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Singularity of the Bloch theorem in the fluid/solid phononic crystal
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The physical origin that the plane wave expansion method fails to deal with the fluid/solid phononic crystals
is presented. We find that the Bloch theorem is singular in some areas of this kind of system. The unphysical
flat bands which appear in the band structure of the fluid/solid systems resulted from the plane wave expansion
method can be gotten rid of only when the singularity is removed. As an example, an effective method is
presented to calculate the band structure and transmission spectrum of the air/rigid system, in which how to
correctly use the Bloch theorem in such kind of systems is shown.
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I. INTRODUCTION

The propagation of elastic or acoustic waves in the so-
called phononic crystal (PhC) has received much attention in
the last decade.'~!? In PhCs, the existence of full frequency
band gap(s), in which the propagation of elastic waves is
forbidden, and some other interesting wave phenomena such
as the abnormal refraction' should have many potential ap-
plications. To understand the elastic or acoustic wave behav-
ior in PhC, several numerical methods such as the plane
wave expansion method (PWE),? the multiscattering theory
(MST),? and the finite difference time domain method
(FDTD)*> have been developed. Among them, the PWE
method, which is based on the Bloch theorem and the Fou-
rier series expansion, is the most popular one in the band
structure calculation because of its simplicity and clear
physical meaning.

A well-known problem of the PWE method is its numeri-
cal convergence. In the practical calculation of the PWE
method, a truncating error will be introduced inevitably since
only a finite number of the Fourier components can be
picked out from the infinite Fourier series. But theoretically,
this error can be minimized by using more Fourier compo-
nents in the expanding expression. Another and more chal-
lenging problem for the PWE method, which was encoun-
tered in the study of phononic crystal recently, is that it
cannot be used in the fluid/solid or inverse structure>’ (we
denote the system constructed by the separate A phase em-
bedded in the B host as B/A). A lot of unphysical flat bands
will appear in the band structure when the PWE method is
applied on this kind of systems.®” We know that flat bands in
PhCs usually correspond to localized or confined modes,
which means the amplitude of these modes is larger in soft
material than that in hard material. But for the “unphysical”
flat bands, such as the ones appearing in the PWE result of
the two-dimensional (2D) Al/Hg lattice,® the amplitude of
transverse vibrations is finite inside Hg but effectively zero
in Al, and this is physically unacceptable. What happens
when the PWE method is applied to this kind of system?

From the performance of the PWE method, one would
first think that the possible origin of this difficulty is the
truncating of the infinite Fourier series, as Garcia-Pablos et
al. explain that this strange problem is caused by the non-
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convergence of the finite Fourier transform of the lame co-
efficient (u).> But Goffaux and Vigneron’ show in detail that
these flat bands cannot be removed by increasing the plane
wave number only. They would appear randomly when the
number of plane waves changes. Furthermore, even if one
uses the same number of plane waves, the position of the flat
bands can vary according to the routines employed in the
calculation, so Goffaux and Vigneron conclude that this phe-
nomenon is a “bad numerical problem condition.” Moreover,
the invalidity of the variational method®® for the fluid/solid
system also reveals that this strange problem could not sim-
ply contribute to the truncating effect of the Fourier series,
because this method is based on the expansion of direct
space basis set. Another work that gives this problem an
extremely detailed discussion is Ref. 6, where Tanaka et al.
carefully compare the band structures obtained separately by
the FDTD and PWE methods for the Al/Hg lattice. They
point out that these flat bands, which are the result of PWE
method, are caused by the lack of transverse vibration in
fluid, but the physical reason behind it has not been given.
By a detailed investigation we find that this strange prob-
lem is caused in fact by the incorrect use of the Bloch theo-
rem. In other words, for the fluid/solid system, some areas
are “singular” for the Bloch theorem. We know that the wave
solution in a system can take the form of Bloch wave only if
two conditions are satisfied. The first one is obviously the
periodicity of the considered structure. The second one,
which is also apparent but often has been neglected in the
application of the PWE method for the PhC calculation, is
that in the whole studied system the propagating waves must
obey the exact same kind of differential equation. Keeping
this in mind, we can find that the Bloch theorem is no longer
correct in the fluid/solid or inverse system, because the wave
motion in fluid is governed by the scalar differential equa-
tion, but the wave propagating in solid must satisfy the full
vector differential equation. We must point out that the wave
behaviors governed by these two kind of differential equa-
tions are quite different, even though the former equation can
be obtained from the latter one by letting the lame coefficient
m=0. In a system consisting of discrete solid material as
scatters immersed in fluid host (or inverse), the areas occu-
pied by the scatters are “singular” for the Bloch theorem

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.73.024304

ZHILIN HOU, XIUJUN FU, AND YOUYAN LIU

because the Bloch character of the wave in the host material
is broken by them. This singularity must be removed if the
Bloch theorem has to be used in this kind of system. For the
same reason, we can understand that the Bloch theorem can-
not be directly used either in the air/rigid or solid/vaccum
(which can be constructed by drilling holes periodically in
the solid matrix) system.

A popular numerical method in which the singularity of
the Bloch theorem has been removed naturally is MST,?
where the embedded scatters are considered separately, and a
boundary condition is then used to connect the wave solution
in the scatters and in the host. The good convergence makes
MST one of the best selections in the PhC calculation, but
the expansion basic set it used makes this method suitable
only for systems with circular or spheroidal shaped scatters.

In Ref. 7, Goffaux and Vigneron suggested but did not
prove physically that, in the system with air cavities in solid
host, the unphysical flat bands in the PWE result can be got
rid of by taking an artificial transverse velocity ¢, ,;, in air.
From our investigation stated above, we can now understand
that the introduction of this artificial transverse velocity
makes both conditions required by the Bloch theorem defi-
nitely satisfied. In other words, the singularity of the Bloch
theorem in the air areas has been removed. But this numeri-
cal treatment gives rise to an unreasonable result that the
transverse wave can exist in the nonviscous fluid. Moreover,
this technique requires the condition p/c,— 0.5 where p is
the mass density, which limits it only applicable to the sys-
tem with very low-density fluid.

Another structure which has been well studied is the air/
solid system.>®!0 The solid scatters in this system can be
considered as a rigid body because of the huge impedance
mismatch between solid and air. To calculate the band struc-
ture of this system by the PWE method, the solid scatters
have to be looked as fluid materials>*!? to avoid the above-
mentioned unphysical modes. This means that the scatters
must be absolutely hard to immunize from the excitation of
the transverse polarized wave, and at the same time they also
should be soft enough to support the longitudinal polarized
wave. These two conditions seem very strange, but in fact
they suggest again that, to obtain a reasonable result, the
singularity of Bloch theorem in scatters must be removed.
Although the numerical result under this hypothesis is accu-
rate because the strong wave scattering character of the em-
bedded scatters is kept, the unreasonable hypotheses are
physically unacceptable.

In this paper, we take a 2D system as an example to give
an alternative method to get rid of the singularity of the
Bloch theorem. The chosen system is constructed by the
rigid rectangular rods squarely arranged in an air host; the
idea can also be used in the solid/vaccum and fluid/solid (or
inverse) system. Other systems with circular rods or more
complicated shaped scatters can also be dealt with by this
method. For the sake of simplicity, only the waves propagat-
ing in the xy plane (take k,=0) will be considered. A numeri-
cal method, by which the band structure and transmission
spectra can be efficiently calculated, is developed accord-
ingly. We can find that in our method the unreasonable con-
ditions needed in the previous works cited above has defi-
nitely been abandoned.
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FIG. 1. Birds-eye view of a two-dimensional phononic crystal
constructed by rectangular rods (shaded areas) arranged squarely in
a uniform host with lattice constant a, [ is the distance between two
nearest rods. A set of planes parallel to the xoz plane cuts the system
into uniform and composite layers along the y direction, which are
labeled as 1,3,5,... and 2,4,6,..., respectively.

II. THE CALCULATIONAL METHOD

The considered 2D system shown in Fig. 1 can be cut into
two different kinds of layers; one is the uniform layers la-
beled as 1, 3, 5, etc., and the other one, which is stacked
periodically by air and rigid piece, is the composite layers
labeled as 2, 4, 6, etc. Following the expression used in Ref.
11, it is easy to write the wave solution in the uniform layers
as a superposition of plane wave modes as

+M

pley)= 2 e KFOAYP 1 A e 1P (1)
n=—M

and

+M
Uy(X,Y) - E ﬂei(Kx+Gn)x[A;eiﬁlzy _A;e_iBnY]’ (2)
n=—M P

where p(x,y) is the pressure field and v,(x,y) is the velocity
field along y direction, w is the angular frequency of the
wave, p is the mass density and c is the wave velocity of air,
K, is the Bloch wave vector along the x direction, and A, and
A, are the amplitude of the positive and negative propagating
waves along the y direction, respectively. G,, is the reciprocal
lattice vector and f3, is the wave number along the y direc-
tion, which take the values

G,=2nmla (n=0,%1,...,+M) (3)

and

B, =(wlc)* = (K, +G,)>. (4)

In the composite layer, the wave solution can also be writ-
ten as a superposition of the plane wave modes if it is
stacked by two different kinds of fluid or solid materials.'’-1?
But in the fluid/solid or solid/vaccum systems, because of the
singularity of the Bloch theorem, the expression likes Egs.
(1) and (2) can no longer be used. In the air/rigid system, we
note that the wave solution in the composite layers can be
expressed as a superposition of the waveguide modes be-
cause waves are confined in the air piece. The pressure and
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velocity field along the y direction can be expressed as

N
nmwx ) .
p@y)=§:ﬁm—7{Ak$ﬂ+Akﬂmq )
n=0
and
- B
" nwx . o
0,ry)= 3 o cos TE[ATR ~ A (6)
~ n=0 P@W [
where

2 2
B, = (9> -(”—”), (n=01,....N)  (7)

c l

is the wave vector along the y direction in the air piece.

The wave solutions in the uniform and composite layers
can be connected by the boundary condition at the layer
interfaces. For the interface between layer k (uniform) and
layer k+1 (composite), we have

pP=pth, 0<x<i, (8)
and

(k+1)
v, 0<x<l
(k) _ { ) (9)

0 I<x<a’

Substituting Eqgs. (1) and (5) into Eq. (8), and using the or-
thogonality of the waveguide mode, we get
+M

N
E M%}(Aj(»k)++AJ(»k)_) — E M,(qul)(A;k+l)++Aflk+l)_),
j=—M n=0

m=0,1,...,N (10)
with

!
mix .
Mﬁ,’f}= f cos Te’(Kx+Gj)xdx, (11)
0

0 m#*n
!
M(k“):f cos%cos m;Txdx: 12 m=n+#0,
0

mn

I m=n=0
(12)

where the superscripts (k) and (k+1) denote the layer num-
ber.

By the same way, we can substitute Egs. (2) and (6) into
Eq. (9), and then get

+M N
X PAR - A = X PR - AR,
j=M n=0
m=0,+1,...,+M (13)
with
©
afl3; m=
O R A (14)
710 m# j

and
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1
) nwx
ng;l) = ,8£lk+1)f e (Kt G)x ooq de. (15)
0

Here, the orthogonality of the Fourier components is used.

The matrices M®, M&D PO and P& ghould be the
square matrices if we set N+1=2M+1, and then the linear
Egs. (10) and (13) can be written as

A(k+l)+ S S A(k)+
( - = b (k+1)- | (16)
where the matrices
S22 — 2[(M(k+1))—1M(k) + (P(k+l))—lP(k)]—l , (17)

Sz] = [(M(k+1))—lM(k) + (P(k+l))—1P(k)]—1[(P(k+l))—lP(k)
— (MD)W, (18)

Sp,= [(M(k))—lM(k+1) + (P(k))—IP(k+1)]—1[(P(k))—lp(k+1)
- (MO M), (19)
and
S, = 2[(M(k))—1M(k+1) + (P(k))—IP(kH)]—l (20)

are the so-called scattering matrix.'>!3

The relationship of the wave amplitudes between the low
and upper boundaries of layer k (or k+1) can also takes the
form of Eq. (16) with

SIZZSZIZ()’ (21)

and

(22)

G s ¢#'" for diagonal terms
H=e27 1) for nondiagonal terms,

where ¢ is the thickness of layer k.

For an infinite system along the y direction, following the
idea of the scattering matrix method and using Egs.
(16)—(22), we can get the relationship of the wave ampli-
tudes in the nearest two uniform layers, and then an
eigenequation can be obtained if we note that the wave in the
uniform layers along the y direction satisfies the Bloch theo-
rem. For a finite system with arbitrary layers, a recursive
relation of the wave amplitude in the inputting and outgoing
layers can also be obtained by a similar way, by which the
transmission and reflection coefficients can be obtained.
More details of the scattering matrix method can be found in
Refs. 12 and 13.

Before we present our numerical results, it is helpful to
briefly discuss other systems. In the 2D solid/vaccum or
solid/liquid systems, the elastic wave equation can be di-
vided into two separate equations when only the wave propa-
gating in plane is considered, one of which controls the mo-
tion of the xy mode, and the other controls the motion of the
z mode. For the z mode, the same formulae presented above
can be used if we replace p and v, by the displacement
component u, and the stress component 7, respectively. For
the xy mode in the solid/vaccum system, the wave modes in
the composite layer (it is localized in the solid piece, in fact)
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FIG. 2. (Color online) Band structure of the two-dimensional
air/rigid system with f=0.112 along (a) I'M, (b) MX, and (c) XT'
directions; the circle and cross (red in color) display the results by
the our method and by PWE method, respectively. The elastic pa-
rameters chosen for the PWE calculations are p,;,=1 kgm™, p,,,
=1500 kgm™, ¢,;,=340 ms~', ¢,,,=2000 ms~'. (d) The transmis-
sion coefficient calculated by our method.

are the well-known Lamb wave modes, by which the dis-
placement and stress component wave can also be expressed
as a superposition in principle, but the normalization condi-
tion of the Lamb modes is much more complicated.14 So, to
use our method in this system practically, other basic func-
tion sets should be found. As for the solid/liquid system, the
circumstance is more complicated because the longitudinal
and transverse wave modes in the solid and liquid pieces of
the composite layer can be interexcited by each other, and
the wave modes in it will have the form of general Lamb
modes. '

III. RESULT AND DISCUSSION

For the air/rigid system, a typical band structure with vol-
ume filling fraction f=0.112 obtained by our method is
shown by circular dots in Figs. 2(a)-2(c). The results by the
traditional PWE method under the hypothesis used in Ref. 8
are also presented by cross symbols. From the pictures we
can see that the results from these two methods are over-
lapped very well. We have used 529 plane wave in the tra-
ditional PWE method calculation, but in our present method
only nine plane waves (waveguide modes) are needed, which
shows the good convergence of our method. The correspond-
ing transmission spectrum (energy flow) for a plane wave
incident along I'X direction of a slab with 16 unit cells is
presented in Fig. 2(d). The correspondence [except the deaf
bands® marked in Fig. 2(c)] between the band in I'X direction
and the transmission spectrum verifies the correctness of our
method from another aspect. Note that for this system, no
other existing numerical method can be used to calculate the
transmission spectrum except the FDTD method.

In the calculation of the z mode band for the solid/vaccum
or solid/liquid systems, it is necessary to discuss briefly the
approach presented in Ref. 7, in which a sufficient large
transverse velocity in air (denoted as ¢, ,, in the following) is
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FIG. 3. (Color online) (a) Band structure of z mode of the 2D
solid/air system along the I'X direction with f=0.112; results de-
noted by circle and cross (red in color) are calculated by the PWE
and by our method, respectively. A flat band with wa/2mc, j,,~2
occurs only in the result of PWE method. Except an artificial
¢ qir=1500 ms~! is used in air, the elastic parameters chosen for
PWE calculation are the same as the air/rigid system. (b) Wave
amplitude distribution of the flat band at the I" point, amplitude in
two unit cells along the x and y directions is shown.

introduced to avoid the un-physical flat bands in the PWE
method result. In our practical calculation we find that their
approach cannot remove the flat bands completely when a
high frequency mode is considered. In other words, another
kind of flat band would appear in a higher frequency region.
A numerical example is presented in Fig. 3(a) when the
transverse velocity ¢, ,;,=1500 ms~! (as chosen in Ref. 7) in
air is chosen, where a flat band around wa/2mc,),,=2 ap-
pears in the result of PWE method. This flat band should not
be caused by the singularity of the Bloch theorem because it
has already been removed by introducing a nonzero c, 4;,. To
discover what it is, the wave amplitude distribution of this
mode at I' point is presented in Fig. 3(b), where we can see
that the vibration is mainly localized in the air holes. It
shows that this is a confined mode caused by the imaginary
introduced ¢, ;, in air. Obviously, it is another kind of unrea-
sonable mode, and cannot be removed by numerical tech-
nique.

Finally, we would like to point out that from the math-
ematical point of view, the solutions of the elastic equation in
the PhC can be determined completely by the Bloch theo-
rem, but it would be overdetermination if an additional
boundary condition were to be added. In the fluid/solid or
inverse system, the lack of transverse wave in fluid (with the
lame coefficient ©=0) implies a boundary condition with
zero transverse stress components at the interface of the solid
and fluid, so the Bloch theorem can be used only if this
boundary condition is revised. In this case we can understand
consequently the origin of the “bad numerical problem con-
dition” mentioned in Ref. 7. In this paper, we present an
alternative method to remove the singulary of the Bloch
theorem. Evidently, our method is much more natural and
reasonable.
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