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Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg
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Crystal-melt interfacial free energies () are computed for hcp Mg by employing equilibrium molecular-
dynamics (MD) simulations and the capillary-fluctuation method (CFM). This work makes use of a newly
developed embedded-atom-method (EAM) interatomic potential for Mg fit to crystal, liquid, and melting
properties. We describe how the CFM, which has previously been applied to cubic systems only, can be
generalized for studies of hcp metals by employing a parametrization for the orientation dependence of 7y in
terms of hexagonal harmonics. The method is applied in the calculation of the Turnbull coefficient () and
crystalline anisotropies of y. We obtain a value of a=0.48, with interfacial free energies for different high-
symmetry orientations differing by approximately 1%. These results are compared to those obtained in previ-
ous MD-CFM studies for cubic EAM metals as well as experimental studies of solid-liquid interfaces in hcp
alloys. In addition, the implications of our results for the prediction of dendrite growth directions in hcp metals

are discussed.
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I. INTRODUCTION

The excess free energy of the crystal-melt interface (7)
and its dependence on crystalline orientation (72) are critical
factors influencing nucleation rates, phase selection, and mi-
crostructural morphology in the growth of a crystal from its
melt. In particular, dendrite growth directions and growth
rates are known to be extremely sensitive to the weak aniso-
tropy of y in metallic systems.! Due to the difficulties inher-
ent in performing direct experimental measurements of the
properties of solid-liquid interfaces, to date much of the most
detailed information concerning the magnitude and aniso-
tropy of vy has been derived from molecular-dynamics (MD)
simulations.”!> Highly precise MD-based calculations of y
have been facilitated by the development of two complemen-
tary techniques: the so-called cleaving method, first proposed
by Broughton and Gilmer?> and subsequently extended by
Davidchack and Laird,>> and the capillary-fluctuation
method (CFM).%!° The CFM has been used to calculate an-
isotropic values of 7y for a variety of elemental fcc and bec
metals,®1%1213 a5 well as one alloy system,'® all modeled
with interatomic potentials of the embedded-atom-method
(EAM) form.'® In addition, the cleaving method has been
extensively applied to the study of crystal-melt interfacial
free energies in a variety of model systems including hard
spheres®'* and repulsive power-law potentials.> Both the
CFM and cleaving methods were applied to the calculation
of v and its anisotropy for the Lennard-Jones system,>*!!
where good agreement was demonstrated between results ob-
tained from these two independent methods.
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The extensive body of simulation work devoted to the
study of crystal-melt interfaces has yielded interesting corre-
lations between the magnitudes and anisotropies of vy and the
atomic structures of the bulk solid and liquid phases. For
example, the simulation results for the magnitude of y are
found to obey well the scaling relation originally proposed
by Turnbull:'7 yn?*=al, where n is the solid atomic den-
sity and L is the latent heat (per atom). For fcc EAM metals,
MD-CFM calculations give an average value for the Turn-
bull coefficient of @=0.55,'3 in close correspondence with
the value of @=0.51 for hard spheres.'® For bcc EAM metals
the average Turnbull coefficient calculated by MD simula-
tions is lower, with @=0.29.° This trend towards lower val-
ues of a for bee relative to fcc systems was also found in
recent MD calculations for repulsive power-law potentials.’
The lower values of « obtained by MD calculations for bcc
relative to fcc solids are consistent with the trend previously
inferred from experimental and simulation-based nucleation
studies (e.g., Refs. 19-26) and from a polytetrahedral model
for the (negative) excess configurational entropy of crystal-
melt interfaces.?’2° Another important feature of the simula-
tion results concerns the effect of crystal structure on 7y
anisotropies. For fcc-based systems, MD calculations yield
anisotropies between {110}, {111}, and {100} interface orien-
tations in the following ranges: (vi00— Y110)/270=0.8-2.5%
and  (vi00=Y111)/2%=18-32%,° where v, is the
orientation-averaged value of y. The magnitudes of these
calculated anisotropies are consistent with recent values for
fcc Al-based alloys measured experimentally.’*3? Recent
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calculations for bcc-based systems yield slightly smaller
anisotropies, particularly for v,/ 7vi0-> A trend towards
lower anisotropies in bce relative to fce systems is also found
in the measurements reported for transparent organic systems
succinonitrile (bcc) and pivalic acid (fcc).333* Recently,
through consideration of two different potential models for
Al, a trend towards increasing values of y with increasing
icosahedral short-range order in the liquid phase was also
demonstrated.'?

To date all simulation-based studies of crystal-melt inter-
faces have focused on systems with cubic (fcc or bee) crystal
structures. The present work involves the generalization of
the CFM method in the calculation of crystal-melt interfacial
free energies for hcp metals. We describe how the CFM can
be readily applied to the calculation of 7y and its anisotropy
for hep systems by employing a parametrization of y(72) in
terms of hexagonal harmonics. The approach demonstrated
in this work allows the analysis of the correlations between
crystal structure and 7y, as summarized above, to be extended
in the consideration of the most commonly occurring noncu-
bic crystal structure for elemental metals and alloy solid so-
lutions, namely, hcp.

In this initial application of the CFM to hcp systems, we
focus on elemental Mg. This choice was motivated by the
growing interest in Mg-based alloys as light-weight struc-
tural materials, and the associated relevance of the solidifi-
cation microstructures resulting from their casting. In this
study we make use of a newly developed EAM potential for
Mg fit to experimentally measured and first-principles-
calculated properties for both crystalline and liquid phases,
as well as the melting temperature. This work thus extends
the previous work by Liu er al.,» who also generated an
EAM Mg potential by fitting to both liquid and crystal prop-
erties. Relative to this earlier work, the potential developed
here is found to yield improved predictions for the equilib-
rium melting properties and high-temperature phase stability,
as will be discussed below.

In the following section, the details of the application of
the CFM method to hcp systems are described, and expres-
sions are given for the stiffnesses of high-symmetry interface
orientations, expressed in terms of hexagonal harmonics. De-
tails of the Mg interatomic-potential development are then
described, and results for benchmark structural and energetic
properties in solid and liquid phases presented. The results
for the crystal-melt interfacial free-energy are presented in
Sec. IV and discussed in Sec. V relative to previous calcula-
tions and experimental findings in hcp alloys. The main con-
clusions are summarized in Sec. VI.

II. CAPILLARY FLUCTUATION METHOD

In the CFM, crystal-melt interfacial free energies are de-
rived through an analysis of equilibrium interface-height
fluctuations obtained from MD simulations for coexisting
solid-liquid systems. The method is based on the well-known
relationship between the static height-fluctuation spectrum of
a molecularly rough interface and its stiffness:

kgT,
AP =3 e

where A(k) is the Fourier amplitude of the interface height

(1)
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FIG. 1. Schematic illustration of the geometry of the simulation
cells employed in CFM calculations of interfacial free energies.

fluctuation with wave number k, b, and W are the dimensions
of the interface plane, kp is Boltzmann’s constant, and T, is
the melting temperature. In Eq. (1), y+ 9" denotes the inter-
face stiffness, where 7" is the second derivative of y with
respect to the orientation of the interface normal (7).

In the CFM, interface fluctuations are measured from
equilibrium MD simulations which typically make use of
quasi-two-dimensional cell geometries, as illustrated sche-
matically in Fig. 1. The area of the plane of the ribbonlike
interface is b X W, where b and W are the short and long
dimensions, respectively. In such simulations, the instanta-
neous position of the crystal-melt interface is derived
through the use of a local structural order parameter;*!° in
the present work we make use of the crystalline-order param-
eter (®) introduced by Hoyt et al.®

g 2)

1 I
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where the sum is over the twelve nearest neighbors (for fcc
and hcp crystals) of a given atom, 7; is the position of neigh-
boring atom i, and 7., is the ideal position of atom i in the
ideal crystal structure. For a given MD snapshot, the order
parameter is computed for each atom in the simulation box,
and the interface location is identified as the position where
the average value of @ has a magnitude half way between
those in the crystal and melt phases. The amplitudes A(k) are
obtained through a real-space Fourier transform of the inter-
face location along the long periodic dimension parallel to
the boundary plane. This is performed for each snapshot and
the results are time averaged to obtain (|A(k)[*). A fit of
(|A(k)|?, versus 1/k* is then used to derive values for the
stiffness y+7/".

Once the stiffnesses have been calculated for several in-
terface orientations, the orientation-averaged interfacial free
energy (7y,) and the associated crystalline anisotropies are
derived by employing an analytical parametrization for the
dependence of vy on interface normal 7. For the cubic sys-
tems studied to date this parametrization takes the form of an
expansion of (i) in terms of cubic harmonics, i.e., linear
combinations of spherical harmonics which are compatible
with the cubic symmetry of the crystal. Specifically, the fol-
lowing three-parameter expansion (e.g., Ref. 15) has proven
sufficient to model the orientation dependencies of y and
stiffness derived from MD simulations for a variety of fcc
and bcc systems:
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FIG. 2. Coordinate system employed in the current work. 6 and
¢ are spherical-coordinate angles used to define the orientation of
the normal (73) to the crystal-melt interface.

3
¥(i) = 7’0[1 +e,(2n?—§)

i=1 5

3
17
+62<3E n?+66n%n§n§—7>], (3)

i=1

where €; and €, denote the magnitudes of the fourfold and
sixfold anisotropies, respectively. With the use of Eq. (3),
application of the CFM to cubic systems requires that a mini-
mum of three stiffness values be derived for different inter-
face orientations by MD, from which v, and the two aniso-
tropy coefficients can be obtained. These in turn provide a
full parametrization of (7).

In the application of the CEM to hcp systems, the proce-
dure summarized above can be readily employed in the cal-
culation of (1), provided Eq. (3) is replaced with the form
appropriate for an hcp crystal structure. In this work, we
accordingly make use of a parametrization of (/i) in terms
of hexagonal harmonics. Specifically, we make use of the
fact that the symmetry of y(71) is governed by the point group
isogonal with the space group of the crystal structure (e.g.,
Ref. 36). For the hcp structure, this point group is 6/mmm
(Dgp,), and accordingly the orientation dependence of y(7)
can be written as follows:*’

Y6, b) = Yol 1 + €2020(6, P) + €10y40(0, D) + €50Y60( 6. D)
+ €56Y66( 0. D) + * - 1, (4)

where the interface normal is specified by the spherical-

c _ c
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coordinate angles 6 and ¢. The definition of these angles is
illustrated in Fig. 2 where the choice of coordinate system
adopted in this work is also specified with reference to high-
symmetry directions in the hcp structure. The functions
Vim(0, @) in Eq. (4) represent normalized real spherical har-
monics taking the following form:

y2(0, ) =/ %7[3 cos*(6) - 11,

3
Yao( 0. @) = —=[35 cos*(6) — 30 cos*(6) + 3],
16V

—

13
Yoo 6. ) = ——=[231 cos%(6) — 315 cos*(6)
32V
+105 cos*(0) - 5],
V6006
yeo( 6, ) = ———=[1 = cos*(6) Pcos(6¢). (5)
64\

In Eq. (4), we have included terms in the expansion up to [
=6, which include the lowest-order spherical harmonic
(namely, yqs) parametrizing anisotropy of vy within the
(0001) basal plane. As will be shown below, the ygq term is
found to be crucial for obtaining a good fit to the MD stift-
ness results for hcp Mg.

In applying the CFM to hcp Mg, MD simulations have
been performed for a total of five interface orientations de-
rived from the three high-symmetry interface planes illus-
trated in Fig. 3. The orientations are specified following the
notation introduced in Fig. 1 where (hkim) gives the Miller
indices of the interface plane (using the standard four-index
system for a hexagonal crystal), and [ijkl] gives the crystal-
lographic direction within the interface plane along which
height fluctuations are calculated by MD. Table I lists the
interface orientations considered in the present study and
provides expressions for the stiffness in terms of the aniso-
tropy parameters introduced in Eq. (5). Also listed in Table I
are the cell dimensions b and W, parallel to the solid-liquid
interface plane, employed for each simulation cell. The re-
maining periodic dimension, perpendicular to the interface,
was chosen as roughly 2W, giving a total number of atoms in
each cell of approximately 60 000. For each orientation, the
coexisting solid-liquid system was equilibrated as follows.

C

FIG. 3. Illustration of the high-
symmetry planes investigated in
the MD simulations of crystal-
melt interfaces for hcp Mg.
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TABLE 1. Expressions for interface stiffness and simulation-cell dimensions for the interface orientations considered in this work.

(hkim) [ijkl] v+ v b (nm) W (nm)
(0001) [1010] 1=\5/mex0— 21/ 7 e40—10V13/ 7 ey 2.276 18.020
(1010) [0001] 14335/ ex0— 21/ 7 €40+ 2213/ 77 €+ 56006/ 77 € 1.951 18.078
(1010) [1210] 1= 15/ 7 630+ 1/ 49— 3513/ 7 €50+ 26006/ 7 €65 2.127 19.507
(1120) [0001] 142V5/ 7 eg0— 1/ 7 €40+ 2213/ 7 €50 25 V6006 / 7 € 2.253 18.078
(1120) [1100] 1-ﬁ«%qw%\fﬂ%-;—z\fmeéo-g\ﬁm% 2.127 18.020

In the initial step, the lattice constants of the solid and the
atomic density of the liquid are determined at the melting
point. This information is then used to determine the periodic
lengths of the solid-liquid interface cells; the dimensions par-
allel to the interface are fixed by the zero-pressure lattice
constants of the crystal while the periodic length normal to
the solid-liquid interface is set to give a total cell volume
corresponding to a sample with equal volume fractions solid
and liquid. The initial sample is constructed with atoms in
bulk crystal positions and subsequently half of the atoms are
held fixed in high-temperature MD simulations (at 1.5 times
the melting temperature T),) used to melt the other half of
the sample. This process lasts roughly 10 ps, after which an
additional MD simulation of comparable length is performed
with the temperature set equal to 7), and the atoms in the
crystalline half of the sample remaining fixed. Subsequently,
all of the atoms are allowed to be dynamic in a canonical
ensemble (NVT) MD simulation at the melting temperature
lasting roughly 20 ps. Next, the simulations are equilibrated
in a microcanonical ensemble (NVE). The final statistics for
interface fluctuations are conducted in NVE simulations last-
ing a total of approximately 150 ps, with interface positions
sampled once every 0.02 ps. For each snapshot the interface
height profile was determined by averaging the crystalline
order parameter, defined in Eq. (2), over cube volumes with
an edge length equal to 1/12 the long periodic dimension
parallel to the interface. Fourier transforms of the resulting
heights were then averaged over snapshots to derive
(|A(k)[?). In all of the MD simulations a time step of 0.002 ps
was employed. The details of the interatomic potential em-
ployed in this work are given in the following section.

III. INTERATOMIC POTENTIAL FOR MG

Quantitative studies of crystal-melt interfacial free ener-
gies require as a prerequisite interatomic potentials which
accurately model the bulk thermodynamic properties of the
relevant crystal and liquid phases, along with the equilibrium
melting properties including melting temperature and latent
heat. Two classes of interatomic potentials have been em-
ployed in previous work to model the bulk thermodynamic
properties of Mg, namely, density-dependent pair
potentials*®** and many-body embedded-atom-method
potentials.>® While pair potentials have been successfully ap-
plied in calculations of the bulk structural and thermody-
namic properties, as well as the pressure-temperature phase
diagram for Mg,’®% EAM potentials are preferred in the

present work which involves simulations of coexisting solid
and liquid phases with different densities; the application of
density-dependent pair potentials in simulations for inhomo-
geneous systems (such as solid-liquid interface cells) is con-
ceptually far less straightforward than the application of
EAM potentials which incorporate in a natural way varia-
tions in interatomic interactions arising from local changes in
electron density (e.g., Ref. 40). For the present work we thus
focus on the application of EAM potentials in the modeling
of solid-liquid interfaces in elemental Mg.

A highly developed EAM potential for Mg was published
previously by Liu et al.;* in the following we refer to this as
the “LAEM” potential after the initials of the authors of Ref.
35. The LAEM potential was developed using the so-called
force-matching method.*! In this approach, model liquid
configurations are generated and the total forces on each
atom are obtained from first-principles calculations. The po-
tential parameters are then fit to these data together with such
crystal properties as the lattice parameters, cohesive and
vacancy-formation energies, the elastic constants and other
related properties (see Ref. 41 for details).

Table II compares crystalline and liquid Mg properties
predicted by the LAEM potential with values obtained either
from first-principles calculations performed in the course of
this work, or from experimental measurements. For the zero-
temperature properties, the lattice constants, elastic and co-
hesive properties predicted by the LAEM potential for hcp
and fcc Mg are in good agreement with the current first-
principles calculations, while predictions for the bce lattice
show significant deviations. The unrelaxed vacancy-
formation energy predicted by the LAEM potential is slightly
larger than that derived from first principles.

In addition to the vacancy formation energy, a calculation
of the vacancy migration energy was also undertaken in the
current work. This property was derived from MD simula-
tions in which one vacancy was introduced by removing an
atom from an hcp simulation cell consisting of 1848 atoms.
After equilibration, NVT MD simulations lasting 4 ns (as
above, the time step for the MD integrations was 0.002 ps)
were conducted to determine the diffusivity (D) from the
mean-square displacement (Ar?) as a function of time (¢) via
the Einstein relation D=(Ar?)/6¢. Such simulations were un-
dertaken at several temperatures and the resulting values of
D are shown on an Arrhenius plot in Fig. 4. Since the va-
cancy concentration was constant the temperature depen-
dence of D is determined solely by the vacancy migration
energy listed in Table II. The sum of the calculated vacancy
formation energy and the migration energy gives the activa-
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TABLE II. Physical properties of Mg calculated by the LAEM and current EAM potentials.

Property Target value LAEM potential New potential®
a (hep) (A) 3.186° 3.206 3.184
c/a (hep) 1.622° 1.623 1.628
E o (hep) (eV/atom) 1.510° 1.517 1.529
C,, (GPa) 63.5¢ 63.4 69.6
C,, (GPa) 26.0¢ 24.8 25.3
C,y (GPa) 18.4¢ 18.1 12.8
C,; (GPa) 21.7¢ 22.0 16.0
C3; (GPa) 66.5¢ 67.3 69.5
a (fec) (A) 4.496° 4.519 4.495
AE¢ec_nep (€V/atom) 0.013° 0.013 0.012
a (bee) (A) 3.568" 3.576 3.562
AEpcc_hep (€V/atom) 0.029% 0.016 0.014
Ejﬁ (unrelaxed, hep) (eV/atom) 0.82° 0.88 0.90
E; (relaxed, hcp) (eV/atom) 0.88 0.88
EI’Z’ (hcp) (eV/atom) 0.43 0.64
Ej, (hep) (eV/atom) 1.404 1.31 1.52
Rr (eV/A) 0.000 0.097¢ 0.141
n (liquid at T7=923 K) (atom/A?) 0.039* 0.0374 0.0389
Tere (hep) (K) 9238 745+4 914+3
L (hep) at Ty (€V/atom) 0.088¢ 0.073 0.098
AQ e (hep) at Ty (%) 4.1b 4.4 6.0
Tere (bec) (K) 900 766+5 905+7
L (bec) at Ty (€V/atom) 0.064 0.081
rAQ e (bee) at Ty (%) 4.5 5.1

#The properties used in the fitting procedure are printed in bold.
YFirst-principles calculations performed as part of this work.

‘Input data taken from Ref. 35.
dReference 42.

°This value was obtained using the same liquid configuration as in the development of the new potential.

fReference 43.
gReference 44.
hReference 45.

Value set to ensure a lower predicted melting point for bce relative to hep (see text for a detailed explana-

tion).

tion energy for self diffusion, which is compared with ex-
perimental values*? in Table II. Note that in the case of hcp
Mg, experimental measurements find that the diffusivity is
anisotropic although the activation energy is almost isotropic
(within the accuracy of the measurements*?). The LAEM po-
tential is found to yield good agreement with measurements
for the activation energy of self diffusion in the hcp lattice.

Of direct relevance for the present work are the predic-
tions for liquid structure and melting properties. Considering
first the liquid structure, Fig. 5 gives a comparison of the
structure factor calculated (at zero pressure) with the LAEM
potential and that derived from experimental data*® at T
=953 K. Except for the region near the first minimum, the
agreement between the two curves is nearly perfect. It is
worth noting that although the LAEM liquid structure factor
is in excellent agreement with experiment, this potential pre-
dicts an atomic density of 37.2 nm™ at 953 K which is

roughly 3% smaller than the reported measured value of
38.3 nm™.

We turn now to the predictions of melting properties, fo-
cusing specifically on the melting temperature. For the hcp
structure the melting temperature originally reported by Liu
et al.® was checked in the current work through an imple-
mentation of the so-called coexistence approach,’ as de-
tailed in Ref. 48. Similar to the result originally reported by
Liu et al., the LAEM potential is shown in Table II to under-
estimate the hcp melting point by nearly 180 K. Of more
serious concern for the current work was the observation of a
higher melting point predicted for the bcc solid. In initial
LAEM-MD simulations performed in this work, it was noted
that the bcc crystal was found to be stable up to temperatures
comparable to the hcp melting temperature (fcc by compari-
son melted at relatively low temperatures). This observation
motivated more detailed coexistence simulations to calculate
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FIG. 4. The temperature dependence of the diffusivity calcu-
lated under the condition of a fixed vacancy concentration (see
text). The calculated results correspond to MD simulations based on
the LAEM potential (circles) and the potential developed in the
present work (squares).

the bce melting temperature listed in Table II. The resulting
bce melting temperature is seen to be higher than that for hcp
by roughly 20 K. These results thus indicate that the hcp
phase is predicted by the LAEM potential to transform to becc
prior to melting. The equilibrium temperature for the hcp to

3.24
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0.0 y g T y . r -
0 20 40 60 80 100 120 140

Q (nm)

FIG. 5. The structure factor of liquid Mg at 7=953 K obtained
from x-ray diffraction experiments (Ref. 46) and calculated by MD
simulations based on the LAEM (dotted line) and currently devel-
oped (solid line) EAM potentials.
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bee transition (77P~%°) was calculated employing thermo-
dynamic integrations based on the Gibbs-Helmholtz equation

in the form
T:J"CC A Jghep—bee 71:;13 A Hth
J —sz+f =mgr=0,  (6)
Thep—bee T ngcc T

where AHPP—P¢¢(T) is the hcp-bee enthalpy difference and
AHf}fp is the enthalpy difference between the hcp crystal and
the liquid. The temperature dependencies of these enthalpy
differences were obtained by zero-pressure MD simulations.
When the resulting values were used in Eq. (6), a value of
TheP—bec=645+40 K was derived. The LAEM potential thus
predicts that the bce phase is stable over a temperature range
of roughly 120 K prior to melting. While an hcp— bcc tran-
sition with increasing temperature has been predicted for Mg
at high pressures,®® it is inconsistent with the experimental
phase diagram at ambient pressure. The presence of a stable
bce phase at temperatures above the hcp melting point rep-
resents a cause for concern in the application of the LAEM
potential to studies of hcp crystal-melt interfaces; in prin-
ciple the bcc phase may form in simulations of hcp crystal-
melt interfaces, particularly when considering interface ori-
entations for which the hcp-bee interfacial energy is
relatively low. The unexpected high-temperature stability of
the bee phase obtained with LAEM potential motivated an
effort in this work to develop an EAM potential for Mg with
improved melting temperatures and finite-temperature phase
stability, as described in the remainder of this section.

In developing a new EAM potential for Mg, we adopted
an approach similar to that employed in previous work for Fe
in Ref. 48. As in the LAEM work, the current potential de-
velopment is based on the use of the force-matching method,
but it additionally includes an implementation of the ap-
proach for fitting equilibrium melting temperatures proposed
by Sturgeon and Laird.*® This procedure allowed us to ensure
that the predicted melting temperature for hcp was higher
than that for bcc at ambient pressure.

To construct the new EAM potential we first generated a
small liquid configuration consisting of 128 atoms. The
forces on each atom in this configuration were computed
from first principles using the PWSCF code®' employing
norm-conserving pseudopotentials and the generalized-
gradient approximation of Perdew et al.>> Convergence of
the forces with respect to the sampling of the Brillouin zone
was carefully checked and made use of a conventional
broadening of the electronic levels. In the development of
the Mg potential we used, as one of the properties in the fit,
the following quantity which represents a criterion for fitting
the resulting first-principles forces:

N

1

Rp= 52 [(Fio— FD)*+ (Fy, = FIDY? + (F;, - D)2,
i=1

(7

where F;, and F/? are the @ components of the forces on
atom i calculated with the EAM potential and from first prin-
ciples, respectively. In order to be self consistent, we also
used in the fitting values for the hcp, fce, and bece lattice
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FIG. 6. The pairwise (a), density (b), and embedding-energy (c) functions of the currently developed EAM potential for Mg. In (d) the
effective pair potentials calculated from the LAEM (dotted line) and new (solid line) potentials are plotted.

parameters, energy differences, and unrelaxed vacancy for-
mation energy as a function of the hcp atomic volume (with
fixed c/a ratio), all derived from first-principles calculations
employing the same method. These data, together with the
universal binding-energy relation®® and elastic constants,
were used to produce the first iteration of the potential. Sub-
sequently, the potential parameters were re-optimized to ob-
tain the melting-point data and the correct liquid density at
the T},. The procedure of Sturgeon and Laird* was used to
fit the hcp melting temperature to the experimental value; to
ensure a lower value for the bcc melting temperature, a value
of 900 K was used in the fitting of this quantity. Due to
uncertainties in the actual value of the bcc melting point, the
equation for the bce melting temperature was given half the
weight in the fitting relative to that for hcp. The resulting

potential parameters derived from this procedure are given in
the Appendix. The pair potential [¢(r)], electron density
[¢(r)], embedding function [F(p)] and effective pair poten-
tial (¢°) are plotted in Figs. 6(a)—6(d). The effective pair

potential is defined as follows:*

&) = B(r) + 2F" (po) (), (8)

where F’(p,) denotes the derivative of the embedding func-
tion evaluated at the electron density (p,) at an atomic site in
an hep lattice with the equilibrium zero-temperature lattice
constants. In Fig. 6(d), ¢°'" derived from the LAEM and new
potentials are plotted for comparison. The new potential has
a longer range and deeper minimum than the LAEM poten-
tial. It is also softer at short distances and possesses a region

024116-7



SUN et al.
I—— . ‘ ‘ ;
3 O (0001} [10-10] —— ]
O (10-10) [10-10] e i
F A (10-10) [-12-10] ---—-—- ]
v (12-10) [0001] ——
[ * (12-10) [10-10]
(\ls 1
N
= [
z I
v C
oo1l— | : ) )

0.1
k (A7)
FIG. 7. Log-log plot of the fluctuation spectra {|A(k)|?) versus
wave number (k). The symbols are MD-calculated data for five
interface orientation, with error bars denoting estimated standard
statistical uncertainties. The lines represent fits of the MD data to
the theoretical 1/k? relation.

of repulsive interactions at larger interatomic separations.

The properties predicted by the new EAM Mg potential
are given in the fourth column of Table II. The new potential
is seen to provide slightly poorer values for the crystal prop-
erties (with the exception of thermal expansion). The liquid
structure factor predicted by the new potential is shown in
Fig. 5 and, except for the region near the first minimum, it is
seen to be in slightly poorer agreement with experiment than
the LAEM potential. However, given that the LAEM melting
point is significantly different from experiment, the slightly
better agreement with the measured liquid structure factor
may be somewhat fortuitous. The most important feature of
the new potential is that it provides an hcp melting tempera-
ture in very reasonable agreement with experiment and cor-
rectly reproduces the stability of hcp relative to bee up to the
melting point.

IV. RESULTS

Figure 7 plots the MD-calculated fluctuation spectra for
the five interface orientations listed in Table I. The results are
plotted on a log-log plot as {|A(k)|*) versus k, and the solid
lines indicate best fits to the theoretical 1/k> dependence
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TABLE III. MD-calculated (second column) and fitted (third
column) fluctuation amplitudes for hcp Mg for the five interface
orientations considered in this work. Error bars in the second col-
umn denote estimated standard statistical uncertainties.

Orientation y+9" (mJ/m?) Fit (mJ/m2)
(0001)[1010] 95.9+3.3 9.9
(1010)[0001] 88.7+2.8 87.0
(1010)[1210] 94.1+2.2 96.5
(1120)[0001] 85.2+3.7 85.4
(1120)[1100] 82.7+2.3 84.8

given in Eq. (1). The error bars in Fig. 7 represent estimates
of the standard statistical errors, derived from measured cor-
relation times, following the procedure described in Ref. 7.
Similar to the results obtained in previous applications of the
CFM to EAM metals, the theoretical dependence ({|A(k)|?)
«1/k?) is found to be obeyed well for fluctuation wave-
lengths A=27/k larger than about 1.5 nm (i.e., k<0.4 A‘l),
while systematic deviations are obtained at higher k. The
values of the interface stiffnesses given in Table III were
derived by performing a least-squares fit of Eq. (1) to the
MD fluctuation amplitudes (weighted by the error bars) for
wave numbers in the range of k=0.04—0.4 A~'. To deter-
mine the average value and crystalline anisotropy of (i)
from this data, the parameters in Eq. (4) are derived by fitting
the stiffness data in Table III to the expressions given in
Table 1.

From the analytical expressions given in Table I, it can be
seen that the g parameter determines the difference be-

tween the traces of the stiffness in the (1120) and (1010)
planes:

80 /6006

—— 6 = ~ — + -~ — PR
64 - Yo€eo [7(1010)[0001] 7’(1010)[1210]]

= [Yarzo001+ Yazorionds  (9)

where we have used the symbol y= y+ v/ to denote interface
stiffness. From the stiffness values listed in Table III we
obtain a value of 14.9+5.7 for the right-hand side of Eq. (9).
These results establish that the €4 parameter is required in
the modeling of the MD-calculated stiffnesses in order to
reproduce the statistically significant anisotropy of the stiff-

TABLE IV. Interfacial free energies and associated crystalline anisotropies derived for hcp Mg. Error bars

represent estimated standard statistical uncertainties.

Y1120 ~ Y1010 Y1120 ~ Yooo1
Y0 €20 €66 @ 2y 2y
(mJ/m?) (%) (%) (%) (%)
89.9+1.5 -2.6%1.5 0.3+0.1 0.48+0.01 0.18+0.08 1.2+£0.7
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ness trace for 7 within the basal plane. In the fitting of the
MD data, we thus attempted different fits, including from Eq.
(4) the parameters 7y, €4 and various combinations of the
anisotropy parameters €, for /=2,4, and 6. Of these fits, the
only one that yielded statistically significant values for all of
the coefficients included v, €, and €g4.

The resulting fit, involving two anisotropy parameters, is
shown in Table III to reproduce the five calculated stiffnesses
to within the estimated statistical uncertainties of the MD
data. The fitted values of the orientation-averaged interfacial
free energy (1v,) and crystalline-anisotropy parameters (€,
and €g) are given in Table IV, along with the associated
values for the Turnbull coefficient («), and the differences in
interfacial free energies between the three high-symmetry

orientations 7=[0001], [1010], and [1120].

V. DISCUSSION

The value of the Turnbull coefficient for hcp Mg quoted
in Table IV can be compared with values derived in previous
CFM studies of fcc and bcc EAM metals 81013 The fcc val-
ues range from 0.46 to 0.62, while for bcc the values vary
between 0.27 and 0.36. The present value of «=0.48 for hcp
Mg is found to lie within the range previously derived for fcc
metals, while it is larger than any of the values obtained for
bcec EAM systems. These results suggest that the higher val-
ues of the Turnbull coefficient obtained for fcc systems are
likely to be representative of close-packed crystal structures
more generally. While we are unaware of any reported ex-
perimental measurements for the crystal-melt interfacial free
energy of elemental Mg, the Turnbull coefficient values ob-
tained here can be compared with measurements for the
more widely studied hcp metals Zn and Cd. For these sys-
tems, data from both dihedral-angle and nucleation measure-
ments have been used to obtained estimates of 1y
=77 mJ/m? (Ref. 53) and 87+15 mJ/m? (Ref. 54) for Zn,
and 58 mJ/m?2,% 59 mJ/m?,%® and 63 mJ/m? (Ref. 57) for
Cd. Using lattice parameter and latent heat values from Ref.
58, these solid-liquid interfacial free energies give Turnbull
coefficients in the ranges of «=0.40-0.45 for Zn and 0.42-
0.46 for Cd. The value of a=0.48 for Mg obtained here is
within 4-17% of these numbers; considering the relatively
high uncertainties associated with experimental measure-
ments of v, this level of correspondence can be considered
quite close.

In Table 1V, the differences in y between the three listed
high-symmetry orientations give the following ordering of
the interfacial free energies: ¥(1120)> ¥(1010)=> Y(0001)- Inter-
estingly, it is found that the orientation with the lowest inter-
facial free energy corresponds to the close-packed crystal
plane [namely, (0001)]. The same result has also been found
in MD studies of fcc metals where the close-packed (111)
plane is calculated to have the lowest interfacial free energy
in EAM systems,® as well as Lennard-Jones crystals,*!!
hard-spheres, and repulsive power-law potentials.’ The mag-
nitudes of the anisotropies quoted in the last two columns of
Table IV are comparable to, albeit slightly smaller than those
derived in previous MD studies of fcc metals. As reviewed in
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the introduction, CFM calculations for fcc metals yield maxi-
mum anisotropies between (111) and (100) orientations
which range between 1.8 and 3.2 %; for Mg we obtain
slightly smaller values for the anisotropies between (0001)
and basal-plane orientations with a maximum value of 1.2%.
Given that the uncertainties in the calculated Mg anisotropies
are relatively high, it is not clear if this result indicating
slightly smaller anisotropies for hcp Mg relative to fcc met-
als is meaningful. Further work is warranted to investigate
this possible trend in more detail.

Experimentally, the anisotropy of solid-liquid interfacial
free energies in hcp metals has been investigated for alloys
of Mg,>® as well as Cd and Zn (Refs. 59-63) through inves-
tigations of solid-particle shapes. For Cd and Zn, experimen-
tal observations are consistent with relatively high aniso-
tropy, on the order of 30% between (0001) and basal-plane
orientations. These high anisotropies are sufficient to lead to
the observation of faceted morphologies for crystals formed
from the melt. Passerone and Eustathopoulos®>%3 have in fact
found that by varying composition it is possible to observe a
roughening transition for solid-liquid interfaces in Zn-based
alloys. In contrast to these observations for Zn and Cd,
Miller and Chadwick™ report that, in Mg alloys, the solid-
liquid interfacial free energy is highly isotropic, based on
experimental measurements of the equilibrium shapes of
small liquid droplets entrained within solid grains. The
present calculations for Mg yield anisotropies on the order of
only a percent and are thus consistent with these early ex-
periments. More detailed comparisons between the presently
calculated vy anisotropies and experiment can be made on the
basis of the observed dendrite growth directions in Mg al-
loys, as described in the remainder of this section.

Alloy dendrite growth is controlled by the balance of sol-
ute diffusion and capillary forces. While the former tends to
make the interface morphologically unstable, the latter have
the opposite effect. The anisotropy of y generally determines
both the growth directions and growth rates of dendrites, and
it enters the diffusion-controlled growth problem through the
local equilibrium Gibbs-Thomson relation

ﬂzy(f”t))l
a0 | R;

1 1

2
T
T=TM+mCL_TM2 (’Y(ﬁ)+ ) (10)
i=1

which is written here for simplicity for a dilute binary alloy,
where T is the interface temperature, T, is the melting tem-
perature, C; is the solute concentration on the liquid side of
the interface, m is the liquidus slope, L is the latent heat of
melting, 6; are the local angles between the normal direction
A and the two local principal directions on the solid-liquid
interface, and R; are the principal radii of curvature. The
interface stiffness y+ 7" that enters the Gibbs-Thomson rela-
tion is a scalar in two dimensions but becomes a tensor in
three dimensions: in the neighborhood of a point P on the
interface, 71 can be specified by giving two angles ¢; and ¢,,
which are the deviations of this normal from the normal at P
in the directions of two tangent orthonormal vectors 7,and 7,,
contained in the plane perpendicular to the normal at P. The
stiffness tensor is then defined by
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FIG. 8. Dendrite growth direction selection map based on the
minimum trace of the interface stiffness tensor in the plane where
€, and €44 are the coefficients of the hexagonal harmonics y,, and
Ve Angular plots of the inverse of this trace corresponding to
points (a)—(d) above are shown in Fig. 9.

>y )
S.= O:: + . 11
ij <7 ij é"P[aQDj ( )

This tensor is diagonal when 7, and 7, coincide with the
principal directions on the interface at P, in which case ¢,
and ¢, coincide with 6, and 6,, and the contraction of the
stiffness tensor and the tensor of curvature enters the Gibbs-
Thomson relation (10). Therefore, the determination of the
dendrite growth direction generally requires a full self-
consistent solution of the diffusion-controlled growth prob-
lem to determine simultaneously the dendrite tip morphology
and growth rate, either through the application of solvability
theory®*-6 or using phase-field simulations.®’-*® However, an
approximate prediction of preferred dendrite growth direc-
tions can be obtained by assuming that these directions co-
incide with minima of the trace of the stiffness tensor TrS
=§,+S5, which are directions along which capillary forces
are least effective at smoothing out spherical protrusions of
the interface. Expressed in terms of spherical-coordinate
angles, this trace is given by

Py 1 Py dy
TrS=2y+ — + — +cot —. 12
: [Py sin®0 d¢* Y50 (12)

Guided by the MD data, which shows that the anisotropy of
v is dominated by y,(6, @) and yec( 8, ), we have used Egs.
(4) and (12) to compute the directions that correspond to
minima of TrS, or equivalently maxima of 1/(TrS), in the
two-dimensional parameter space (€g,€5). The resulting
dendrite growth direction selection map is shown in Fig. 8
and plots of 1/(TrS) as a function of spherical-coordinate
angles are shown in Fig. 9, where bumps in these plots cor-
respond to possible dendrite growth directions.

Growth directions in the basal plane, either (1120) or

(1010) directions depending on whether eg is positive or
negative, correspond to absolute minima of TrS below the
solid lines in Fig. 8, and (0001) directions correspond to
absolute minima of TrS above these lines. On these lines,
which can be found analytically to be given by €20
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a - b

FIG. 9. (Color online) Plots of 1/(TrS) as a function of the
spherical-coordinate angles illustrating preferred growth directions
in different regions of the (€, €,) plane: (a) €,,=0.06, €5=-0.01;
(b) €0=(10/3)*0.02, €56=0.02; (c) €39=—0.04, €66=0.01; (d) €39
=-0.026, €4=0.0027, which corresponds to the MD data of Table
Iv.

=10|€66|/3, (0001) and basal plane directions have equal
minima of TrS. The MD data of Table IV clearly fall into

a region where (1120) dendrites should form. This predic-
tion is in fact in agreement with experimental observa-
tions in a number of Mg alloy systems®>’® which have
reported observing dendrites growing with basal-plane

orientations with (1120) tip orientations. It is also inter-
esting to note that for some Mg-alloy systems, off-axis

dendrite growth directions such as (2245) have been
reported.®”7% As will be discussed in more detail in a fu-
ture publication, the inclusion of a small component of the
hexagonal harmonic y,, turns out to be sufficient to pro-
duce minima of TrS at these off-axis directions. It is there-
fore possible that solute additions increase the magnitude
of €49 so as to select these additional growth directions.

VI. SUMMARY

The present work represents the initial application of the
CFM to the calculation of anisotropic crystal-melt interfacial
free energies for an hcp crystal. It is described how the CFM,
which has previously been applied to studies of fcc and bec
systems only, can be extended to noncubic solids by making
use of an expansion of y(#) in terms of spherical harmonics
compatible with the crystal point-group symmetry. This ini-
tial application of the CFM to hcp solids has focussed on
elemental Mg. For this application we developed a new
EAM interatomic potential fit to crystal and liquid properties,
following the earlier work of Liu et al.> Compared to this
earlier potential, the current one has improved melting prop-
erties and corrects the unanticipated high-temperature stabil-
ity of the bcc phase. CFM calculations based on this new
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TABLE V. Parametrization of the potential functions represent-
ing the currently developed EAM potential for Mg, where energy
and distance are given in units of eV and A, respectively.

Function Value Cutoffs
&(r) (2073.5651906182/r)
X[0.1818 exp(—22.115115867102-r)
+0.5099 exp(—6.5122105254908r)
+0.2802 exp(—2.7844313071423r)
+0.02817 exp(—1.3932522996274r)] 0-1.6
+exp(13.795119773576—14.238449227620r  1.6-2.6
+5.8113719144770r2—0.92541810687079+°)
—4.0533531215168(3.7—r)*
+6.9691501349841(3.7-r)°
—-6.6468685095783(3.7—r)°
+2.1727482243326(3.7-r)7 2.6-3.7
—0.12374960403430(3.7—-r)8
-1.0210685145201(6.0—r)*
-0.81665230208338(6.0—r)>
—1.0553724438859(6.0—r)°
-0.34513757618316(6.0-r)’ 2.6-6.0
—-0.055196787794434(6.0—r)8
+0.17225753251414(7.5-r)*
-0.52595300571381(7.5—-r)>
+0.60129012186016(7.5—7r)°
—-0.29986451887671(7.5-r)7 2.6-7.5
+0.055188968432433(7.5—-r)®
(r) 0.00019838398686504(2.7—r)* 0-2.7
+0.10046581263528(2.8—r)* 0-2.8
+0.10054028073177(2.9-r)* 0-2.9
+0.099096119019299(3.0—r)* 0-3.0
+0.090021476664876(3.3—r)* 0-3.3
+0.0068621909217769(3.8—r)* 0-3.8
+0.012393768072070(4.7—r)* 0-4.7
-0.0047476810373812(5.3-r)* 0-5.3
+0.0012360476552220(6.2—r)* 0-6.2
+0.00062141449488021(7.5-r)* 0-7.5
F(p) —p'2-0.21928786648389p>

+0.031798479913244p°

potential yield a Turnbull coefficient of @=0.48 which is
compatible with values derived in previous work for fcc-
based EAM metals. Amongst the three high-symmetry inter-

face orientations (0001), (1010), and (1210), the lowest in
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terfacial free energy is obtained for the close packed (0001)
plane, analogous to the findings in previous calculations for
fcc systems which yield the lowest value of vy for the close-
packed (111) orientation. The maximum anisotropy in vy be-
tween the high-symmetry orientations considered in this
work is 1.2+0.7%. Finally, the experimental observations of

(1010) dendrites in the basal plane in Mg alloys agrees well
with the fact the absolute minima of the trace of the stiffness
tensor coincide with these growth directions for the MD an-
isotropy data. Accounting for other observed growth direc-
tions off crystal axes in these alloys requires the extension of
this work to include solute effects.
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APPENDIX

The interatomic potential for Mg developed in the present
work is of the embedded-atom-method (EAM) form in
which the total potential energy (U) is divided into two con-
tributions, a pairwise part and a many-body embedding part:

-1

N N
2 ¢(Vij) + E F(py), (A1)
=i+l i=1

where the subscripts i and j label distinct atoms, N is the
number of atoms in the system, r;; is the mean separation
between atoms i and j and

Pi=2 lﬁ(”ij)-

J#Fi

(A2)

Table V presents the parametrization of the three func-
tions representing the Mg EAM potential developed in the
current work. Details concerning the form of the parameter-
ization of the potential functions can be found in Ref. 48.
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