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We study the existence of incommensurate phases in the phase diagram of the two orbital double exchange
model coupled with Jahn-Teller phonons and with superexchange interactions. In agreement with experimental
results, we find that undoped manganites RMnO3 �R being some rare earth element� show temperature induced
commensurate-incommensurate phase transitions. In the incommensurate phase the magnetic wave vector
varies with temperature. The incommensurate phase arises from the competition between the short range
antiferromagnetic superexchange interaction and the long range ferromagnetic double exchange interaction.
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I. INTRODUCTION

Perovskites of manganese of formula �R1−xAx�MnO3

where R denotes rare earth ions �R=La,Pr,Nd, . . . � and A is
a divalent alkaline ion �A=Ca,Sr, . . . � have attracted a great
interest because they show a remarkable colossal magnetore-
sistance effect at doping x near one-third.1,2 In these oxides x
corresponds to the concentration of holes moving in the eg
orbital bands of the Mn ions that ideally form a cubic struc-
ture. From the basic point of view these materials are a chal-
lenge for both theoreticians and experimentalists as they
show a very rich phase diagram.3 As function of temp-
erature and hole doping, these systems present orbital, charge
or spin order, and in a large portion of the phase diagram
these orders coexist.4–15 Nanophase separation near x=1/3
�Ref. 16� and commensurate incommensurate transition near
half doping seem to occur in colossal magnetoresistance
manganites.17–20

Many properties of manganites depend on the competition
between the kinetic energy tending to delocalize the carriers
and localization effects such as the Jahn-Teller �JT� coupling
and the antiferromagnetic �AFM� coupling between the Mn
core spins. Therefore the properties of manganites at inter-
mediate doping can be described within a band structure
picture, where the itinerant eg carriers have a strong ferro-
magnetic interaction with the core t2g Mn spins, and are
coupled with the Jahn-Teller distortions of the oxygen octa-
hedra surrounding the Mn ions.3,15 However, the parent com-
pounds, RMnO3, are always insulator and their physical
properties were typically described in the picture of strongly
correlated Mott localized d-electrons.21–27 However some
spin and orbital ordering found experimentally in undoped
materials28–30 cannot be easily described in this picture of
strongly localized electrons.

In Ref. 29 the authors examine the magnetic and orbital
order in a series of RMnO3 as a function of the ionic radius
�rR� of the rare earth ion R. For small ionic radius the man-
ganites have a antiferromagnetic spin order of type A coex-
isting with a �� ,� ,0� orbital ordering, whereas for larger
values of rR the magnetic order is of type E. In the A phase,
a Mn spin is ferromagnetically coupled with the Mn spins
located in the same plane �x-y�, and antiferromagnetically
with the Mn spins belonging to different planes. In the E

phase the x-y layers are antiferromagnetically coupled, but
the magnetic structure within the planes is that of ferromag-
netic zigzag chains coupled antiferromagnetically. The hori-
zontal �x� and vertical �y� steps of the zigzag chains contain
two Mn ions. For values of rR close to the critical value
where the magnetic order changes from A-type to E-type, the
manganites develop different magnetic incommensurate
phases when increasing temperature. In this reference, as-
suming perfect orbital order, the problem was mapped into
the anisotropic next-nearest-neighbor Ising or ANNNI
model.31 Although this approach provides a phenomelogical
explanation of the experimental results, it does not clarify the
microscopic origin of the different phases.

It has been suggested recently,32–34 that the complete nest-
ing between the two eg bands that occurs in the A structure
produces a spin-orbital ordering and opens a gap in the en-
ergy spectrum of undoped RMnO3. Quoting Ref. 34 we do
not claim that the real RMnO3 systems can be fully described
by a weak coupling approach as correlation effects can be
important, although a treatment based in band structure cal-
culation may be very useful to understand some properties of
these materials. In particular, in Ref. 32 using a two orbital
double exchange model, it was obtained that the experimen-
tal observed E-phase exits in a wide region of parameter
space, and it is adjacent to the A-type phase. Coulomb in-
traorbital interactions might be significant. However, the in-
clusion of realistic interorbital Coulomb interaction in the
microscopic model3,14 only renomalizes the critical param-
eters of the phase diagram, maintaining the topology of the
diagram unaltered.

One of the issues that remains to be understood is the
microscopic origin of the incommensurate phases appearing
near the A-type to E-type magnetic transition. The aim of this
work is to explain these phases using a realistic microscopic
model. The Hamiltonian we study describes electrons mov-
ing in two eg bands, that are ferromagnetically strongly
coupled to the Mn core spins as well to the Jahn-Teller
phonons. In addition, we also consider a direct superex-
change interaction between the core Mn spins. Starting from
this Hamiltonian we derive a functional that describes a tem-
perature induced commensurate-incommensurate transition
similar to that observed experimentally.

The main result of this work is that near the A to E phase
transition, the competition between the nearest-neighbor an-
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tiferromagnetic superexchange interaction and the double ex-
change induced long range ferromagnetic interaction, results
in the appearance of incommensurate phases. These phases
consist of a periodic array of domain walls.

The rest of the paper is organized as follows. In Sec. II we
describe the microscopic model and we present the zero tem-
perature phase diagram. In Sec. III we outline the method for
obtaining the critical temperatures and we present the phase
diagram composed of the different uniform phases. In Sec.
IV we develop the functional for describing spatially modu-
lated phases. Also in Sec. IV we study how the phase dia-
gram of manganites at x=1 is altered when soliton incom-
mensurate phases are taken into account. We finish in Sec. V
with a brief summary.

II. MICROSCOPIC HAMILTONIAN AND ZERO
TEMPERATURE PHASE DIAGRAM

We are interested in the transition between the A and E
phases. In these phases the x-y planes are coupled antiferro-
magnetically and therefore we can analyze the properties of
these states and the transition between them by studying a
Hamiltonian which describes electrons moving in the x-y
plane. The Coulomb interaction between electrons prevents
double occupancy and aligns the spins of the d orbitals. The
crystal field splits the Mn d levels into an occupied t2g triplet
and a doublet of eg symmetry where 1−x electrons per Mn
must accommodate. The Hund’s coupling between the spins
of the eg electrons and each core spin is much larger than any
other energy in the system, and each electron spin is forced
to align locally with the core spin texture. Then the eg elec-
trons can be treated as spinless particles and the hopping
amplitude between two Mn ions is modulated by the spin
reduction factor,

f12 = cos
�1

2
cos

�2

2
+ ei��1−�2� sin

�1

2
sin

�2

2
, �1�

where ��i ,�i� are the Euler angles of the, assumed classical,
Mn core spins �Si�. This is the so-called double exchange
�DE� model.35–37

We study a double exchange model coupled to Jahn-Teller
�JT� phonons. We also include the antiferromagnetic cou-
pling between the Mn core spins JAF,

H = − �
i,j,a,a�

f i,jta,a�
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+ Cj,a� + JAF�
�i,j�

SiS j

+
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�Q1i�i + Q2i�xi + Q3i�zi� ,
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here Ci,a
+ creates an electron in the Mn ion located at site i, in

the eg orbital a �a=1,2 with 1= �x2−y2� and 2= �3z2−r2��.
The hopping amplitude taa� is finite for next neighbors Mn
and depends both on the type of orbital involved and on the
direction u between sites i and j �t1,1

x�y�= ±	3t1,2
x�y�= ±	3t2,1

x�y�

=3t2,2
x�y�= t�3. t is taken as the energy unit. The fourth term

couples the eg electrons with the three active MnO6 octahe-
dra distortions: the breathing mode Q1i, and the JT modes

Q2i and Q3i that have symmetry x2−y2 and 3z2−r2, respec-
tively. Q1i couples with the charge at site i, �i=�aCi,a

+ Ci,a
whereas Q2i and Q3i couple with the x and z orbital pseu-
dospin, �xi=Ci1

+ Ci2+Ci2
+ Ci1 and �zi=Ci1

+ Ci1−Ci2
+ Ci2, respec-

tively. The third term is the elastic energy of the octahedra
distortions, being �	2 the spring constant ratio for breath-
ing and JT modes.38 In the perovskite structures the oxygens
are shared by neighboring MnO6 octahedra and the Q’s dis-
tortions are not independent, cooperative effects being very
important.39 In order to consider these collective effects, we
consider the position of the oxygen atoms as the independent
variables of the JT distortions.

For a given value of the parameters � and JAF, and a
texture of core spins �Si�, we solve self-consistently the mean
field version of Hamiltonian �2� and obtain the energy, the
local charges ��i�, the orbital pseudospin order ��xi ,�zi� and
the oxygen octahedra distortions Q
,i. These quantities are
better described by their Fourier transforms, that are repre-

sented by the same symbol with a hat, �̂�G�, Q̂1�G� , . . ..
In Fig. 1 we present the phase diagram obtained by solv-

ing self-consistently Eq. �2� for the parent compound
RMnO3. For the range of parameters studied, we do not find
any solution showing charge modulation. In all the phases
there is an electron located on each Mn ion, therefore in our
model any gap in the energy spectrum is due to the spatial
modulation of any other physical quantity.

For small values of JAF the ground state is ferromag-
netic, A-order. In absence of Jahn-Teller coupling this
phase is metallic, however, for ��0, and due to the perfect
nesting between the eg bands, the A phase develops a gap at
the Fermi energy. The Jahn-Teller coupling produces and or-
bital order characterized by a finite Fourier component of the
x component of the pseudospin �̂x�� ,��= �̂x�−� ,−���0,
see Fig. 2�a�. The orbital order �OO� is produced by an or-
dered distribution of the oxygen octahedra distortions

Q̂2�� ,��= Q̂2�−� ,−���0, that depends on the value of �.
The amplitude of the distortions are modulated in order to

FIG. 1. Zero temperature phase diagram for x=1 for the two-
dimensional DE two orbital model with cooperative Jahn-Teller
phonons. The symbols OO and OD stand for orbital ordered and
orbital disordered, respectively. A, E, and G name the different
magnetic order defined in the text.
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minimize the elastic energy of the cooperative Jahn-Teller
distortions, and the signs arise from cooperative effects. In
this phase the �� ,�� orbital modulation opens a gap at the
Fermi energy and the x=1 manganite is an insulator, being
the energy gap proportional to the value of the Jahn-Teller
coupling.

For large value of JAF and � the system presents a G-type
antiferromagnetic ground state and an orbital order charac-
terized by a Fourier component of the pseudospin �̂x�� ,��
= �̂x�−� ,−���0. Each Mn ion is coupled antiferromagneti-
cally with its next neighbors and the double exchange
mechanism precludes the motion of the carriers, being this
phase an insulator. The minimal value of JAF for the occur-
rence of this phase depends on �, but in general is very large,
so that this phase is rather unlikely to occur in manganites.

For intermediates values of JAF the system develops a
magnetic order of E-type; the E phase consists of ferromag-
netic zigzag chains coupled antiferromagnetically. The hori-
zontal and vertical steps of the chain contain two Mn ions.
For large enough values of the Jahn-Teller coupling the E
magnetic order coexists with an orbital order similar to the
one occurring in the A and G phases; this order opens a gap
at the Fermi energy. In the E-OO phase the magnetic order is
characterized by a periodicity �2a ,2a�, being a the lattice
parameter of the square lattice. For small values of � the E
phase does not present orbital order, although it has a gap at

the Fermi energy. In the orbital disorder �OD� E phase, the
dispersion energy for the eg electrons along the FM zigzag
chain is given by32 �k= �2/3��±cos k±	cos2 k+3�, indicating
the existence of a large band gap at occupancies corres-
ponding to x=1. The physical origin of this gap is the depen-
dence of the tunnelling probability on the spatial direction,
t�,
x =−t�,

y for ��. It produces a periodicity in the hopping
amplitude along the zigzag chain, leading to a periodic po-
tential for the eg electrons. It is important to note that, con-
trary to the x=1/2 case,14,15 this modulation in the hopping
amplitude does not produce an orbital order. The E-OD
phase is stable due to the spatial modulation of the coherence
between next neighbors Mn ions along the zigzag chain,
�Ci,�

+ Ci+1,�=−�Ci+1,�
+ Ci+2,� for ��. The phases E-OO and

E-OD have different symmetry and therefore the transition
between the phases that occurs at finite values of � is a
discontinuous transition.

These results are in accordance with Raman experiments.
They show that orbital order exists for the orthorhombic
A-type magnetically ordered samples, but disappears for hex-
agonal samples,40 or when a ferromagnetic state is induced
with a large magnetic field near the Curie temperature.41

These experiments could clarify whether E-type magneti-
cally ordered phases present orbital order.

III. FINITE TEMPERATURE MAGNETIC PHASE
DIAGRAM

The simplest way of obtaining information on the phase
diagram corresponding to a given microscopic Hamiltonian
is by means of the mean field approximation. This approxi-
mation is insufficient for describing second order transitions,
but it is successful in describing the phases away from the
transition and in predicting the topology of the phase dia-
gram. In this approach we compute the magnetic critical
temperature of the different phases.

A. Ferromagnetic „A… phase

In this phase all the Mn spins point, on average, in a
particular direction, and there is a finite relative magnetiza-
tion �m�. Using a virtual crystal approximation, we consider
a unique value for the spin reduction factor f i,j that corre-
sponds to its expectation value,15,42

f ij 
�	1 + cos �ij

2
� 
	1 + �cos �ij�

2
=	1 + �m�2

2
.

�3�

A reduction of �m� produces a decrease in f i,j and therefore
in the kinetic energy. In this way the importance of the Jahn-
Teller coupling increases as the temperature decreases. The
internal energy per Mn ion of this phase can be written as

EA = �A��,�m�� + 2JAF�m�2, �4�

where the electronic energy per Mn ion, �A�� , �m��, depends
in a complicated way on � and �m� and must be obtained
numerically by solving Eq. �2�.

FIG. 2. �Color online� Orbital and spin order of x=1 manganites
in the x-y plane. Elongated orbitals along the x �y� directions rep-
resent d3x2−r2 �d3y2−r2� orbitals. Circles represent the Mn ions in a
orbital disordered phase. �a� Orbital order present in the ferromag-
metic A-OO phase. �b� Same as �a� but for the E-OO phase. �c� Spin
order in the E-OD phase. The solid and the dashed lines joining the
Mn ions indicate the modulation of the electronic coherence along
the zigzag chains. �d� Same as �a� but for the G-OO phase. In all the
phases there is not modulation of the electric charge and there is an
electron located at each Mn ion. The vectors in the different
schemes, represent the spatial periodicity in the different phases,
�a ,a� in the A-OO and G-OO phases and �2a ,2a� in the E-OO and
E-OD phases. In all the figures open and closed symbols represent
up and down spins.
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In order to describe thermal effects it is necessary to com-
pute the free energy. As the entropy of the carriers is very
small14 we only include the entropy of the classical Mn
spins. We use a mean field approximation that neglects spa-
tial correlations and assume for each individual spin a statis-
tical distribution corresponding to an effective magnetic
field.14,37 In this molecular field approximation the entropy of
the Mn spins takes the form

S��m�� =
ln 2

2
−

3

2
�m�2 −

9

20
�m�4 + ¯ . �5�

Using this expression for the Mn spins entropy the total free
energy of the system for small values of �m� takes the form

F��m�� = EA − TS��m��

and the Curie temperature of the A phase is

TC = −
2

3
 ��A��,�m��

��m�2 
�m�=0

−
4

3
JAF. �6�

For finite � the derivative must be calculated numerically.
From higher derivatives of the internal energy with respect to
the magnetization we obtain that the transition is second or-
der. In Eq. �6� we notice that for a given value of the Jahn-
Teller coupling the Curie temperature decreases linearly with
the superexchange antiferromagnetic coupling JAF.

B. Antiferromagnetic E phase

The magnetization of the E phase is described by the rela-
tive amount of saturation in each zigzag chain �ms�. In the
virtual crystal approximation fluctuations are neglected and
the hopping is modulated by the spin reduction factor that is
different along the zigzag FM chain, fFM than between the
AFM coupled chains, fAF,15,37

fFM��mS�� =	1 + �mS�2

2
,

fAF��mS�� =	1 − �mS�2

2
. �7�

The internal energy of this phase depends on �, and �mS�,
and can be written as

EE = �E��,�mS�� . �8�

As each Mn spin core is surrounded by two Mn spins
coupled FM and other two coupled AFM, the superexchange
energy is zero.

In order to compute the Néel temperature of the E phases,
we introduce an effective field for each spin sublattice. Tak-
ing into account that both, the magnetization and the effec-
tive magnetic field, have a different sign in each sublattice,
we end up with the same expression for the entropy than in
the A phase, but just changing �m� by �mS�.15 With this the
free energy takes the form

F��mS�,�� = EE − TS��mS��


 F�0,�� + �mS�2� 3
2T + a� + �mS�4� 9

20T + b�
+ �mS�6� 99

350T + c� + ¯ �9�

with

EE � cte + a�mS�2 + b�mS�4 + c�mS�6 + ¯ . �10�

Due to the symmetry of the E phase the coefficient a is zero,
and the Néel temperature depends on the coefficients b and
c. Numerically, the coefficient b is negative and the transi-
tion from the E to the paramagnetic �PM� phase is a first
order phase transition.

It is interesting to analyze the origin of the negative sign
of the quartic term. In the OD case the Jahn-Teller coupling
is not large enough to produce orbital order. In this situation
the electronic energy is just kinetic energy. Therefore near
�mS�=0 we would expect that the electronic energy could be
obtained perturbatively from the paramagnetic energy as
E�=0

E ��1/	2��fFM��mS��+ fAF��mS����E
0 . Here �E

0 ��E�0,0� is
the paramagnetic energy per Mn ion. Expanding the spin
reduction factors near �mS� we find E�=0

E ��1− 1
8 �mS�4−

5
128�mS�8− ¯ ��E

0 . As the electronic energy of the paramag-
netic phase is negative, the last expression suggests that the
Néel temperature should be zero. However, numerically, we
find a finite Néel temperature even for �=0. This discrep-
ancy occurs because, as commented above, in the E-OD
phase the minimization of the kinetic energy produces a
modulation of the electron coherence along the zigzag chain,
�Ci,�

+ Ci+1,�=−�Ci+1,�
+ Ci+2,� for ��. We describe this

modulation by a order parameter � that represents the
�� /2 ,� /2� Fourier component of the electron coherence.
This order parameter is coupled with the staggered magneti-
zation and the functional describing the electronic energy has
the general form

E�=0
E 1

	2
�fFM��mS�� + fAF��mS����E

0 + 
�2 + ���mS�2 + ¯ ,

�11�

where we have included the elastic energy associated with
the electron coherence and the minimal coupling between the
staggered magnetization and the electron coherence. Mini-
mizing this energy with respect to the coherence parameter �,
we find �=−�� /2
��mS�2. Introducing this value in the ex-
pression of the electronic energy, Eq. �11�, we obtain

E�=0
E � �1 −

1

8
�mS�4��E

0 −
�2

4

�mS�4 + ¯ �12�

and for strong enough coupling between �mS� and the orbital
coherence, the quartic term is negative and a finite Néel tem-
perature is expected. It is therefore the coupling between the
electron coherence and the staggered magnetization that are
responsible for the occurrence of a finite Néel temperature.

In the OO case there exists a finite orbital order parameter
�̂x�� ,��, that is coupled with the staggered magnetization
and it is responsible for the existence of finite Néel tempera-
ture.

J. SALAFRANCA AND L. BREY PHYSICAL REVIEW B 73, 024422 �2006�

024422-4



C. Temperature-JAF magnetic phase diagram

In Fig. 3, we plot the T-JAF magnetic phase diagrams for
�=0 �a� and �=1.2t �b�. These phase diagrams have been
obtained by minimizing and comparing the free energy of the
A, E, and paramagnetic phases. For �=0, all the phases are
disordered in the orbital sector, however, for large enough
values of �, the E and A phases present orbital order. In the
latter case, �=1.2t, we find that the critical temperature as-
sociated with the orbital order is much larger than the mag-
netic critical temperatures and, therefore, in Fig. 3�b� the
paramagnetic phase presents orbital order. In any case, it is
important to note that, from the magnetic point of view, both
phase diagrams are topologically equivalent. At large tem-
peratures the systems are always paramagnetic, for small JAF
and small temperature the systems present ferromagnetic or-
der, whereas for small temperature and moderate values of
JAF an antiferromagnetic order of type E appears. For very
large values of the AFM coupling, not shown in Fig. 3, an-
tiferromagnetic order of type G would appear. The Curie
temperature corresponding to the paramagnetic-A phase tran-
sition decreases linearly with JAF, Eq. �6�, until it reaches
the, JAF independent, Néel temperature corresponding to the
paramagnetic-E transition. As discussed in the preceding sec-
tion the A-paramagnetic transition is second order while, be-
cause of the coupling between different order parameters, the
E-paramagnetic transition is first order.

The phase diagrams present a Lifshitz point where the
uniform ferromagnetic A phase, the modulated ordered E

phase and the paramagnetic disordered phase meet. Near the
Lifshitz point there is a range of values of JAF where, by
increasing the temperature, the system undergoes an E-A
transition followed by an A-PM transition. The topology of
this phase diagram is similar to that of a Ising model with
competing interactions. In that model, near the Lifshitz point,
solitons, spatially modulated phases and commensurate-
incommensurate transitions appear when the temperature
varies.31 In the next section we explore the possible existence
of solitons and incommensurate phases in the model de-
scribed by the Hamiltonian Eq. �2� at x=1 and near the Lif-
shitz point that appears in the T-JAF phase diagram, Fig. 3.

IV. SOLITON THEORY AND SPATIALLY MODULATED
PHASES

A. Landau functional

Magnetically, the phases described in the preceding sec-
tions only vary along the direction perpendicular to the
chains, see Fig. 2. In the mean field approximation
the E phase is described by a spin density wave of the form
�S�=	2m0 cos�q0z+� /4�, with q0=� /2 and here z is the po-
sition of the atoms along the direction perpendicular to the
chains. We are taking the distance between first neighbors
diagonal lines of atoms, 	2a /2, as the unit of length. In
general the expression

�S� = 	2m0 cos�q0z +
�

4
+ ��z�� �13�

describes different spatially modulated magnetic phases.
With ��z�=0 it describes the E phase, whereas with ��z�
=−q0z, it represents the average magnetization in the posi-
tion independent ferromagnetic A phase. The case m0=0 cor-
responds to the paramagnetic case. In general ��z� describes
phases where the average magnetization changes along the
direction perpendicular to the chains. �see Fig. 4.�

Both the E and A phases are commensurate with the un-
derlying lattice, here we are going to study the existence of
solitons and incommensurate phases in the system. The soli-
tons are static domain walls between commensurate do-
mains. In this section we present a formalism which makes
contact with phenomenological theories and provides the ba-
sis for the calculation of the nature of the phase diagram at
finite temperature.

We want to build a Landau theory functional where the
order parameter is the modulation of the average spin along
the diagonal direction. Following Refs. 43 and 44, in Eq.
�13� we consider the amplitude of the magnetization, m0, as
constant in the space.

In order to set up a Landau theory we need to calculate
the different contributions to the free energy. For a magneti-
zation given by Eq. �13�, and near the order-disorder mag-
netic transitions, the entropic contribution to the free energy
can be estimated as described in Sec. III,

FIG. 3. Phase diagrams T-JAF for the two-dimensional DE two
orbital model with cooperative Jahn-Teller phonons and x=1. In �a�
we plot the �=0 case and in �b� the �=1.2t case. Continuous lines
represent first order transitions whereas dashed lines indicate sec-
ond order transitions. The abbreviations naming the different phases
are explained in the text.
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− TS 
 kBT� �− ln 2 +
3

2
m0

2 +
27

40
m0

4 +
99

140
m0

6

− � 9

40
m0

4 +
297

700
m0

6�cos 4��z��dz . �14�

The superexchange antiferromagnetic interaction takes the
form

EAF 
 2JAFm0
2� sin����z��dz , �15�

where ���z� is the derivative of ��z� with respect to z. In the
previous expression we have treated the position z as a con-
tinuous variable and we have discarded second and higher
derivatives of � with respect to the position.

Concerning the electronic contribution to the internal en-
ergy, Ee, we assume that it is local and can be written as
Ee=�dzE�z�, being E�z� the electronic energy density. We
expect that it can be expanded in powers of the order param-
eter �S� and its derivatives,

E�z� = E0 + ãl�z��S�z��l + b̃l�z����S�z���l + c̃l,m�z�

��S�z��l���S�z���m
¯ . �16�

Here the sum over repeated indices is assumed, and because
the symmetry of the system only even powers of �S� and

��S�z�� contribute. The coefficients ãl, b̃l, and c̃l,m are peri-
odic in z with the periodicity of the crystal lattice and for a
magnetization of the form Eq. �13�, the density of electronic
energy can be written as

E�z� = E0 + a2m0
2 + a4m0

4 + a6m0
6 + �b4m0

4 + b6m0
6�cos 4��z�

+ �c2m0
2 + c4m0

4 + c6m0
6�����z� + q0�2. �17�

Here we have neglected higher terms in the derivates of the
phase � and, as there are first order phase transitions in some
part of the phase diagram, we keep terms up to the sixth
power in m0. The second term in Eq. �17� is the Umklapp
term that favors the modulated commensurate solutions,
��z�=0,� /2 ,� ,3�� /2�, corresponding to the E phase. The
last term is an elastic energy which favors the occurrence of
the ferromagnetic A phase, ��z�=−q0z. The competition be-
tween the elastic and the Umklapp will produce the existence
of solitons and incommensurate phases.

From the expression of the electronic energy of the E
phase as a function of the order parameter m0, we notice
a2=−c2q0

2. Analyzing the dependence of the electronic en-
ergy on a constant phase ���r�=�0�, we find b4=a4+c4q0

4 and
b6=a6+c6q0

4. In this way only two subsets of parameters �for
instance b’s and c’s� are independent. Finally, for each value
of �, we perform microscopic calculations of the electronic
energy of the A and E phases and obtain the numerical values
of the coefficients b’s and c’s respectively.

Adding the entropy, Eq. �14�, the antiferromagnetic en-
ergy, Eq. �15� and the electronic internal energy, Eq. �17�, we
obtain the following expression for the free energy of the
system:

F = F0�T,m0� + C� �1

2
����z� + q0�2 + w�1 + cos 4��z���dz ,

�18�

with

F0�T,m0� = �− ln 2 + 3
2m0

2 + 9
10m0

4 + 198
175m0

6�T − 2JAFm0
2 + �e

0

− c2m0
2q0

2, �19�

C = �2c2 + 4
JAF

q0
2 �m0

2 + 2c4m0
4 + 2c6m0

6, �20�

and

w =
�b4 − 9

40�m0
4 + �b6 − 297

700T�m0
6

C
. �21�

In the limit w→0, the elastic contribution is the more
important term and the phase ��z� tends to be ��z�=−q0z.
On the contrary, for large values of w, the Umklapp term
is dominant and � wants to get a constant value,
�=0,� /2 ,� ,3�� /2�. A transition between the commensu-
rate phase, �=0 and the uniform ferromagnetic phase takes
place because of the competition between these two terms;
by tuning the values of JAF and T we are going to see that a
soliton incommensurate phase appears between these two
limits.

For a given temperature and a particular value of JAF, the
constant amplitude m0 and the phase function ��z� that char-
acterize the solution are obtained by minimizing the func-
tional Eq. �18�. For each m0, the phase ��z� should satisfy the
sine-Gordon equation,

FIG. 4. �Color online� Spin order of x=1 manganites in the
x-y plane. �a� corresponds to the E phase whereas �c� represents the
A phase. The direction perpendicular to the zigzag chains is shown
in �a�. The averaged magnetization along the z direction for the E
and A phases are plotted in �c� and �d�, respectively.

J. SALAFRANCA AND L. BREY PHYSICAL REVIEW B 73, 024422 �2006�

024422-6



1

2

d2�

dz2 + 4w sin 4� = 0 �22�

which has solitonlike solutions of the form

��z� = tan−1 exp�4	wz� . �23�

This solution is a domain wall which separates two almost
commensurate z regions.

In general the solution of Eq. �18� is a soliton lattice
formed by a regular array of domain walls, L. At each soliton
the phase � tumbles � /2. The deviation of the average wave
vector q̄ from q0 is inversely proportional to the distance, L,
between the domain walls,

q̄ =
�

2L
. �24�

The value of q̄ is proportional to the soliton density and is
obtained by minimizing the free energy following the proce-
dure outlined in Refs. 31 and 43–45.

In the soliton lattice phase the magnetic periodicity along
the z direction is characterized by the wave vector

q =
�

2
−

�

2L
. �25�

In the E phase there are not solitons in the system, L=�, and
the wave vector of the magnetic modulation is q=� /2. In the
continuous approximation the ferromagnetic A phase corre-
sponds to a extremely dense lattice soliton, L=1. In this
limit, � is too quickly varying, the continuous approximation
is not valid, and we take the criterium that for L�1.1, the
soliton lattice is the ferromagnetic A phase.

B. Results

In order to find inhomogeneous phases in manganites at
x=1, we have minimized the free energy Eq. �18� with the
coefficients a’s, b’s, and c’s obtained from the microscopic
model described in Sec. II. The solutions are characterized
by the value of the magnetization m0 and the density of soli-
tons q̄. We present results for the case �=0, but similar re-
sults are obtained for finite Jahn-Teller coupling.

If we consider only the uniform solutions, E and A
phases, the minimization of the free energy results in the
phase diagrams already presented in Sec. III, Fig. 3. When
inhomogeneous solutions are considered, we obtain the
phase diagram shown in Fig. 5. Several comments on this
phase diagram are in order: �i� There are not solitons for
values of JAF larger than the antiferromagnetic coupling cor-
responding to the Lifshitz point. The paramagnetic-E phase
transition is first order, with a large jump in the value of mS,
and therefore in the value of w. In this situation, large values
of w, the Umklapp term is much stronger than the elastic
term and the system prefers to be commensurate with the
lattice. Note than in the paradigmatic Ising model with com-
peting interactions31 all the transitions are second order and
incommensurate phases appear at both sides of the Lifshitz
point. �ii� For small values of JAF the elastic term is very
strong and the solution corresponds to a dense soliton phase.

For small values of JAF the distance between solitons is
smaller than the cutoff and we consider that this commensu-
rate phase is actually, in the discrete real crystal, the ferro-
magnetic A phase. �iii� For intermediate values of JAF, the
competition between the elastic and the Umklapp term re-
sults in the appearance of incommensurate solitonic phases.

In Fig. 5, the shadow region indicates the incommensurate
phase. The frontier of this phase with the ferromagnetic A
phase is diffuse because, as we have already discussed, to
distinguish between a dense soliton phase and the ferromag-
netic A phase we take a criterion based on the distance be-
tween solitons. Although experiments in Tb and Dy com-
pounds show lock-in transition to incommensurate phases at
low temperature,29 we have not found solitonic phases in the
zero T limit of the Ginburz-Landau functional. Neither have
we found stable solitons by diagonalizing the microscopic
Hamiltonian, Eq. �2�. A recent work including ferroelectric
couplings46 might clarify this issue. Typical temperature de-
pendence of the magnetic wave vector and magnetization
amplitude near the incommensurate phase is illustrated in
Fig. 6. For low temperature the system is in the commensu-
rate E phase, corresponding to a wave vector q=� /2. At low
temperatures the spins are highly polarized and that makes
the magnetic modulation too rigid to allow solitons. As tem-
perature increases, the amplitude of the spin modulation, m0
decreases and, at a JAF dependent temperature, a jump to the
solitonic phase takes place. For values of JAF closer to the
Lifshitz point, the incommensurate phase appears at tem-
peratures near the A-paramagnetic critical temperature. In
that case the amplitude of the magnetization m0 is small and
hence the magnetic wave vector of the incommensurate
phase is also very small. Therefore, in this part of the phase
diagram the incommensurate phase is similar to the A phase.

For values of JAF near the zero temperature A to E phase
transition, there is a small portion of the phase diagram
where, by decreasing the temperature, the system evolves
first from a paramagnetic, q=0, phase to a incommensurate
phase characterized by a finite q, and then to a ferromagnetic
A phase without magnetic modulation, q=0.

FIG. 5. Phase diagram T-JAF as obtained by minimizing the free
energy Eq. �18�. The parameters of entering in the free energy are
obtained by minimizing the microscopic Hamiltonian Eq. �2� for
�=0 and x=1. Continuous lines represent first order transitions
whereas dashed lines indicate second order transitions. The shadow
region indicates the region where the incommensurate phase exits.
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The magnetic phase diagram shown in Fig. 5 contains the
essence of the magnetic properties experimentally observed
in undoped manganites.29 Systems with large hopping
amplitude �JAF/ t small� as LaMnO3 have a ground state
with a magnetic order of type A and a relatively large Néel
temperature. The relative value of the AFM coupling in-
creases when the ionic radius of the rare earth in the manga-
nite increases. Therefore we understand the experimental de-
crease of the Néel temperature in the series of RMnO3 �R
=La,Pr,Nd,Sm� as the diminution of the A-paramagnetic
critical temperature when JAF increases, see Figs. 3 and 5.

Experimentally it is observed that for large enough ionic ra-
dius, HoMnO3, the ground state of the undoped manganite
has a magnetic order of type E, and present incommensurate
phases when temperature increases. We claim that this situ-
ation corresponds in the phase diagram Fig. 5 to values JAF/ t
in the range 0.18–0.20. Experimentally it is also observed
that in some compounds as TbMnO3 and GdMnO3, when the
temperature increases, the system undergoes two phase tran-
sitions, first a a ferromagnetic-incommensurate transition
and, at higher temperatures, a incommensurate-paramagnetic
transition. In the phase diagram presented in Fig. 5 similar
behavior occurs for values of JAF near 0.18t.

V. SUMMARY

By starting from a microscopic Hamiltonian we have de-
rived an expression for the free energy of undoped mangan-
ites. Using a realistic model, we have quantified the compe-
tition between the short range superexchage anti-
ferromagnetic interaction, and the long range double ex-
change ferromagnetic interaction. The competition between
these interactions results in the existence of magnetic incom-
mensurate phases as recently experimentally observed in un-
doped manganites. The incommensurate phases can be de-
scribed as arrays of domain walls separating commensurate
phases by a distance that depends on temperature. The results
presented in Fig. 5 explain qualitatively the experimental re-
sults presented in Ref. 29.
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