
Thermodynamic description of heat and spin transport in magnetic nanostructures

Laurent Gravier,* Santiago Serrano-Guisan, François Reuse, and Jean-Philippe Ansermet
Institut de Physique des Nanostructures, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-EPFL, Switzerland

�Received 1 July 2005; revised manuscript received 11 October 2005; published 25 January 2006�

Spin-dependent heat and charge transport perpendicular to the plane of magnetic Co/Cu multilayers was
studied experimentally and interpreted in the framework of the thermodynamics of irreversible processes. The
thermogalvanic voltage�TGV� is introduced. It measures the ac voltage response to a small temperature oscil-
lation while a dc current is driven through the sample. TGV presents a magnetic response �MTGV� of 50%,
much larger than magnetoresistance �GMR� and the magneto-thermoelectrical power �MTEP�. The linear
equations for transport of heat, charge, and spin-polarized currents in magnetic and nonmagnetic mediums are
applied to a multilayer structure. The role of spin mixing in GMR, MTEP, and MTGV is shown. In particular,
the asymmetry of the spin-mixing gives rise to spin-dependent effective Peltier coefficients. The three mea-
surements can be accounted for with two parameters expressing the spin dependence of the transport
coefficients.
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I. INTRODUCTION: THE INTERFACE TRANSPORT

Ever since the study of Sir W. Thomson in 1856 on fer-
romagnetic thermocouples, the magneto-thermoelectric prop-
erties of ferromagnetic materials has attracted numerous ex-
perimental works.1,2 The theoretical descriptions of heat and
charge transport in magnetic medium has also drawn atten-
tion for a long time.3–6 The discovery of the giant magne-
toresistance �GMR� �Refs. 7 and 8� with the current perpen-
dicular to the plane �CPP� �Refs. 9 and 10� brought forth the
concept of spin dependent transport in layered structures.11

The magneto-thermoelectrical power �MTEP� of ferro-
magnetic layered structures has been studied. All measure-
ments, performed with the heat current in the plane, pre-
sented a high magnetic response of the thermoelectrical
power.12 A usual analysis consists of comparing GMR and
MTEP through the Mott formula, in a direct way,13 in the
framework of spin-dependent transport14 or including all rel-
evant spin asymmetry.15 MTEP measurements with CPP
were obtained16 and were discussed in the same fashion.

We present in this paper heat and charge transport in mag-
netic nanostructures with current perpendicular to the inter-
faces. The significance of the data is brought out by a de-
scription of nonequilibrium thermodynamics, in the linear
regime, of heat and charge transport in ferromagnets. To the
author’s knowledge, the use of this approach was reported
only twice in the literature. Johnson and Silsbee focused on
ferromagnet/nonferromagnet interface transport of a charge,
heat, and magnetization currents.17,18 Wegrowe set the ki-
netic equations in a metallic ferromagnet, leaving out the
heat transport.19 This approach allows us to express the
mixed effects of charge and heat currents while taking into
account the spin dependence of the transport coefficients.

Thus, we analyze a novel measurement which consists in
monitoring the ac thermoelectric power of multilayered
nanowires subjected to intense dc charge current.20 We call
the observed response the magneto-thermogalvanic voltage
�MTGV�. The magnetic response of this signal is much
larger than the GMR or the MTEP.

Flux conservation at the interfaces between layers in a 1D
model and the hypothesis of uniform gradients inside each

layer complete this “three-current” model of spin-dependent
heat and charge transport in ferromagnetic structures. This
description includes spin mixing with a spin asymmetry. It
could also take into account a spin-dependent average en-
tropy per charge. However we find that all our data can be
accounted for without introducing this term. The MTGV is
shown to arise from a Peltier effect characteristic of transport
perpendicular to multilayers. The three-current model dem-
onstrate that the asymmetry in spin mixing implies spin-
dependent Seebeck coefficients.

II. EXPERIMENT

A. Multilayered nanowires by template synthesis

The samples are obtained by a technique of electrodepo-
sition in tracked-etched polymer membrane templates.21,22

Gold layers are sputtered on both side of a porous polymers
membrane. The bottom layer operates as the working elec-
trode for electrodeposition. The pores, typically 6 �m long
and with a diameter ranging from 30 to 60 nm, are filled
electrochemically with a series of 300 bilayers of Co and Cu,
10 nm each.23 The growing nanowires are electrically con-
tacted when reaching the top gold membrane, thin enough
��50 nm� to leave the pores open �Fig. 1�.The high aspect
ratio of such a structure insures currents perpendicular to the
layers �CPP geometry�. Additionally, monitoring the poten-
tial between both Au layers allows us to limit the contact to
a single nanowire.24

B. Transports measurements

The sample holder is installed in a cryostat that allows
temperatures from 300 K down to 13 K, between the poles
of a resistive magnet reaching 9 kG. The nanostructures are
wired to two separate loops that can be independently con-
nected to ac or dc instruments. The resistance is measured by
conventional detection of the ac voltage due to an dc current
source �Fig. 2�a��.
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The current loop is open for the thermoelectrical power
measurements �TEP� �Fig. 2�b��. The heat source is a
chopped laser beam lead by optical fiber and focused on the
nanowire “top” junction by an in situ optical lens.26 The
optical density is about 10 W cm−2 for a light spot diameter
below 0.5 mm. The laser spot is scanned over the surface
until the signal is maximum. Lighting the top side of the
membrane with a chopped light forces both temperature drop
�T and the spatial average of the temperature of the nano-

wire T̄ to oscillate at the same frequency. The ac thermoelec-
trical power Vac is detected in phase with the oscillatory light
power Pac �square waveform�. In our metallic wire, of a
length scale of a few tens of micrometers, the temperature
reaches equilibrium in less than 1 �s. Therefore we choose
low enough frequencies ��105 Hz� to let the temperature
gradient to be frankly established �typically 22 Hz�.

The TEP protocole is extended to MTGV measurements,
as sketched in Fig. 2�c�. The ac voltage detection is locked to
the oscillatory light power Pac while a steady current Idc is
maintained through the wire. The temperature of the wires
under currents of high density was monitored by resistance
measurements.25 The temperature rise due to the Joule heat-
ing is of no more than a few Kelvin for wires as small as
50 nm in diameter.26

C. Results

We investigated the effect of an external magnetic field
�0H on the transport properties of wires perpendicular to the
field. We present the data of a representative sample, among
the fifteen samples measured. Measurements performed at
15 K are reported in Fig. 3. The three GMR, MTEP, and
MTGV curves exhibit the same bell-like shape, attributed to
the progressive transition from the antiparallel �AP� to the
parallel �P� magnetic configurations of the ferromagnetic
layers.

The GMR ratio about 19% �Fig. 3�a�� attests to the high
quality of the sample. The magnetic response of the thermo-
electrical power �Fig. 3�b�� is about 30%. This MTEP ratio is
thus higher than the GMR ratio. It was accounted for in
terms of the spin dependence of the thermopower �.16,27 The
MTGV is the magnetic field dependence of Vac under a con-
tinuous current Idc of −200 �A �Fig. 3�c��. The MTGV ratio
of about 50% is clearly higher than both GMR and MTEP
ratios. Figure 4 shows that the voltage Vac is practically pro-

FIG. 4. Vac voltage as a function of Idc for zero �full circles, ��
and saturation �open circles, �� magnetic fields at �a� 15 K and �b�
300 K. The dotted line is the expectation if only heating effects are
considered.

FIG. 1. Schematics of our samples. A multilayer nanowire
�hatch� is embedded in a polymer membrane �light grey�, and elec-
trically contacted to gold layers �dark grey�. The nanowire is heated
by a laser beam from the top.

FIG. 2. Nanowire �grey� embedded in a membrane �hatched�,
and electrically contacted to Au layers �light grey�. The three dif-
ferent measurement protocoles are �a� GMR, �b� MTEP, and �c�
MTGV.

FIG. 3. �a� GMR, �b� MTEP, and �c� MTGV curves at 15 K. The
MTGV data are measured under a continuous current of −200 �A.
Full �open� circles indicate field sweep up �down�.
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portional to the current Idc, and the slope �Vac /�Idc strongly
depends on the applied magnetic field. The change in slope is
in essence what is measured in MTGV in Fig. 3. The small
intercept at Idc=0 is the MTEP. It is as small as expected for
metals at low temperature.28

The linear dependence on the current points to a process
independent of the thermopower. The enhanced magnetic re-
sponse cannot strictly arise from GMR or MTEP effects. A
more complex process must be invoked. Modeling with lin-
ear transport theory for heat and electrical currents clarifies
what MTGV reveals, as shown below.

III. THE THREE-CURRENT MODEL

A. Constitutive equations

We apply the theory of the thermodynamics of irrevers-
ible processes in the linear approximation.29 Electrons with
different spin orientations are treated as two different charge
carriers, indexed as + and −. Each type of charge carrier has
its chemical potential. As in electrochemistry, the chemical
potential and the electric potential add.30 The generalized
forces are the gradients of this sum of potentials and the
gradient of the temperature. We assume a linear relationship
between these generalized forces and their associated cur-
rents: the current j+ of spin +, j− of spin − and js of entropy.

� js

j+

j−
� = − �Lss Ls+ Ls−

L+s L++ L+−

L−s L−+ L−−
�� �T

��+ − q+E

��− − q−E
� . �1�

The number of free parameters is reduced through the
Onsager reciprocal symmetry relations �Lij�H�=Lji�−H�, i
� j� and also the symmetry according to which a �+� spin
which is a majority spin in a field H is a minority spin in a
field −H and vice versa. Therefore, we have the relations
L+s�H�=Ls+�−H�=Ls−�H� and L−s�H�=Ls−�−H�=Ls+�H�.

We see in Eq. �1� that L+− implies a contribution to the
spin-up current by the down spins. This contribution is pro-
portional to the force on the down spins. This process is
characteristic of the so-called spin mixing. In such a process,
spins flip while the charge carrier retains its momentum.14

The symmetry relations keep the L+− and L−+ parameters free
of any constraints �L+−�H�=L−+�−H�=L+−�H��.

In doing so, we assume that the amplitudes of the coeffi-
cients do not depend on the magnetic field. Indeed, a field is
applied, but it is used to change the relative orientation of the
magnetization of the subsequent layers. In this model, the
phenomena are accounted for without assuming that the in-
trinsic transport parameters are field dependent.

The electrochemical potential for each kind of carrier is
developed as �+=�0+�� and �−=�0−��, with �0 the av-
erage electrochemical potential of electrons, and �� the shift
induced by the polarization driven by the current. We denote
��0−qE=q�V. Therefore, with the charge of the electrons
set as q=q+=q−=−e, Eq. �1� rewrites as

� js

j+

j−
� = − �Lss Ls+ + Ls− Ls+ − Ls−

Ls− L++ + L+− L++ − L+−

Ls+ L−− + L−+ − L−− + L−+
�� �T

q�V

���
� . �2�

We develop now these expressions in terms of the total
charge flux jn= j++ j− and the spin current jp= j+− j− which
expresses the spin polarization of the charge flux. The flux
vector is defined as J= �js , jn , jp�, the generalized forces are
denoted by the vector �X= ��T ,q�V ,����. The linear de-

pendence can thus be written J=L˜ ·�X or

�js

jn

jp
� = − � Lss Ls+ + Ls− Ls+ − Ls−

Ls+ + Ls− L++ + L−− + L+− + L−+ L++ − L−− − L+− + L−+

− Ls+ + Ls− L++ − L−− + L+− − L−+ L++ + L−− − L+− − L−+
�� �T

q�V

���
� . �3�

B. Relation to usual parameters

We can now proceed to relate each Lij to transport param-
eters. It is usual to related the kinetic coefficients to the fa-
miliar parameters � and �, the electric and thermal conduc-
tivities, and � the Seebeck coefficient �or thermopower�. This

is possible by identifying terms of the matrix L˜ to the phe-

nomenological parameters that describe conventional
measurements.29

In the present case, we distinguish the charge conductivi-
ties �+ and �−, and the Seebeck coefficients �+ and �− of
each currents. Applying successively Eq. �3� to express
Ohm’s Law, the heat conduction and the Seebeck voltage
�Appendix A� we can establish
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L˜ = −�
�

T
+ �+�−��+ + �−�

�+�+ + �−�−

q

�−�− − �+�+

q

�+�+ + �−�−

q

�+ + �−

q2 + L+− + L−+
�+ − �−

q2 − L+− + L−+

�+�+ − �−�−

q

�+ − �−

q2 + L+− − L−+
�+ + �−

q2 − L+− − L−+
	 . �4�

Electrons in ferromagnetic �F� layers are either majority
�↑� or minority �↓�, depending on the orientation of the mag-
netization. Accordingly, in a layer F with ⇑ magnetization,

its matrix L˜⇑ is set with spin + as majority and spin − as
minority, then denoted ↑ and ↓, respectively. On the contrary,

for ⇓ layers the matrix L˜⇓ will be written replacing + with ↓
and − with ↑.

The charge conductivities in F layers are expressed by the
relation11

�↑�↓� =
�F

2
�1 ± �� , �5�

where � accounts for the spin-dependence of the carrier con-
ductivities as

� =
�↑ − �↓

�↑ + �↓
. �6�

A complete model for GMR would introduce spin-dependent
interface resistance and spin relaxation in each layer. For the
sake of clarity, we neglect interface resistance here. We know

that our samples, this effect is not dominant.31 The spin-
diffusion length is much larger that the layer thickness32

therefore we assume uniform gradients inside each layer. We
introduced the coefficient �Ls /q=Ls+−Ls− that expresses the
difference of entropy carried by each current. According Eq.
�4�, �Ls=�−�−−�+�+. Since the Seebeck coefficient of a F
layer writes as the composition of the two parallel currents +
and − as �F= ��+�++�−�−� / ��++�−�,33 we can deduce the
expressions of �+ and �− as a function of �Ls, �F, �F and �,
for both magnetization configurations, to be as follows:

�↑�↓�
⇑ =

�F 	
�Ls

�F

1 ± �
; �↑�↓�

⇓ =

�F ±
�Ls

�F

1 ± �
. �7�

The spin mixing terms L+− and L−+ are kept track of
through their difference �L /q2=L+−−L−+ only. To simplify
the algebra, we assume here that the conductivities due to the
spin-mixing are negligible compared to the direct conductivi-
ties �+ and �−.

With the above defined parameters, the full matrix of F
layers ⇑ and ⇓ becomes

L˜⇑�⇓� = −��F

T
+ �F�F

2

1 −
�Ls

2

�F
2�F

2

1 − �2

�F�F

q
±

�Ls

q

�F�F

q

�F

q2 ±�
�F

q2 	
�L

q2

	
�Ls

q
±�

�F

q2 ±
�L

q2

�F

q2

	 . �8�

In a nonmagnetic layer N, there is no discrimination between spin channels, which implies �↑=�↓=�N /2 �i.e., �=0 in Eq. �5��,
�↑=�↓=�N and �L=�Ls=0. Then

L˜N = −�
�N

T
+ �N�N

2 �N�N

q
0

�N�N

q

�N

q2 0

0 0
�N

q2

	 . �9�
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C. Transport through bilayers

To probe the effect on transport of the magnetic configu-
ration of a multilayer structure, we establish the potential
difference at the ends of a system composed of two F−N
bilayers. The index i=1,3 label the ferromagnetic layers, and
i=2,4 the nonmagnetic ones �Fig. 5�.We arbitrarily set the
magnetization of the first layer in the ⇑ configuration, and
denote the second one with the index m= ⇑ ,⇓ for the parallel
�P� or antiparallel �AP� configurations, respectively. We as-
sume uniform gradients, so the drop of X over two bilayers
is given by

− 
X = d��X1 + �X2 + �X3 + �X4� �10�

with d the thickness of each layer.
The conservation of the flux vector provides the remain-

ing equations. We emphasize here that, unlike the typical
description of the Peltier effect, there is no heat transfer to
the interface from outside. This assumption is supported by
the particular 1D geometry of the metallic nanowire embed-
ded in a polymer matrix: the heat resistance between metal
and polymer is known to be quite large whereas a good heat
flux is insured along the metallic wire. Furthermore, since
layers are typically more than 50 nm in diameter and 5 nm in
thickness, we can assume that the interfaces are infinitely
extended. Therefore in this 1D approximation, forces and
fluxes must develop inside the layers, normal to the inter-
faces.

The conservation of the fluxes at the interfaces imposes
Ji=Ji+1 �i=1,2 ,3�,

J = L˜⇑�X1 = L˜N�X2 = L˜m�X3 = L˜N�X4. �11�

Equations �10� and �11� set four equations for the four un-
known gradients �Xi. It is a matter of straightforward arith-
metics to solve for each and find

JP�AP� = Y˜P�AP�
X

d
,

Y˜P�AP� = − �L˜⇑
−1 + L˜N

−1 + L˜m
−1 + L˜N

−1�−1, �12�

with the configurations P�AP� for m= ⇑ �⇓�. In 
X= �
T ,
−e
V ,
���, the term 
��=0 as we assume �� periodic
over two bilayers. Then we can derive from Eq. �12� the
potential difference through two bilayers


V =
d

q2Y22
je −

Y21

qY22

T �13�

with je=qjn. This equation can be extended to the whole
nanowire of length L, of cross section A and composed of n
identical bilayers in series. The experiment imposes a tem-
perature drop �T=n
T /2. The condition of �T very small in
front of the bath temperature Tb allows to assume the trans-
port parameters to be constant along the nanowire. Then, the
overall voltage drop V=n
V /2 across the whole nanowire
experiencing a dc current I=A · je is found to be

V =
L

4A

1

q2Y22
I −

Y21

qY22
�T . �14�

This equation is used in what follows to analyze the transport
measurements.

IV. EFFECTIVE TRANSPORT COEFFICIENTS

In this section, GMR is expressed in terms of the two spin
current model, MTEP and MTGV in terms of one charge
current and the heat current. The spin asymmetry of the
Seebeck coefficients is then discussed.

A. GMR

We apply our model to the GMR. Under the condition of
uniform temperature ��T=0�, Eq. �14� is reduced to its
charge-current dependent term, and the GMR ratio between
P and AP magnetic configurations becomes

RAP − RP

RAP
=

�R

RAP
= 1 −

Y22
AP

Y22
P �15�

with the matrixes Y˜P�AP� derived from Eqs. �8� and �9� re-
duced to their bottom right submatrixes

L⇑�⇓� = −
�F

e2 � 1 ±� 	
�L

�F

±� ±
�L

�F
1 	 , �16a�

LN = −
�N

e2 
1 0

0 1
� . �16b�

Under these conditions, the literal expression of the GMR
ratio is38

FIG. 5. Fluxes and forces over two F-N bilayers for both P and
AP magnetic configurations.
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�R

RAP
=

�2 −
�L2

�F
2

�1 +
�F

�N

1 − �2 +

�L2

�F
2 �2 . �17�

When modeling the multilayer structures by two independent
magnetic layers, i.e., without N layers �equivalently posing
�N→��, the expression of the GMR in Eq. �17� is reduced to
an effective conductivity spin-asymmetry parameter �eff,

�eff = ��2 − �L2/�F
2 . �18�

This shows that the GMR is as expected the measure of the
spin asymmetry of the conductivity lowered by the spin mix-
ing.

B. MTEP

Now, we apply the model to MTEP measurements. If the

matrix Y˜ is derived for a one charge current model, the mag-

netic information is neglected ��=�L=0�, and the L˜⇑,⇓,N ma-
trices are reduced to their top left square submatrices

L˜F = −�
�F

T
+ �F�F

2 �F�F

q

�F�F

q

�F

q2
	 , �19a�

L˜N = −�
�N

T
+ �N�N

2 �N�N

q

�N�N

q

�N

q2
	 . �19b�

The last term of Eq. �14� accounting for the overall Seebeck
coefficient �̄, then becomes simply

�̄ =
Y21

qY22
=

�F�N + �N�F

�F + �N
. �20�

This is the conventional composition of the Seebeck coeffi-
cients in a series circuit.29,33,34

C. CPP-Peltier

In order to clarify the concept of the MTGV, it is useful to
consider this measurement under the one charge current
model. With the matrices in Eqs. �19a� and �19b�, we estab-
lish the effective resistance of Eq. �14� as

L

4A

1

e2Y22
=

L

2A
�
 1

�F
+

1

�N
� + T

��F − �N�2

�F + �N
 . �21�

This expression reflects that the current conservation condi-
tions imposed by the 1D structures imply a thermopowerlike
term beside the conventional resistance, also proportional to
Idc. We call it the CPP-Peltier term since it includes the dif-
ference of thermopower across the F /N interface.

The CPP-Peltier term is qualitatively understood as fol-
lows: the Peltier effect forces the interfaces to be alterna-

tively heat sources and heat sinks. Therefore a local tempera-
ture gradient develops in each layer, alternatively positive
and negative. We calculated its magnitude to be

�TF =
�F − �N

�F + �N
T

I

A
= − �TN. �22�

It combines the Peltier effect ���F−�N�TI� and the heat con-
duction in each layer ��F+�N�. This gives the jigsaw tem-
perature profile sketched in Fig. 6. Then the CPP-Peltier
voltage is the sum of all the thermoelectrical power induced
by the local temperature gradients of each layer.

The magnitude of the CPP-Peltier is so small compared to
the resistance that it is negligible in the GMR measurements.
Nevertheless, the MTGV measurement protocol takes advan-
tage of an oscillatory heat source. It causes the overall tem-

perature T̄ of the wire to oscillate. The ac voltage Vac in
phase with the heat source contains a component dependent
of the dc current Idc, and derived from the CPP-Peltier term
�see Appendix B�

FIG. 6. Up: Co/Cu multilayer structure. The actual aspect ratio
�stack height/diameter� of about 1000 insures charge �je� and heat
�jQ� currents perpendicular to the layers. Middle: small temperature
gradients induced by the Peltier effect. The temperature drop �T is
given by Eq. �22�. Down: overall voltage drop �full line� as the sum
of the local Seebeck voltages �dotted line� and Ohm’s Law �dashed
line�.
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�Vac

�Idc
=

L

2A
Tac� d

dT

 1

�F
+

1

�N
� + 2

��F − �N�2

�F + �N
 . �23�

Under this lock-in measurement, the magnitude of
CPP-Peltier term is found comparable to, or larger than, the
derivative of the resistance with the temperature. Therefore
the MTGV protocole emphasizes the contribution of this
CPP-Peltier term.

The dependence of the TGV voltage on the magnetic field
is also to be exclusively assigned to the CPP-Peltier term.
The argument is twofold: first, the derivative of the resistiv-
ity with respect to the temperature is quasi-independent of
the magnetic field, and second, in the low temperature range,
the resistivity is practically independent of the temperature
�d� /dT=0�. Hence, it results that the field dependence of the
MTGV is exclusively due to the CPP-Peltier term. That is to
say, we measure the magnetic response of the term ��F

−�N�2. The three-current model clarifies this magnetic effect.

V. DISCUSSION OF EXPERIMENTS IN TERMS OF
THE 3-CURRENT MODEL

A. Spin-mixing effects on GMR, MTEP, and MTGV

We applied the 3-current model to our experimental data
collected with the three different experiments. The expres-

sions of GMR, MTEP, and MTGV with the full matrix Y˜ are
rather complex algebraic expressions. There is no point in
writing them down. Instead we present numerical evalua-
tions using these expressions, for both 300 K and 15 K, i.e.,
the room temperature regime and the low temperature re-
gime �d� /dT=0�, respectively.

We present now the dependence on the spin-mixing, ex-
pressed by the parameter �L. It is thought to arise from
elastic spin-flip scattering processes induced by electron-
magnon collisions.5,14,35 The spin-mixing parameters L+− and
L−+ in Eq. �1� are directly proportional to the spin-flip rates
+−

−1 and −+
−1. Their relative amplitudes, estimated as in Ref.

14, are found to follow the relation L−+�L+−, that yields
�L�0. Therefore we present our calculations in Fig. 7 as a
function of the reduced variable −�L /�F.

We used in our calculations the numerical values of the
transport parameters, determined from our measurements,
listed in Table I �Appendix D�. The large resistivity of the Co
��30�10−8 � m� strongly diminishes the role of interface
resistances, not accounted for in our model.

To perform the fitting with the experimental data of GMR,
MTEP and MTGV in both temperature regimes �open circles
in Fig. 7�, we adjusted the values of the parameters � and �N,
and also of �th that expresses the spin asymmetry of the
Seebeck coefficients in absence of spin-mixing �Eq. �A4��,

�th =
�↑
�↓

. �24�

� was determined around 0.58 �0.53� at 15 K �300 K�. The
value of �N, reported in Table I �−25.2 �V/K at room tem-
perature� is reasonable for a Cu layer with about 0.5% of Co
impurity content.28,31 Finally a value of 0.7 was determined
for �th at all temperatures.

The values of −�L /�F extracted from the fitting shows
little dependence on the temperature, ranging from 0.34 at
15 K to 0.32 at 300 K. This is consistent with mechanisms
based on electron-magnon scattering that varies slowly with
the temperature.14

The GMR prediction in Fig. 7 shows a weak dependence
on �L only. The calculations with the simpler relation Eq.
�17� give the same result as the calculation with the full
matrix. This confirms that heat fluxes and the Peltier effect
only play a very limited role in the GMR. The fitting values
of � are found a bit higher that those reported in other
works.11,31,36 However, the effective conductivity spin asym-
metry �eff, is found to be 0.47 and 0.42 at, respectively, 15 K
and 300 K, for the fitting values of −�L /�F. This fits with
the values presented in the literature.

The MTEP shows a quasilinear dependence on �L. This
behavior shows that the more the elastic spin-flip is asym-
metric in spin, the more the effective Seebeck coefficients
have a spin asymmetry �see Sec. V B�. To the contrary, we
find that the MTGV is highly sensitive to the change of �L,
i.e., to the spin asymmetry of the spin-mixing rates. This is
especially pronounced at low temperature, for which the re-
sistance contribution to the MTGV vanishes. This shows that

FIG. 7. Calculation of the GMR, MTEP, and MTGV ratios as a
function of −�L /�F �see text� in �a� the low temperature regime
and �b� the room temperature regime. The circles recall the experi-
mental values at 15 K �Fig. 3� and 300 K �GMR: 15%; MTEP:
−20% and MTGV: −36%�.

TABLE I. Numerical values at 15 K used in the calculations
presented in Fig. 7.

15 K 300 K

�F
0 �� m� 30�10−8 26.4�10−8

�F� �� m/K� 0 2.84�10−10

�N
0 �� m� 3�10−8 6.67�10−8

�N� �� m/K� 0 6.86�10−11

�0 0.47 0.454

�� 0 −1.15�10−4

�F
0 ��V/K� −2.7 −2.7

�F� ��V/K2� −0.1 −0.1

�N
0 ��V/K� 0 0

�N� ��V/K2� −0.084 −0.084
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the MTGV, which arises from the spin-dependent
CPP-Peltier effect, provides information that is distinct from
the GMR.

B. Effective Seebeck coefficients

In the framework of this three-current model, we can de-
fine the effective Seebeck coefficient of each spin channel
�↑�↓�

eff =−�1/q����↑�↓�+q�V� /�T using Eq. �A3� with jn= jp

=0 �Appendix C�. Even in the case of equal Seebeck coeffi-
cient �↑=�↓=�F ��th=1�, we find a spin asymmetry, �↑

eff

��↓
eff, due only to �L�0,

�↑
eff = �F

�1 − �2� − �1 − ��
�L

�F

�1 − �2� +
�L2

�F
2

, �25a�

�↓
eff = �F

�1 − �2� + �1 + ��
�L

�F

�1 − �2� +
�L2

�F
2

. �25b�

It is to be noticed here that the difference between the effec-
tive Seebeck coefficients is exclusively induced by the spin-
mixing term �L. The spin asymmetry � of the Seebeck co-
efficient, as discussed in Ref. 27, is, according to the three-
current model in this case,

� =
�↑

eff − �↓
eff

�↑
eff + �↓

eff =

−
�L

�F

1 − �2 + �
�L

�F

. �26�

From Eqs. �25a�, �25b�, and �26�, we plot the effective See-
beck coefficients and the parameter � in Fig. 8�a� as a func-
tion of the dimensionless variable −�L /�F. We set �=0.58
�low temperature regime�.39 �↓

eff is found to decrease
strongly, whereas �↑

eff remains almost constant, with a spin
asymmetry � around 74% for −�L /�F=0.34. The same

trend is observed in the plots of Fig. 8�b�, performed with
�th=0.7, with however a much smaller value of � of 0.35 at
the same spin mixing asymmetry.

The existence of the spin asymmetry of the spin-mixing
��L�0� is consistent with the quantum-mechanical descrip-
tion of electron-magnon scattering.14,35

VI. CONCLUSION

We investigated the mixed effects of heat and charge
transport in multilayered magnetic nanostructures with cur-
rent perpendicular to the interfaces. We introduced a new
experiment, which we called magneto-thermogalvanic volt-
age �MTGV�, that detects the voltage drop along a nanowire
oscillating at the frequency of the temperature oscillation
induced by a chopped heat source. Data are discussed in
terms of non-equilibrium thermodynamics in the linear re-
gime. This gives a “three-current model,” which joins the
entropy current to the two spin charge currents. The
magneto-transport matrix elements are derived for both mag-
netic and nonmagnetic materials, and applied to a layered
system with the relevant boundary conditions. We establish
then an effective transport matrix for two bilayers in terms of
natural transport parameters, from which we can derive
simple expressions of the GMR, MTEP, and MTGV. This
model predicts that local temperature gradients due to the
Peltier effect develop in each layers, and the corresponding
local Seebeck voltages add to the overall potential drop. The
MTGV measurement emphasizes the contribution of the
Peltier effect. Therefore, by its nature, MTGV reveals some-
thing different about spin transport than resistivity measure-
ments.

It was shown from numerical estimates using the full 3
�3 transport matrix that MTGV is highly dependent on the
spin asymmetry of the spin-mixing transition rates �L. The
same term �L contributes to the MTEP and can account for
our data without invoking a spin-dependent entropy transport
coefficient ��↑=�↓�. The model accounts in a consistent man-
ner for the observed values of GMR, MTEP, and MTGV at
15 K and 300 K.

APPENDIX A: DETERMINATION OF THE TRANSPORT
MATRIX COEFFICIENTS

The Lij coefficients of Eq. �1� are related to physical pa-
rameters according the method of Ref. 29. We apply here this
method in the approximation of independent currents, i.e.,
without spin-mixing �L+−=L−+=0�.

1. Ohm’s Law

Ohm’s Law states for each charge current,

� =
− qjn

1

q
� �̄

� T = 0. �A1�

Here �̄ refers to the electrochemical potential, composed of
the chemical part � and the electric part qV, with V the
electrostatic potential. For both independent currents + and

FIG. 8. Effective Seebeck coefficients �↑
eff �full circles, �� and

�↓
eff �open circles, �� normalized by �F, and the asymmetry param-

eter � �solid line� as functions of −�L /�F, for �a� �th=1 and �b�
�th=0.7.
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−, the gradient is ��̄+�−�=��+�−�−qE. Thus we can define
the conductivities if the currents are separate,

L++ =
�+

q2 ; L−− =
�−

q2 . �A2�

2. Seebeck coefficient

When there is one type of charge carrier, the Seebeck
coefficient is defined by

� = −
1

q

��̄

�T
jn = 0. �A3�

The condition of no charge current �j+= j−=0� gives for both
channels ��̄±=−�Ls	 /L±±��T. So it is natural to define

�+ =
1

q

Ls−

L++
, �− =

1

q

Ls+

L−−
. �A4�

Combining with Eqs. �A2�, we deduce

Ls+ =
�−�−

q
, Ls− =

�+�+

q
. �A5�

3. Heat conductivity

The conditions are

� =
− jQ

�T
, jn = 0, �A6�

with jQ the heat current that writes from Eq. �1�,

jQ = Tjs = T�− Lss � T − Ls+ � �̄+ − Ls− � �̄−� . �A7�

The expressions of the electrochemical potential gradients
��̄+ and ��̄−, derived from the condition of no charge cur-
rent, are injected in Eq. �A7�, giving

Lss =
�

T
+ Ls+Ls−

L++ + L−−

L++L−−
. �A8�

With the expressions of Eqs. �A2�–�A5�, we finally establish

Lss =
�

T
+ �+�−��+ + �−� . �A9�

APPENDIX B: LOCK-IN DETECTION OF THE MTGV IN
THE ONE-CURRENT MODEL

Across a nanowire, the voltage drop is proportional to the
direct current, as follows from Eq. �21�. Applying the
Wiedermann-Franz Law ��=�LT, with L the Lorentz num-
ber� to this relation, we find the effective resistance as

Reff =
L

4A

1

e2Y22
=

L

2A�
 1

�F
+

1

�N
� +

1

L
��F − �N�2

�F + �N
 .

�B1�

The MTGV measurement results from the oscillation in tem-
perature of the nanowire. Its amplitude is designated by Tac.

The amplitude of the resulting voltage oscillation due to this
small temperature oscillation is

Vac =
dReff

dT
IdcTac. �B2�

The first derivative of the effective resistance with the tem-
perature writes

2A

L

dReff

dT
=

d

dT

 1

�F
+

1

�N
� +

1

L
��F − �N�2

�F + �N

��2

d

dT
��F − �N�

�F − �N
−

d

dT
��F + �N�

�F + �N
� . �B3�

In the approximation of Seebeck coefficients linear with the
temperature ��= �d� /dT�T�, roughly valid for disordered
metals, then

d

dT
��F − �N�

�F − �N
=

1

T
. �B4�

For a metal with a large concentration of impurities, like our
samples, d� /dT��, then

2

d

dT
��F − �N�

�F − �N
−

d

dT
��F + �N�

�F + �N
�

2

T
. �B5�

Then Eq. �B2� is reduced to

Vac =
L

2A
� d

dT

 1

�F
+

1

�N
� +

2

T

1

L
��F − �N�2

�F + �N
IdcTac.

�B6�

This establishes Eq. �23�.

APPENDIX C: CALCULATION OF EFFECTIVE SEEBECK
COEFFICIENTS

We defined Seebeck coefficients for separate channels
�Eqs. �A3� and �A4��. Then we define for the two channels
the effective Seebeck coefficients as

�↑,↓
eff = −

1

q

��↑,↓ + q � V

�T
�C1�

with no charge current, that is, jn= jp=0. We apply these
conditions to the kinetic equations derived from the matrix in
Eq. �8�.

For the current ↑, we perform the variable changes
���=��↑ and write expressions in terms of ���↑+q�V�.
It is then straightforward to establish, from the definition in
Eq. �C1�,

�↑
eff =

�1 − ���F
2�F − �F�F�L − �1 − ���F�LS − �L�LS

�1 − �2��F
2 + �L2 .

�C2�

We apply the same calculation for the channel ↓, with
���=−��↓, letting the term ���↓+q�V� appear. It yields
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�↓
eff =

�1 + ���F
2�F + �F�F�L + �1 + ���F�LS − �L�LS

�1 − �2��F
2 + �L2 .

�C3�

The coefficient �LS is related to the natural spin asymmetry
of the Seebeck coefficients �th=�↑ /�↓ via the relation

�LS = �F�F
1 − � − �th�1 + ��
1 − � + �th�1 + ��

. �C4�

Under the condition �th=1, i.e., �↑=�↓=�F, that induces
�LS=−��F�F, we get the simpler expressions in Eqs. �25a�
and �25b�.

APPENDIX D: PARAMETERS NUMERICAL VALUES FOR
NUMERICAL CALCULATIONS

Our numerical calculations were performed with the pa-
rameters presented in Table I. The resistivities and Seebeck
coefficients were determined from the temperature depen-
dence of the measured resistance and thermoelectrical power
�Fig. 9�. The other parameters were deduced by fitting con-
sistently at 15 K and 300 K all three measurements: GMR,
MTEP, and MTGV.

Under the conditions expressed in Sec. IV A �constant
temperature�, we easily establish the expressions of the re-
sistance in the parallel �P� and in the antiparallel �AP� mag-
netic configurations, as

RP =
L

�r0
2

�F
2 + 2�F�N + �N

2 �1 − �2�
�F + �N�1 − �2�

, �D1�

RAP =
L

�r0
2

�F + �N�1 − �2�
1 − �2 . �D2�

The subsequent GMR is expressed in Eq. �15�. Here the re-
sistivities are expressed as

�F,N�T� = �F,N
0 + �F,N� T �D3�

with the intercept �0 as a free parameter, and ��=d� /dT
taken from the tables for pure Co and Cu in Ref. 37. In a
similar way, we also define

�eff�T� = �eff
0 + �eff� T . �D4�

The fitting with the data in Fig. 9�a� for both temperature
regimes yields the experimental values listed in Table I. They
are consistent with previous works on similar structures.31 A
wire diameter r0 of 21 nm is found, which is consistent with
the specifications of the template.

Following the Matthiesen’s rule, we considered two dif-
ferent temperature regimes: �i� the low temperature regime,
for which resistivity of metals are independent of the tem-
perature, and �ii� the room temperature regime, for which
resistivities are linear with the temperature.

The thermoelectrical power measured at zero magnetic
field is found to be linear with the temperature, as expected
for metals.28 The rather high impurity density prevents any
deviation from phonon-drag processes. Applying the
Wiedermann-Franz Law to Eq. �20�, the composition of the
Seebeck coefficients in series circuit is

�̄ =
�F�F + �N�N

�F + �F
. �D5�

Here also we set a linear temperature dependence of the
Seebeck coefficients over the whole range of temperatures,

�F,N�T� = �F,N
0 + �F,N� T . �D6�

With the value of resistivities in Table I, we adjusted the
parameters �F,N to fit Eq. �D5� with the data in Fig. 9�b�.
However, the predominance of �F over �N allows �F only to
be directly determined. The fitting procedure in Sec. V A
gave the values of �N.
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