at
both sides of the transition for the
same run as in the main plot. In-

side the FM phase F�P̂2� has a

peak in P̂2=0, while when cross-
ing to the MOD phase the peak

changes its position to P̂2�2.
Bottom: Histogram of Sc for a run
with fixed parameters c2=1.0,m2

=−0.55, in an L=8 lattice. Dotted
lines mark the position of the
peaks of the histogram in the hys-
teresis plot. The double-peak form
of the histogram shows clearly the
first order character of the FM-
MOD transition.

TABLE II. mc
2 determined by the intersection of the correlation

lengths measured in two lattices of sizes L and 2L and the apparent
critical exponent � obtained from the quotient method applied to the
same �L ,2L� pairs.

L mcL
2 �L

6 −0.1562�6� 0.663�10�
8 −0.1613�4� 0.656�12�
12 −0.1629�5� 0.678�17�
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weak first order transitions.17 A first order character is indeed
what is expected for a liquid-solid transition where there is a
finite latent heat.

Finally, Fig. 7 shows that the FM-MOD transition line
obtained in the numerical simulation is almost horizontal,
here in agreement with the mean field calculation, and also
with the experimental phase diagram Fig. 1.

3. MOD-PM transition

The solid to ordinary liquid transition is also first order in
4He. Our mean field solution predicted however a continuous
transition. But this is again changed by the effect of fluctua-
tions, as the numerical simulation reveals.

The top part of Fig. 10 shows some hysteresis plots for
different lattice sizes at c2=1.5. Their form shows clear signs
of a metastability at the MOD-PM transition. But notice
however the appreciable finite size dependence on the loca-
tion of the apparent transition point. This effect may be un-

derstood by looking at the shape of the distributions of P̂2 of
the L=8 and L=16 lattices, shown in the middle part of Fig.

10. The L=16 P̂2 distribution shows a peak at the value of
the mean field prediction in the modulated phase �2.27 for
c2=1.5�. The L=8 distribution is however extended in a

larger range with a maximum at a lower value of P̂2. In fact,
the spacing between Fourier modes is 2� /L, a finite number
on a finite lattice, which implies that the measured values of

P̂2 are also discretized. The mean field value lies between
two of the allowed values for the L=8 size, producing a
competition between different kinds of modulation in the
system. This is of course a finite size effect which disappears
for large lattices.

The P̂2 distribution is spread in the paramagnetic phase.
This is clearly seen in Fig. 10, middle, for L=16 while the
spreading is weaker for L=8.

FIG. 10. �Color online� Top: Hysteresis cycle
in m2. Figure shows Sm, Eq. �38�, versus m2 for

c2=1.5 for lattice sizes of L=8,12,16. Middle: P̂2

distribution at both sides of the transition for the
same run as the one in the top part for the L=8

and L=16 lattices. The dotted line at P̂2=2.27 is

the value of P̂2 predicted by mean field for this
value of the parameter c2. Bottom: Histogram of
Sm for a run with fixed parameters c2=1.5,m2

=0.57 in an L=12 lattice. The histogram shows
clearly the first order character of the MOD-PM
transition.
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The bottom part of Fig. 10 shows the energy histogram of
an L=12 lattice at this transition line with the characteristic
double-peak of a first order transition, confirming the discon-
tinuous character of this transition.

V. CONCLUSIONS

We have proposed and studied an effective field theoreti-
cal model which is supposed to describe the 4He phase dia-
gram around the point where solid, normal liquid, and super-
fluid phases meet. This model is a generalization of the XY
model which describes the universality class of the � transi-
tion and it is able to explain the emergence of the different
phases accounting for the two-excitation dispersion relation
in the superfluid phase, and to relate the apparition of a con-
densate at nonzero momentum �solid phase� with a continu-
ous deformation of the phonon-roton dispersion relation
when increasing the pressure �here represented by the coef-
ficients of the higher order derivatives� at fixed temperature
from the superfluid phase.

A mean field study, together with Monte Carlo simula-
tions of this model, have been performed. The numerical
simulations do not modify very much the location of the

transitions in the mean field phase diagram but change in a
qualitative way the nature of the transitions obtained in the
mean field approximation. Both the form of the phase dia-
gram and the order of the transitions �second-order of the XY
universality class for the superfluid-normal liquid transition,
first order for the solid-superfluid or solid-normal liquid tran-
sitions� agree with those of 4He.

This model might be used as an starting point to study the
possible apparition of other phases, such as a “supersolid”
phase, which, after many years of debate,18 seems to have
been experimentally observed very recently19 in the 4He sys-
tem.
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