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We study the ground state properties of the Heisenberg spin-1
2 chain with ferromagnetic nearest-neighbor

and antiferromagnetic next-nearest-neighbor interactions using two approximate methods. One of them is the
Jordan-Wigner mean-field theory and another approach is based on the transformation of spin operators to
Bose ones and on the variational treatment of bosonic Hamiltonian. Both approaches give close results for the
ground state energy and the magnetization curve at T=0. It is proved that quantum fluctuations change the
classical critical exponents in the vicinity of the transition point from the ferromagnetic to the singlet ground
state. The magnetization processes display a different behavior in the regions near and far from the transition
point. The relation of the obtained results to the experimental magnetization curve in Rb2Cu2Mo3O12 is
discussed.
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I. INTRODUCTION

Lately, there has been considerable interest in low-
dimensional quantum spin systems that exhibit frustration.
The spin-1

2 chain with next-nearest-neighbor interactions
�which is equivalent to a zigzag ladder� is a typical model
with the frustration. The Hamiltonian of the model is given
by

H = �
n=1

N

�J1Sn · Sn+1 + J2Sn · Sn+2� , �1�

where S is the spin-1
2 operator, J1 and J2 denote the nearest-

�NN� and the next-nearest-neighbor �NNN� interactions.
This model with both NN and NNN antiferromagnetic

interactions �J1, J2�0� is well studied.1–6 There is a critical
value J2c=0.2411J1, which separates doubly degenerated
dimer phase �at J2�J2c� characterized by the excitation gap
and the gapless spin-fluid phase �at J2�J2c�. Relatively less
is known about model �1� with the ferromagnetic NN and the
antiferromagnetic NNN interactions �J1�0, J2�0�. Though
the latter model has been a subject of many studies4,7–10 the
complete picture of the phases of this model remains unclear
up to now. It is known that the ground state is ferromagnetic
for J2� �J1� /4. At J2= �J1� /4 the ferromagnetic state is degen-
erated with the singlet state. The wave function of the singlet
state at J2= �J1� /4 is known exactly.11,12 For J2� �J1� /4 the
ground state is an incommensurate singlet. Controversial
conclusions exist about the presence of a gap at J2� �J1� /4. It
has been long believed that the model is gapless6,13 but the
one-loop renormalization group analysis indicates9,14 that the
gap is open due to a Lorentz symmetry-breaking perturba-
tion. However, existence of the gap has not been verified
numerically.9 On the basis of a field theory consideration it
has been proposed15 that a very tiny but finite gap exists
which cannot be observed numerically.

Besides a general interest in frustrated quantum spin mod-
els there is an additional motivation for the study of model
�1� with J1�0. Really, the ferromagnetic NN interaction is
expected to exist in compounds containing CuO chains with
edge-sharing CuO4 units. The Cu-O-Cu angle in these com-

pounds is close to 90°, and usual antiferromagnetic NN ex-
change between Cu ion spins is suppressed. This means that
the sign of J1 can be negative, while the NNN exchange is
antiferromagnetic. Several compounds with edge-sharing
chains are known,16 such as Li2CuO2, La6Ca8Cu21O41, and
Ca2Y2Cu5O10. However, in these compounds the antiferro-
magnetic long range order appears at low temperatures due
to small interchain interactions. Recently, the crystal
Rb2Cu2Mo3O12 with edge-sharing chains has been synthe-
sized and studied experimentally.17,18 Remarkably, no mag-
netic phase transition appears down to 2 K, which testifies
that interchain interaction is very small in this compound.
Therefore, Rb2Cu2Mo3O12 can be considered as an ideal
model compound with the ferromagnetic �NN� interaction.
According to Ref. 17 it is described by the Hamiltonian �1�
with J1�−140 K and J2 / �J1��0.4.

One of the interesting peculiarities of model �1� is the
dependence of the magnetization on the applied magnetic
field at T=0. The magnetization curve for J1�0 is quite
different from that for the case J1�0. It is characterized by a
rapid increase �or even discontinuity� in the magnetization if
the external field exceeds a critical value. It is expected that
the magnetization displays a true jump �the metamagnetic
transition� when the NNN interaction J2 is slightly larger
than �J1� /4.19 This conclusion has been made on the basis of
the exact diagonalization calculations for finite chains. How-
ever, the extrapolation of these results to the thermodynamic
limit is rather difficult due to strong nonmonotonic finite-size
effects.

In this paper the ground state energy and the magnetiza-
tion processes in model �1� with J1�0 are studied using two
variational approaches. One of these approaches is based on
the Jordan-Wigner transformation of spin-1

2 operators to the
Fermi ones with the subsequent mean-field treatment of the
Fermi Hamiltonian. Another variational approach is applied
to the Bose Hamiltonian arising from a special transforma-
tion of spin operators to Bose ones.

The paper is organized as follows. In Sec. II the details of
the Jordan-Wigner mean-field approximation are presented.
The zero-temperature magnetization process is studied and
the form of the magnetization curve in different regions of
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the parameter J2 / �J1� is found. For the case h=0 we have
focused on the behavior of the model in the vicinity of the
transition point from the ferromagnetic to the singlet ground
state. The critical exponents characterizing this behavior are
determined. In Sec. III we describe the variational method
for the treatment of the considered Hamiltonian rewritten in
bosonic form. Scaling estimates of the critical exponent near
the transition point are presented in Sec. IV. In Sec. V we
summarize our results.

II. JORDAN-WIGNER MEAN-FIELD APPROACH

It is convenient to represent the Hamiltonian of the spin-1
2

chain with the ferromagnetic NN and the antiferromagnetic
NNN interactions in the form

H = − �
n=1

N �Sn · Sn+1 −
1

4
� + ��

n=1

N �Sn · Sn+2 −
1

4
� − h�

n=1

N

Sn
y ,

�2�

where �=J2 / �J1� and h=g�BB / �J1� is the effective dimen-
sionless magnetic field. The constant shifts in Eq. �2� secure
the energy of the fully polarized state to be zero.

Let us start from the classical picture of the ground state
of Eq. �2�. In the classical approximation the spins are vec-
tors which form the spiral structure in the xz plane with a
pitch angle � between neighboring spins and all spin vectors
are inclined towards the y axis by an angle �. The classical
energy per site,

���,�� =
1

4
�1 − cos � − �„1 − cos�2��…	cos2 � −

h

2
sin � ,

�3�

is minimized by the angles

�cl = cos−1 1

4�
, �cl = sin−1 �h

2�2 , �4�

where �=�− 1
4 .

The classical ground state energy is

Ecl

N
= −

1

2�
�2 −

�h2

8�2 . �5�

Following this picture we transform local axes on nth site
by a rotation about the y axis by �n and then by a rotation
about the x axis by �. The transformation to new spin-1

2
operators 	n has a form

Sn = Ry��n�Rx���	n, �6�

where Ry��n� and Rx��� are the operators of the correspond-
ing rotations.

Substituting �6� into �2� we obtain the transformed Hamil-
tonian in terms of the 	 operators,

H = H1 + H2 + H3,

H1 = N���,��

+ �
n=1

N 
J1x	n
x	n+1

x + J1y	n
y	n+1

y + J1z�	n
z	n+1

z −
1

4
��

+ �
n=1

N 
J2x	n
x	n+2

x + J2y	n
y	n+2

y + J2z�	n
z	n+2

z −
1

4
��

− h sin ��
n=1

N �	n
z −

1

2
� ,

H2 = sin ��
n=1

N

�sin ��	n
x	n+1

y − 	n
y	n+1

x �

− � sin 2��	n
x	n+2

y − 	n
y	n+2

x �	 ,

H3 = − �
n=1

N 
 sin 2�

2
�1 − cos ���	n

z	n+1
y + 	n

y	n+1
z �

− �
sin 2�

2
�1 − cos 2���	n

z	n+2
y + 	n

y	n+2
z �

+ sin � cos ��	n
x	n+1

z − 	n
z	n+1

x �

− � sin 2� cos ��	n
x	n+2

z − 	n
z	n+2

x �� − h cos ��
n=1

N

	n
y ,

�7�

where

J1x = − cos �, J1y = − cos � sin2 � − cos2 �,

J1z = − cos � cos2 � − sin2 �

J2x = � cos 2�, J2y = ��cos 2� sin2 � + cos2 ��,

J2z = ��cos � cos2 � + sin2 �� . �8�

The Hamiltonian �7� for h=0 ��=0� has been considered
before in Refs. 4 and 10. In Ref. 10 the ground state in the
vicinity of the point �= 1

4 has been studied on the basis of the
spin-wave theory taking � by its classical value. It was
shown that the transition at �= 1

4 from the ferromagnetic
state to the singlet one is of the second order and the ground
state energy is −4�2 for 0��
1. In Ref. 4 the dependence
of the ground state energy and the pitch angle � on � has
been found using the coupled cluster method. In particular,
the ground state energy is proportional to �2 for 0��
1
too. However, both cited approaches are not variational ones.
Besides, the magnetization curve has not been studied.

Our primary interest is how quantum effects alter the clas-
sical ground state structure. In this section we use the Jordan-
Wigner transformation which converts the spin Hamiltonian
�7� into a model of interacting spinless fermions

	n
+ = cn exp�i��

j=1

n−1

cj
+cj�, 	n

z =
1

2
− cn

+cn. �9�

The Hamiltonians H1 and H2 in Eq. �7� are transformed to
Fermi Hamiltonians having the following forms:
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H1f = N���,�� + �h sin � − J1z − J2z��
n=1

N

cn
+cn

+ J1z�
n=1

N

cn
+cncn+1

+ cn+1 + J2z�
n=1

N

cn
+cncn+2

+ cn+2

+
1

4
�J1x + J1y��

n=1

N

�cn
+cn+1 + cn+1

+ cn� +
1

4
�J2x + J2y�

��
n=1

N

�cn
+cn+2 + cn+2

+ cn��1 − 2cn+1
+ cn+1� +

1

4
�J1x − J1y�

��
n=1

N

�cn
+cn+1

+ + cn+1cn� +
1

4
�J2x − J2y�

��
n=1

N

�cn
+cn+2

+ + cn+2cn��1 − 2cn+1
+ cn+1� ,

H2f =
i

2
sin ��

n=1

N

�sin ��cn
+cn+1 − cn+1

+ cn� − � sin 2��cn
+cn+2

− cn+2
+ cn��1 − 2cn+1

+ cn+1�	 . �10�

We do not present here the Hamiltonian H3f because it has
a very complicated form containing nonlocal interaction and,
as will be shown below, does not contribute to the energy in
the mean-field approach.

The next step of the approach is to treat the Hamiltonian
Hf =H1f +H2f +H3f in the mean-field approximation �MFA�.
We use the approximation scheme proposed in Ref. 20. The
ground state wave function in this approximation has a BCS-
like form,

�� = 
k�0

�cos �k + sin �kck
+c−k

+ ��0� ,

where ck
+ is Fourier transform of the Fermi operators cn

+.
The expectation value of H2f over the function  is

�H2f�=0 due to the fact that �k sin k�ck
+ck�=0 and

�k cos k�ck
+c−k

+ �=0. The Hamiltonian H3f includes an odd
number of the Fermi operators and, therefore, it is zero in the
MFA �H3f�=0 as well. Thus, both Hamiltonians H2f and H3f

do not contribute to the energy in this approximation.
In the MFA, the four fermions terms in Eqs. �10� are

decoupled in all possible ways. After Fourier transformation,
the mean-field Hamiltonian takes the form

HMFA = NC + �
k�0

a�k��ck
+ck + c−k

+ c−k�

+ �
k�0

b�k��ck
+c−k

+ + c−kck� , �11�

where

C = ���,�� − �J1z + J2z�n2 + J1z�t1
2 − g1

2� + J2z�t2
2 − g2

2�

+ �J2x + J2y��nt2 − t1
2 − g1

2� + �J2x − J2y��ng2 − 2t1g1� ,

�12�

a�k� = u + �1 cos k + �2 cos 2k ,

b�k� = w1 sin k + w2 sin 2k , �13�

where

u = − �J1z + J2z��1 − 2n� − �J2x + J2y�t2 − �J2x − J2y�g2

+ h sin � ,

�1 =
1

2
�J1x + J1y� − 2J1zt1 + 2�J2x + J2y�t1 + 2�J2x − J2y�g1,

�2 = �J2x + J2y��1

2
− n� − 2J2zt2,

w1 =
1

2
�J1x − J1y� + 2�J1z + J2x + J2y�g1 + 2�J2x − J2y�t1,

w2 = �J2x − J2y��1

2
− n� + 2J2zg2. �14�

The ground state energy, the one-particle excitation spec-
trum ��k�, and the magnetization M = �Sn

y� are

E

N
= ���,�� + F��,�� ,

��k� = �a2�k� + b2�k� ,

M = �1

2
− n�sin � , �15�

where

F��,�� = �J1z + J2z�n�1 − n� + J1z�g1
2 − t1

2� + J2z�g2
2 + t2

2 − 2t2�

+
1

2
�J1x + J1y�t1 +

1

2
�J1x − J1y�g1 + �J2x + J2y�

��nt2 − t1
2 − g1

2� + �J2x − J2y��ng2 − 2t1g1� . �16�

Quantities n, t1, t2, g1, and g2 are the ground state expec-
tation values, which are determined by the following self-
consistency equations:

n = �cn
+cn� = �

0

� dk

2�
�1 −

a�k�
��k�

� ,

t1 = �cn
+cn+1� = − �

0

� dk

2�

a�k�cos k

��k�
,

t2 = �cn
+cn+2� = − �

0

� dk

2�

a�k�cos 2k

��k�
,

g1 = �cn
+cn+1

+ � = − �
0

� dk

2�

b�k�sin k

��k�
,
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g2 = �cn
+cn+2

+ � = − �
0

� dk

2�

b�k�sin 2k

��k�
. �17�

The solution of the self-consistency equations gives the
minimum of the ground state energy in a case of “one-
particle” wave functions at given angles � and �. We treat
the angles � and � as the variational parameters �not equal to
their classical values�. Thus, one should minimize the energy
with respect to the angles � and �, solving the self-
consistency equations for each value of � and �. This means
that the proposed procedure remains a variational one.

To study the effect of the dimerization we added the stag-
gered terms to the NN expectation values

�cn
+cn+1� = t1 + t1��− 1�n,

�cn
+cn+1

+ � = g1 + g1��− 1�n,

which leads to a more complicated form of the Hamiltonian
HMFA and two additional self-consistency equations for t1�
and g1�. But the solution of the self-consistency equations
with the minimization of the energy over � and � gives t1�
=g1�=0. This means that the MFA does not indicate the
dimerization in the system.

A. Ground state energy near the transition point �= 1
4

At first we consider the Hamiltonian �11� at h=0 when
�=0 and we are interested mainly in the behavior of the
model in the vicinity of the point �= 1

4 , where the transition
from the ferromagnetic to the singlet ground state occurs. At
h=0 the ground state energy per site is

E

N
= ���,0� + F��,0� , �18�

where F�� ,0� is a quantum correction to the classical part of
the energy.

The analysis of the solution of Eqs. �17� shows that in the
case 0��
1 and �
1 the functions ��� ,0� and F�� ,0�
have forms

���,0� = −
��2

2
+

�4

32
,

F��,0� = −
�4

32
+ A�24/5. �19�

The coefficient A�0.0195 is determined by the numerical
solution of Eqs. �17�.

Substituting �19� into �18� and minimizing E with respect
to �, we obtain the leading terms in � for the angle ���� and
the energy E���,

� = 2.331�5/14,

E

N
= − 1.585�12/7. �20�

The numerical solution of self-consistency Eqs. �17� con-
firms this dependence E��� at 0��
1 �see Fig. 1�.

Since the MFA is the variational approach, the found criti-
cal exponent for the ground state energy �= 12

7 gives upper
bound for the exact critical exponent ��

12
7 and certainly it

is less than �=2 obtained in classical approximation. We
note that the use of more elaborate methods4,10 does not
change the exponent �=2 and change the numerical prefac-
tor a in the ground state energy E=−a�2 only. This means
that at present the MFA gives the best estimate of the ground
state energy in the region 0��
1.

In Ref. 22 the model �2� �at h=0� has been studied using
the Jordan-Wigner transformation and the mean-field theory.
However, the pair correlations of type �cn

+cm
+ � have been ne-

glected. It was conjectured in Ref. 22 that the ground state at

FIG. 1. The dependence of the
ground state energy of model �2�
on � in the MFA �short-dashed
line� and the boson variational ap-
proach �long-dashed line�. Solid
line corresponds to the energy
given by Eq. �20�.
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1
4 ���0.25854 is not singlet but has a nonzero total spin.
We have found no evidence of this fact and the numerical
diagonalization of finite chains does not confirm this predic-
tion as well.

As was written above, in our mean-field treatment the
pitch angle � is considered as the variational parameter. It
should be noted that in the MFA a helical �spiral� long range
order �LRO� exists as well as in the classical approximation.
The helical LRO is characterized by the angle �, though its
value differs from the classical one. Of course, this LRO is
destroyed by those quantum fluctuations which are ignored
in the MFA. At the same time the obtained helical LRO is
regarded to an incommensurate behavior of the correlation
function and � can be identified with the momentum qmax at
which the static structure factor takes a maximal value.

B. Magnetization curve

In this section we consider the magnetization processes in
model �2�. The behavior of the magnetization in the region of
the magnetic field close to saturation is of a particular inter-
est. We note that the determination of the saturation field
hs��� at which the transition to saturation takes place is gen-
erally not a simple problem. In model �1� with both antifer-
romagnetic NN and NNN interactions, this field is equal to
the energy of a one-magnon state on the ferromagnetic back-
ground �all spins up�, i.e., hs=−E1. It is not the case for
model �2�. The specific property of this model is the presence
of bound magnon states �complexes of two or more flipped
spins� arising as a result of magnon-magnon attraction.
When the field h is reduced below the saturated value the
number of spins flipping simultaneously is more than one.
Then the saturated field is determined by the condition

hs = max� �En�
n
� , �21�

where En is the energy of n-magnon state.
There are two possible scenarios of the behavior of the

magnetization curve close to saturation. In the first case, Eq.

�21� is satisfied at n*�o�N� and the magnetization is a con-
tinuous function at h→hs. In the second case n*�N and the
magnetization jumps at h=hs from M*= � 1

2 −n* /N� to M = 1
2 ,

i.e., the metamagnetic transition occurs. It means that the
ground state energy as a function of magnetization e�M� has
a negative curvature and M* is determined by the Maxwell
construction. We note that the numerical estimate of hs and
n* especially at 0��
1 is very difficult because the number
of spins flipping simultaneously at M→ 1

2 increases when
�→ 1

4 .9,19

We calculate the magnetization for model �2� using the
MFA at h�0. In this case there are two variational param-
eters, � and �. We show the ground state energy per site e as
a function of h for two values of � in Fig. 2 together with the
energy of the ferromagnetic state eF=−h /2. The saturation
field hs is determined by the crossing between the variational
energy e�h� and eF. The dependence e�h� shown in Fig. 2
demonstrates two different types of the behavior. For �
�0.38 �Fig. 2�a�	 e�h� and eF�h� have different slopes at the
crossing point. At h=hs the magnetization jumps from M*

= ��e /�h�h=hs
to 1

2 as it is shown in Fig. 3�a�. It means that
maximum in Eq. �21� is reached for macroscopic n and the
metamagnetic transition takes place. The dependence of the
saturated field on � is shown in Fig. 4. This dependence is
consistent with those obtained in Ref. 19 by using numerical
diagonalizations of finite chains. The magnetization curve at
0��
1 can be found analytically from the self-consistency
Eqs. �17�. The energy per site e�M� at M 


1
2 has a form

e�M� = − 1.585�12/7 + 3.69�10/7M2 + O��12/7� . �22�

Performing the Maxwell construction we obtain

M* = 0.429�2/7,

hs = 3.17�12/7. �23�

As follows from Eq. �21�, hs in Eq. �23� is the binding
energy per magnon of a multimagnon complex. It is interest-
ing to compare this value with the binding energy of a two-

FIG. 2. The dependence of the ground state energy of model �2� on magnetic field e�h� for �a� �=0.3 and �b� �=0.4.
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magnon complex which is −72�3 at 0��
1.8,10 It is evi-
dent that interaction of a macroscopic number of magnons
essentially lowers the binding energy.

The magnetization M�h� at 0��
1 is

M�h� = 0.136�−10/7h, h � hs,

M�h� =
1

2
, h � hs. �24�

According to Eq. �24� the susceptibility � is

� = 0.136�−10/7. �25�

As follows from Eq. �24� and as shown on Fig. 3, the
magnetization is a linear function of h at h→0. This testifies
to the absence of the gap in the spectrum. As was noted
before, the subtle question about the gap in this model is still
open. Numerical calculations show 1/N behavior for a gap,9

while the one-loop renormalization group indicates so tiny
an exponentially small gap15 that it cannot be observed nu-

merically. The proposed version of the MFA does not predict
the dimerization and the gap for model �2�. However, we are
not sure that the mean-field approach is an adequate tool to
answer so subtle a question.

For ��0.38 the curve e�h� �Fig. 2�b�	 has a cusp at some
critical magnetic field hc as a result of the jump of variational
parameters minimizing energy from � ,��� /2 to �=�
=� /2. At h=hc the magnetization jumps from M1=
−��e�h� /�h�h=hc− to M2=−��e�h� /�h�h=hc+. According to Eq.
�8�, e�h� at h�hc ��=�=� /2� is the ground state energy of
the Hamiltonian

H = − �
n=1

N �Sn
zSn+1

z −
1

4
� + ��

n=1

N �SnSn+2 −
1

4
� − h�

n=1

N

Sn
z .

�26�

The curve e�h� in Fig. 2�b� is tangent to eF�h� at the
crossing point. The saturation field hs and the magnetization
M�h� near hs are determined from the self-consistency Eqs.
�17� with �=�=� /2,

FIG. 3. The dependence of the magnetization of model �2� on magnetic field M�h� for �a� �=0.3 and �b� �=0.4.

FIG. 4. The phase diagram of
model �2� in the MFA in the �h ,��
plane.
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hs = −
E2

2
,

M =
1

2
−

2�1 + ��4

�1 + 2���4�4 + 15�3 + 11�2 − 1�
�hs − h� ,

�27�

where
E2 = −

4�2 + 2� − 1

1 + �
. �28�

It is interesting to note that E2 given by this equation is
the exact energy of the bound two-magnon state with a mo-
mentum q=� of the Hamiltonian �26�. The wave function of
this state has a form

��� =��1 − e−2/��
N

�
n,l

�− 1�n+le−l/�Sn
−Sn+2l+1

− �↑↑↑ . . . ↑� ,

�29�

with a correlation length

�−1 = ln
1 + �

�
. �30�

Remarkably, this function is the exact one of the two-
magnon state of the Hamiltonian �2� as well because

� �Sn
xSn+1

x + Sn
ySn+1

y ���� = 0. �31�

The state �29� has the lowest energy in the two-magnon
sector of the Hamiltonian �2� at ��0.38.8

Thus, the maximum in Eq. �21� is reached at n=2 if e�h�
has the form similar to that shown in Fig. 2�b�. This fact
confirms the observation based on finite-size results9 that in
the region of � rather far from �= 1

4 only the flipping of pairs
of spins participate in the magnetization process near the
saturation.

The dependence M�h� for two typical cases is shown in
Fig. 3. At ��0.38 the MFA gives the saturation field exactly,
though the linear behavior of M�h� in Eq. �27� is in contrast
with the expected square-root critical dependence.

It was determined above that the presence of the cusp in
the dependence e�h� is the result of the jump of variational
parameters. At h�hc the angle � is incommensurate while at
h�hc it corresponds to the commensurate phase. Therefore,
the magnetic field hc can be identified with the critical field
at which the incommensurate-commensurate transition takes
place. The phase diagram of model �2� in the MFA is shown
in Fig. 4. The commensurate phase lies between the incom-
mensurate and the ferromagnetic phases.

In the limit �→� the Hamiltonian �2� describes two in-
dependent Heisenberg chains. The numerical solution of the
MFA equations indicates that in this limit the width of the
commensurate phase shrinks as 1/�. In the limit �→� the
pitch angle � tends to � /2 for all values of h, while the
canted angle � changes from �=0 at h=0 to �=� /2 at h
=hs. This means that the MFA correctly describes the limit
�→�, showing the incommensurate phase at 0�h�hs.

The MFA shows the jump in magnetization at some criti-
cal field hc. We are not sure whether a true magnetization
curve has �or not� to jump. However, we believe that the
jump obtained in our approximation testifies to the singular
behavior of the magnetization at some critical field. A plau-
sible reason for such singularity consists in the following
physical picture. As was shown above at ��0.38 two mag-
nons attract one another and form the bound two-magnon
state �29� with the correlation length � �30�. When the mag-
netic field is slightly lower than the saturated field hs and the
number of magnons is small, the ground state can be repre-
sented with high accuracy as a product of the bound magnon
pairs, weakly interacted with each other. The bound pairs of
magnons start to feel each other when the mean distance
between bound pairs becomes of the order of the correlation
length of the pair �. This happens at some critical magnon
density nc��−1. For larger density n�nc one cannot con-
sider magnon pairs as independent quasiparticles and the
above picture is destroyed. Certainly, these speculations can
be well justified in the case of ��1 only, when the critical
density is small, nc�1/�.

Possible singularity in the magnetization is related to the
magnetization curve in Rb2Cu2Mo3O12. The experimental
magnetization at T=2.6 K demonstrates a sufficiently sharp
increase up to M �0.4 at B�14 T followed by a gradual
increase to the saturation. In light of the above, one can
assume that the sharp change in the behavior of M�h� at B
�14 T is connected with the transition from the incommen-
surate regime to the commensurate one. Taking the values of
J1 and � estimated for Rb2Cu2Mo3O12 ���0.4, J1�
−140 K�17 we obtain Bc=13.6 T.

III. BOSON VARIATIONAL APPROACH

Another technique which can be used for an approximate
analysis of model �2� is the boson variational approach
�BVA� proposed in Ref. 23. This approach is based on the
Agranovich-Toshich boson representation of spin s= 1

2
operators24

Sn
z = −

ei�bn
+bn

2
,

Sn
− =

1 − ei�bn
+bn

2�bn
+bn

bn
+,

Sn
+ = bn

1 − ei�bn
+bn

2�bn
+bn

, �32�

where bn
+ are the Bose operators. This transformation pre-

serves all commutation relations for the spin operators and
does not involve “nonphysical states,” because all states with
an odd number of bosons correspond to the same spin state
�↓� and the states with an even number of bosons correspond
to the spin state �↑�. The latter implies that the transformation
�32� is not unitary and each energy level of spin model cor-
responds to an infinite degenerated level of boson Hamil-
tonian. However, this transformation allows an estimate of
the ground state energy of the spin model.
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The Hamiltonian of the considered spin model rewritten
in the bosonic form is treated by the variational function in
the form23

�� = exp�1

2�
i,n

��n�bi
+bi+n

+ ��0b� , �33�

where �0b� is the boson vacuum state corresponding to the
ferromagnetic spin state with all spins pointing up and the
function ��n� is chosen by the condition of minimum of the
total energy. Therefore, in contrast to spin-wave theory, this
approach is variational. The procedure of calculation of the
variational energy with the wave function �33� and energy
minimization over function ��n� was developed in Ref. 23,
where the approach was successfully applied to construction
of the ground state phase diagram of the frustrated two-
dimensional �2D� Heisenberg model.

We have applied the above approach to the rotated spin
Hamiltonian �7� and the rotation angles � and � were used as
variational parameters, as in the MFA. The contribution to
the energy of the parts H2 and H3 of the Hamiltonian �7� in
this approach is also zero as in the MFA. We do not present
here cumbersome details of calculations, because they are
identical to those in Ref. 23, and give only the final results.

The approach shows very similar behavior of the ground
state energy as in the Jordan-Wigner MFA. That is, for small
0��
1 both approaches give the same critical exponent for
the ground state energy and for the parameter �. Moreover,
the numerical estimates of the ground state energy in both
approaches are also very close �see Fig. 1�. The behavior of
the magnetization curve in the BVA is also very similar to
that in the MFA �see Fig. 3�. The perfect coincidence of
physical properties of the model predicted by the MFA and
the BVA looks somewhat surprising because of different na-
ture of these approaches.

We note that the potential advantage of the boson varia-
tional approach consists in its applicability to any dimension
lattices and possible modification to any spin value S.

IV. SCALING ESTIMATE OF THE CRITICAL EXPONENT
NEAR THE TRANSITION POINT �= 1

4

As was shown in previous sections, the MFA and the BVA
give the ground state energy E�����12/7 near the transition
point �= 1

4 . Since both approaches used are variational, the
value �= 12

7 is the upper bound for the critical exponent �.
This implies an important and strict fact that quantum fluc-
tuations definitely change the classical critical exponent �
=2.

Nevertheless, there are some reasons to believe that the
true value of the critical exponent is �= 5

3 . The arguments in
favor of this conjecture are based on the following consider-
ation with use of the results of numerical calculations of
finite-size chains.7,21,25

The ground state of model �2� is the singlet at ��
1
4 for

any even N. For a cyclic chain there are a number of level
crossings of the two lowest singlets with momenta q=0 and
q=�. For example, for N=4k there are k−1 crossing points
1
4 ��1�N���2�N�� ¯ ��k−1�N�.7,21 This fact means that in

the thermodynamic limit the ground state is at least twofold
degenerated at ��

1
4 . Let us determine the dependence of �1

�actually, �1=�1− 1
4 � on N. It is known this dependence de-

fines the scaling parameter in one-dimensional models,
where the crossings of two ground state levels occur. At �
= 1

4 ��=0� the ground state in the sector S=0 has momentum
q=�, while the first excited state has q=0 and the excitation
energy �E�N−4.25 The first order correction to the energy of
these states in � is

�E1�2���� = ��
n

�1�2��Sn · Sn+2�1�2�� , �34�

where 1 and 2 are the wave functions of the ground state
and the first excited singlet at �= 1

4 . These two states have a
spiral ordering at N→� with a period of spirals N and N /2
respectively.7,25 According to this fact, the two-spin correla-
tion functions at N→� are

�1�Sn · Sn+l�1� =
1

4
cos

2�l

N
,

�2�Sn · Sn+l�2� =
1

4
cos

4�l

N
. �35�

The accuracy of the above equations for l=2 is of the
order of O�N−3�.11,25

The value �1 is determined from the condition

�E1��1� − �E2��1� = �E , �36�

which gives
�1 � N−3. �37�

Therefore, the scaling parameter of model �2� in the vi-
cinity of the transition point �= 1

4 is x=�N3. It means that the
perturbation theory in � contains infrared divergencies and
the ground state energy has a form

E��� =
�

N
f�x� , �38�

where the scaling function f�x� at x→0 is given by the first
order correction �34�. In the thermodynamic limit �x→�� the
behavior of f�x� is generally unknown, but the condition E
�N at N→� requires

E��� � − N��. �39�

According to Eqs. �38� and �39� �= 5
3 . This value is close

to �= 12
7 which indicates high quality of the variational ap-

proaches used. A possible reason for the discrepancy be-
tween the variational and scaling estimates of the exponent
may be related to the fact that in the variational approaches
the terms H2 and H3 in Eq. �7� are irrelevant. It can be also
expected that the true dependences in Eqs. �20� and �23� at
small 0��
1 are

� � �1/3, M* � �1/3, hs � �5/3, � � �−4/3. �40�

V. SUMMARY

We have studied the frustrated spin-1
2 Heisenberg chain

with the NN ferromagnetic and the NNN antiferromagnetic
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exchange interactions using two different variational ap-
proximations: the MFA and the BVA. The first step of both
approaches consists in rotation of the coordinate system on
the pitch angle � and the canted angle �, which are not equal
to their classical values and used as variational parameters of
the approaches. Then, in the MFA the rotated spin Hamil-
tonian is mapped into the model of interacting spinless fer-
mions by means of the Jordan-Wigner transformation. The
latter is treated in the mean-field approximation with the in-
clusion of superconducting like correlations. Within the BVA
we use the Agranovich-Toshich boson transformation of spin
operators and the variational treatment of the bosonic Hamil-
tonian. It is remarkable that, despite the difference of these
approaches, they give quantitatively close results.

The variational approaches used allowed us to estimate
the critical exponent of the ground state energy � in the
vicinity of the transition point from the ferromagnetic state to
the singlet one. Both approaches give �= 12

7 which differs
from the classical value �=2. Since approaches used are
variational, we have established an important and strict fact
that quantum fluctuations definitely change the classical criti-
cal exponent. Using the results of finite-size calculations we
presented also some scaling arguments in favor of the critical
exponent �= 5

3 . This value is close to �= 12
7 which indicates

high quality of the variational approaches used.
The behavior of the magnetization curve is different in

parameter regions ��0.38 and ��0.38. In the region �
�0.38 the metamagnetic transition to saturation takes place.
At ��0.38 the magnetization increases with h until the field
reaches the critical value hc, where the magnetization jumps
from M1 to M2�

1
2 . This magnetization jump accompanies

the jump of the pitch angle � and canted angle �. At h�hc
both angles are incommensurate, while at h�hc they corre-
spond to the commensurate phase �=�=� /2. Therefore, we

associate this jump with the incommensurate-commensurate
transition induced by the magnetic field.

We believe that our approaches correctly predict the exis-
tence of the incommensurate-commensurate transition at
some critical field hc and ��0.38. This transition must ac-
company some singular behavior of the magnetization curve,
though we are not sure whether the true magnetization has
the jump at h=hc.

Both approximations used yield the exact value of the
saturation field at ��0.38, though the field dependence near
the saturation does not correspond to the expected universal
square-root behavior. We note that the magnetization behav-
ior near the saturation in the region of sufficiently large value
of � is described by model �26�, which looks simpler than
model �2�. In this respect an accurate study of model �26� is
of a particular interest.

We note that the magnetization curve in Fig. 3 resembles
�apart from the magnetization jump� that observed in
Rb2Cu2Mo3O12. This resemblance allows us to provide a
qualitative explanation of the peculiarity of the magnetiza-
tion process in this compound. The experimental curve is
characterized by a sharp change of the susceptibility at the
magnetic field B�14 T. We assume that this peculiarity in
the magnetization behavior is related to the crossover be-
tween the incommensurate and the commensurate states.
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