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The original Thomson problem of “spherical crystallography” seeks the ground state of electron shells
interacting via the Coulomb potential; however one can also study crystalline ground states of particles
interacting with other potentials. We focus here on long-range power-law interactions of the form 1/r (0
< y<2), with the classic Thomson problem given by y=1. At large R/a, where R is the sphere radius and a
is the particle spacing, the problem can be reformulated as a continuum elastic model that depends on the
Young’s modulus of particles packed in the plane and the universal (independent of the pair potential) geo-
metrical interactions between disclination defects. The energy of the continuum model can be expressed as an
expansion in powers of the total number of particles, M ~ (R/a)?, with coefficients explicitly related to both
geometric and potential-dependent terms. For icosahedral configurations of 12 five-fold disclinations, the first
nontrivial coefficient of the expansion agrees with explicit numerical evaluation for discrete particle arrange-
ments to four significant digits; the discrepancy in the fifth digit arises from a contribution to the energy that
is sensitive to the particular icosadeltahedral configuration and that is neglected in the continuum calculation.
In the limit of a very large number of particles, an instability toward grain boundaries can be understood in
terms of a “Debye-Huckel” solution, where dislocations have continuous Burgers’ vector “charges.” Discrete

dislocations in grain boundaries for intermediate particle numbers are discussed as well.
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I. INTRODUCTION

The Thomson problem of constructing the ground state of
(classical) electrons interacting with a repulsive Coulomb
potential on a sphere! has a rich, approximately 100 year old
history.”* Determining crystalline particle packings in
curved geometries has a number of interesting applications
in physics, mathematics, chemistry, and biology particularly
if one allows more general interactions amongst the particles.

An almost literal realization of the Thomson problem is
provided by multielectron bubbles.>® Electrons trapped on
the surface of liquid helium by a submerged, positively
charged capacitor plate have long been used to investigate
two dimensional melting.”® Multielectron bubbles result
when a large number of electrons (10°—107) at the helium
interface subduct in response to an increase in the anode
potential and coat the inside wall of a helium vapor sphere of
radius 10—100 microns. Typical electron spacings, both at
the interface and on the sphere, are of order 2000 Angstroms,
so the physics is entirely classical, in contrast to the quantum
problem of electron shells which originally motivated
Thomson.! Information about electron configurations on
these bubbles can, in principle, be inferred from studying
capillary wave excitations.” Similar electron configurations
should arise on the surface of liquid metal drops confined in
Paul traps.'”

A Thomson-type problem also arises in determining the
arrangements of the protein subunits which comprise the
shells of spherical viruses.'"!2 Here, the “particles” are clus-
ters of protein subunits arranged on a shell. Although the
proteins interact predominantly with short-range van der

1098-0121/2006/73(2)/024115(16)/$23.00

024115-1

PACS number(s): 61.72.Mm, 61.72.Bb, 64.60.Cn, 82.70.Dd

Waals potentials, the same issues of spherical crystallogra-
phy arise in these protein shells as in the original Thomson
problem. In spherical viruses, 12 of these protein clusters sit
at the vertices of a regular icosahedron in a five-fold sym-
metric environment. The remaining “particles” have six
neighboring clusters. This problem of protein arrangements
was solved in a beautiful paper by Caspar and Klug'' for
intermediate values of R/a, where R is the sphere radius and
a is the mean particle spacing. Caspar and Klug constructed
icosadeltahedral particle packings characterized by integers
P and Q, which provide regular tessellations of

M=10P>*+ PO+ 0% +2, (1)

protein clusters, or “particles,” on the sphere. Most known
viruses (examples with M as large as 1472 are known'3-19)
fall into this classification scheme, and can be studied by use
of the continuum methods discussed in this paper.'® The
Caspar-Klug tessellations of the sphere provide an excellent
starting point for finding low energy particle configurations
on the sphere for intermediate values of M= (8/ \6)
X (R/a)?. Particles numbers M not in the form of Eq. (1) can
be accommodated by introducing vacancies or interstitials
into these regular packings (see Ref. 17 for a discussion of
vacancy and interstitial energies with power-law potentials in
flat space). New ground states involving grain boundaries are
needed, however, for M > M _.~400-600, and in particular
in the limit M — o0, 18-21.57

Other realizations of Thomson-type problems include
regular arrangements of colloidal particles in “colloidosome”
cages??2* proposed for protection of cells or drug-containing
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vesicles” and fullerene patterns of carbon atoms on
spheres?® and other geometries. An example with long-range
(logarithmic) interactions is provided by the Abrikosov lat-
tice of vortices which would form at low temperatures in a
superconducting metal shell with a large monopole at the
center.?’” In practice, the “monopole” could be approximated
by the tip of a long thin solenoid.

The problem of best possible packing on spheres has also
applications in the micropatterning of spherical particles
relevant for photonic crystals or Clathrin cages, responsible
for the vesicular transport of cargo in cells?® (see Ref. 30 for
a detailed theoretical study). Crystalline domains covering a
fraction of the sphere are also of experimental interest. In the
context of lipid rafts,3! confocal fluorescence microscopy
studies have revealed the coexistence of fluid and solid do-
mains on giant unilamellar vesicles made of lipid mixtures.
The shapes of these solid domains include stripes of different
widths and orientations.3>* The application of spherical
elasticity to predict shapes of lipid mixtures domains has
been discussed in Refs. 35 and 36.

In the continuum approach used here, details associated
with different particle interactions for the system discussed
above are parametrized by a bulk and shear elastic constant
and a defect core energy. In practice, defect patterns involv-
ing dislocations and disclinations depend only on the
Young’s modulus and a core energy,”' which can be deter-
mined from flat particle configurations. Although we concen-
trate on the computationally challenging problem of long-
range power-law potentials, explicating and complementing
previous results,?” it would be straightforward to treat short-
range potentials as well.*

The organization of the paper is as follows. In Sec. II,
some known results for crystals on curved surfaces are re-
viewed and several results are obtained. The free energy of
the system is described in Sec. III. The particular case of the
sphere, the Thomson problem, is discussed in Sec. IV, and
several predictions for spherical lattices with icosahedral
symmetry are obtained and compared with the results of di-
rect minimizations of discrete icosadeltahedral particle ar-
rays. The solution of the Thomson problem for a very large
number of particles is discussed in Sec. V. Section VI con-
tains a summary and conclusions, and some technical results
are discussed in the appendixes.

II. CRYSTALS OF POINT PARTICLES

Consider a collection of classical point particles con-
strained to a frozen (nondynamical) two-dimensional (2D)
surface K embedded in three-dimensional (3D) Euclidean
space. The particles interact through a general potential de-
fined in the three-dimensional embedding space or solely
within the 2D curved surface itself. This paper focuses pri-
marily on the potential

2

—. )
R|”

V(R) =

Here, e is an “electric charge” such that if R is some quantity
with dimensions of length,
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¢*/R = dimension of energy.

The case y=1 corresponds to the Coulomb potential in three
dimensions. Allowing we do not treat this problem explicitly
here, the replacement

- ez -
V(R) — —(R[7"-1), 3)
Y

allows us to treat the two-dimensional Coulomb potential by
taking the limit y—0,

V(R) — — e*In(R]). (4)

The electrostatic energy of a system of M particles at
positions 13(1), interacting via Eq. (2), with 1=(1,,1,), [;,1,
€ Z, becomes

M 2
2Ey= > —— . (5)
1#1' [R(1) - R(1")|”

Note that with this definition the power law interaction acts
across a cord of the sphere, as would be the case for electron
bubbles in helium. The focus of this paper is the study of
crystals on curved surfaces, in particular spherical crystals.
There are, however, some quantities which are insensitive to
the curvature of the surface, and the simpler geometry of the
plane can be used to compute them. The following two sec-
tions hence focus on planar crystalline arrays of particles
interacting via the potential Eq. (2).

A. Planar crystals

The electrostatic energy Eq. (5) and the corresponding
elastic tensor, from which follows the elastic constants of the
system, may be explicitly computed for crystalline orderings
of particles in a triangular lattice.

For any noncompact surface /C, like the plane, the energy
Eq. (5) is divergent for all y<2. If y>0, the divergence
comes exclusively from the zero mode G=0 associated with
the thermodynamic limit of a infinite system size. This term
(which would be subtracted off if a uniform background

charge were present) can be isolated by setting G=g <1 for
this mode. The detailed calculation is somewhat involved
and is given in Appendix A. The final result for the ground
state energy reads

Me* [ @ \7? 4
2Eg=- F('y/Z)(A_C> <7(2— Y UW))

A is the area of the unit cell of the triangular Bravais lattice
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TABLE 1. Coefficients of the response function Eq. (9) and the energy Eq. (6). Results are accurate up to

six digits. The coefficient p is a rational function of 7y.

Y ] p -0 b 7 p -0
1.875 0.699652 31 47763 0.875 0.199772 23/9 3.2471
1.75 0.619256 15 22.647 0.75 0.159010 11/5 27138
1.625 0.544152 87/9 14.288 0.625 0.122622 21/11 2.283
15 0.474268 7 10.118 0.5 0.090439 5/3 1.9294
1.375 0.409548 27/5 7.625 0.375 0.062279 1.461542 1.6352
1.25 0.349812 13/3 5.9701 0.25 0.037955 9/7 1.3881
1.125 0.295033 25/7 4.7955 0.125 0.017265 43/30 1.1787
1 0.245065 3 3.9210

3(y=0.375) a rational number for p accurate to six digits could not be guessed.

[Acz(\«"g/ 2)a*] and T is the Euler gamma function. The co-
efficient o is a sum over Misra functions, defined in Eq. (B2)
of Appendix B. The coefficient () parametrizes the non-
singular part of the energy; its dependence on the exponent y
is shown in Table I. This negative quantity parametrizes the
binding energy of the triangular lattice after the positive
“zero mode” contribution is subtracted off. For y=1, we
have a two-dimensional “jellium” model. In the problem
considered in the introduction, no neutralizing background is
present, and the energy is rendered finite by restricting the
crystal to a compact surface, like the sphere. The maximum
distance between points in the surface will then provide an
infrared cutoff.

For small displacements of the particles from their equi-
librium positions, one has

S5

e 1
E-E=—2 ( = - > -
2 \[R(D) + (1) = RA") = i(1")]”

R(1) - RO

where (1) is a small displacement of the particle 1 in the

plane of the surface from its equilibrium position 13(1), and
therefore a tangent vector to the surface /C. The elastic tensor
I, 4(1,1') is defined as the leading term in an expansion of

Eq. (7),

2
E-Ey= %E T 51,1 g (Dug(1'). (8)
1.1’

In deriving Eq. (7), we assume a constraint of fixed area per
particle, enforced by a uniform background charge density or
boundary conditions. This eliminates the term linear in
u,(1). The physical properties of response functions are bet-
ter studied in Fourier space. The detailed calculation is given
in Appendix A. The final result is

I,4(5) = ACZI P RUTL, 4(1,0)

7(y)

2777 T(1 = y12) pupp
= Ag/z

4
Ac  T(y2) |p|2 Y

X[|ﬁ|25aﬁ + p(')/)(ay,aavﬁ + 5;/,,35Va)p,upv] + 0(|ﬁ|4)
)

The coefficients 7(7y) and p(y) depend only on the potential.
In Table I, some values of the coefficients for a range of
potentials with 0 <<y<2 are listed.

B. Continuum free energy

When the deviations from the ground state are small, the
long wavelength lattice deformations may be described by a
continuous Landau elastic energy

A
F(u):Jd2r<,uuiﬁ+—uia).

The couplings N\ and u are the usual Lamé coefficients. The
strain tensor u,g is defined by

(10)

1
Ugp= E(ﬁauﬁ"‘ dpita) s (11)

where 1(x) are the small displacements of Eq. (8). The elas-
tic tensor Eq. (8), within Landau elastic theory, is then

T 5(p) = A ulp*Sup+ (N + w)popp). (12)

A comparison with Eq. (9) immediately yields an explicit
expression for the elastic constants of the crystal

2

e
w=nY "Ton A=, (13)
AC
4N + ) e
y= 0T () —— 14
2t 7/(7)A1C+y,2 (14)

where Y is Young’s modulus. The result A= is equivalent to
a divergent compressional sound velocity as p—0 and for
v=1 is just a statement of the incompressibility of a two-
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FIG. 1. (Color online) Construction of an (n,m) icosadeltahe-
dral lattice. The filled circles indicate two nearest-neighbor fivefold
disclinations. Because these defects sit on the vertices of an icosa-
hedron, they are separated by a geodesic distance R cos™(1/ \s“g),
where R is the sphere radius.

dimensional Wigner crystal. Alternatively, we can allow for
wave-vector-dependent elastic constants u(p) and \(p) in
Eq. (12). In this case \(p) diverges as p—0,

27w l(1-92) 1

N = o)

while lim,,_ou(p) is given by Eq. (13).

C. Spherical crystals

Spherical crystals have many properties not shared by pla-
nar ones, one of the most remarkable being that there is an
excess of 12 positive (fivefold) disclinations. These disclina-
tions repel, and the simplest spherical crystals will be those
having the minimum number of defects (12) located at the
vertices of an icosahedron. Triangular lattices on the sphere
with an icosahedral defect pattern are classified by a pair of
integers (n,m), as illustrated in Fig. 1. The path from one
disclination to a neighboring disclination for an (n,m)
icosadeltahedral lattice consists of n straight steps, a subse-
quent 60° turn, and m final straight steps. The geodesic dis-
tance between nearest-neighbor disclinations on a sphere of
radius R is d=R cos™'(1/ \r’g). The total number of particles
M on the sphere described by this (n,m)-lattice is given by!'!

M=10(n>+m>+nm) + 2. (15)

Such (n,m) configurations are believed to be low energy
states (but not always ground states) for relatively small
numbers of M interacting through a Coulomb poten-
tial 38:3941-43 The energy of discrete particle arrays described
by Eq. (5) can be evaluated by starting with some configu-
ration close to an (n,m) one and relaxing it to find a mini-
mum. It is found that the (n,m) configurations are always
local minima. Whether these icosahedral configurations are
global minima as well will be analyzed later. Results for the
energy E(M) are shown in the inset to Fig. 2.

From Fig. 2 it is clear that energies grow very fast for
increasing volume. More interestingly, the (n,0) and (n,n)
configurations show a growing difference in energy for in-
creasing volume size, implying that the energy of icosahedral
configurations does not tend to a universal value for large
numbers of particles but rather remains sensitive to the
(n,m) configuration, a result also noted by other authors.!%
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FIG. 2. (Color online) Difference in energy of (n,n) and (n,0)
configurations. As the number of particles in the two configurations
is always different (at least for relatively small n), we fitted the
energy dependence on the number of particles for the two configu-
rations, and then we computed the energy difference from the fitting
curves. The energies are plotted in the inset to give an idea of the
relative scale of the energy difference. Results are for a power-law
potential with y=1.5 and energies are plotted in units of e?/R?.

Further insight comes from investigating the distribution of
energy. Plots of the local electrostatic energy, the electro-
static energy at point x on the sphere, as defined in Eq. (5)
are shown in Fig. 3. 40

From Fig. 3 it should be noted that the triangles obtained
by the Voronoi-Delaunay construction, after minimization of
the potential Eq. (5), are very close to equilateral.

The distribution of the local energies for the (n,0) and
(n,n) configurations are very different. The (n,0) configura-
tion shows maximum energies along the paths joining the
defects. The (n,n) configuration, on the other hand, has its
maximum energies along the directions defined by the tri-
angles formed by three nearest-neighbor disclinations. The
size of these regions of differing electrostatic energy turns
out to scale with system size, making it very plausible that
there might be small differences in the energy per particle for
(n,0) and (n,n) configurations in the limit n— 0. This point
will be discussed in more detail in the following sections.

III. THE GEOMETRIC APPROACH

The minimization of functional forms like Eq. (5) is ham-
pered by the computational complexity of the problem,
which is exponential in the particle number for spherical
crystals.*! This difficulty, which is made worse by the “geo-
metric frustration” associated with packing particles on the
sphere, limits direct approaches to minimizing the energy to
systems having a small number of particles, even if much
larger computer resources become available.

One way to overcome these difficulties is to substantially
reduce the number of degrees of freedom that need to be
considered. An approach focusing on the topological defects
as degrees of freedom, rather than on the actual particles,
was proposed in Refs. 21 and 45. Some aspects of this for-
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FIG. 3. (Color online) Potential energy distribution for a (1,0)
configuration with n=10 and M=1002 (top) and a (n,n) configura-
tion with n=6 and M=1082 (bottom).

malism are now described. The conceptual issues and devel-
opments presented in this section are applicable to crystals in
any topography. Some of the results given here have already
appeared in brief form in Ref. 37.

A. Effective free energy

The elastic energy of a curved crystal may be obtained by
writing in a parametrization-invariant way the results for a
flat crystal. If the metric of the curved surface is g,z (With
determinant g), the energy reads

y( 1 K 1
HIT=E,+ §<P|PP> + TA(MKP) +Ea’(s|s), (16)

where E, is the energy of a defect-free monolayer, (A|B)
= dZX\EAB, p(x)=K(x)-s(x) with K(x) the Gaussian cur-
vature and s(x) the disclination density  s(x)
=(m/3g)3,.,4:8(x—x;,). Here Y is a Young’s modulus and
K, is a hexatic stiffness constant. We have added a core
energy term to account for the short-distance physics of dis-
clination defects. The quantity (1/A2)p(x) has the meaning
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ép(X) = f deN@(é)

A similar expression can be defined for (1/A)p(x)
=(1/V?)p(x). Here, G(x,x’)E(l/Az)X’X, is a shorthand no-
tation for a Green’s function which obeys V?G(x,x’)
=\1E5(X—x’), where V? is the covariant Laplacian. Positive
and/or negative disclinations are attracted to positive and/or
negative curvature regions, respectively. We note that at fi-
nite temperature, an additional term proportional to

1
<K|AK), (18)
arises from the short distance behavior of the measure (the
Liouville anomaly).*® This term can be safely ignored in the
present analysis which focuses on zero temperature.
The defect part of the free energy Eq. (16) will be used in
a simplified form in the crystalline phase. In that phase the
hexatic term can be incorporated into a core energy contri-
bution proportional to the total number of defects. The en-
ergy we need to minimize becomes

p(x’). (17)

x,x/

Y 1
E=EO+§ p|Pp +NEC’ (19)

where N is the total number of disclinations of core energy
E..

If the disclination density were continuous, instead of be-
ing composed of discrete objects, configurations of defects
such that

p=0=s(x)=K(x), (20)

would be absolute minima of the free energy Eq. (19). In
general, defects tend to arrange themselves on curved sur-
faces to screen the Gaussian curvature as efficiently as pos-
sible consistent with their discrete topological charges.

The free energy just discussed can also be applied to fluc-
tuating geometries, as in the case of fluid or hexatic mem-
branes (see Refs. 49-52 for reviews). If Young’s modulus
vanishes, corresponding to a proliferation of unbound dislo-
cations, one obtains the free energy of a hexatic
membrane, #6343

IV. GEOMETRIC FORMALISM ON THE SPHERE

Spherical substrates provide the simplest example of the
problem of crystals on curved surfaces. The study of spheri-
cal crystals is simplified by two important properties: there is
a unique scale with dimensions of length, the radius R, and
there is a fixed excess disclinicity of 12 following from the
Gauss-Bonnet theorem

N
J dx\g(x)s(x) =47 — >, q;= 12. (21)
=1

The free energy Eq. (19), applied to the sphere, is trac-
table analytically because the inverse square-Laplacian op-
erator on a sphere of radius R can be computed explicitly. It
is shown in Ref. 21 that the Green’s function for the square
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Laplacian, in spherical coordinates (6, ¢), has the following
simple form on a unit sphere:

I—cos B/2 Inz

x(&, %60, ¢") =1 +f i (22)
—Z

0

where 3 is the geodesic distance between two disclinations
located at (6, ¢%) and (6, ¢°),

cos B=cos ¢ cos @ +sin & sin & cos(¢* — ¢). (23)

The total energy of a spherical crystal with an arbitrary
number of disclinations follows from Eq. (19) and (22) and
has the simple form?!:43

N N
wY S
2E(Y) =Byt 3R 2 2 g x(0.6/:0.8) + NE.
i=1 j=
(24)
where {6;, ¢;};; ... y are the coordinates of N defects and we

restrict ourselves to fivefold (¢;=+1) and sevenfold (g;
=—1) defects. The quantity E,, is the zero point energy and is
defined in Eq. (6). Although fivefold and sevenfold disclina-
tions will in general have different core energies,’® we as-
sume equal core energies here for simplicity. What matters
for our calculations in any case is the dislocation core energy
E,, which we take to be E;=Es+E;=2E,.

The value of the Young’s modulus and the flat space
ground state energy E, have been computed in Sec. II A.
When the sphere radius R is large compared to the particle
spacing a, we can use flat space values of Y and the flat
space energy Ey(M) associated with a finite number of par-
ticles M. To obtain the leading terms in the expansion of the
ground state energy for large but finite M, the precise com-
pactification of the plane employed is irrelevant—it may be
achieved by periodic boundary conditions, for example. For
a sufficiently large plane the finite size effects will be negli-
gible. The density o of particles is then M divided by the
total surface of the compact plane, taken to be the surface
area of the sphere of radius R,

M 2

o= 1/AC=§, S=47R". (25)
From Eq. (13) the expression for the Young’s modulus suit-
able for M particles on a spherical crystal of radius R with
0<y<2is then

_4 _477(’)/)M1+7/2 62
Y=4u= (4m)+2 R

(26)

One remaining detail is the divergent contribution to the en-
ergy E, in Eq. (6). Since the divergent part comes solely
from the zero mode, the spatial variations in the density of
the actual distribution are irrelevant. It may therefore be
computed for a uniform density of charges. The divergent
part is identical to the energy of a constant continuum of
charges as described by the density Eq. (25). We now evalu-
ate this divergent part of the energy on a sphere, instead of a
plane,
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Y
Al
o= et im

D Ac Y2 o, |é|2_7

2 : ’

r/_ 4 ’ r/_ ! M -
_>f Vg(X)p(X)|X_X,|7p(X We(x') = 22— YR
(27)

The divergent part has thus been regularized, and the energy
is finite and well defined for all M <oo,

Note that for the case y<<2 of primary interest to us here,
Ep~M?>"2(M/S)”?. Hence Ej, is not simply a function of
the particle density M/S, as one would expect for a short-
range interaction.

A. The energy of spherical crystals

Upon substituting the elastic constant of Eq. (26) into Eq.
(24), one arrives at

N N
Y L
2E=Ey+ %Rzi > qiaix(6.¢'56,¢) + NE,
i=1 j=1
Anly) @ e
=EO+W£C(ZI'”1N)M v I;,"'NEC’

(28)

where E; is defined in Eq. (6) and the function C(i;---iy)
depends on the position i;=(6,, ¢,), etc., of the N disclina-
tion charges and is universal with respect to the potential.
The total energy of a spherical crystal, including the contri-
butions to E; is then

M? 6(y)
R E =
49(y) = 2

Ay T . 12 | €
+ (477)1+7/236C(ll’ ...,lN))M Y }R7+NEC.

(29)

Note that the leading correction to the zero mode energy
proportional to M? varies as M'*”2, and depends both on the
flat space function 6(y) and on the C-coefficient

N N

C(ll’ »lN)=22qZQJX(0l’W,6/aW)’ (30)

j=1 i=1

associated with a particular configuration of disclinations.
Note that the core energies contribute to the second sub-
leading coefficient. For short-range potentials, such as 7y
>2, the ground energy is extensive, and the leading term
varies as M1+72,
The extensive nature of the M'*”? term becomes clear
upon noting that

82

2
14y2 8 2
M RyocR Xa?”’ (31)
where a is the particle spacing. Comparison with Eq. (24)
shows that the dimension of Young’s modulus Y arises solely
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from the lattice constant a and the electric charge e, consis-
tent with elastic constants arising from physics on the scale
of the lattice constant in an essentially flat geometry. This
observation is now generalized to the rest of the couplings
discussed in the preceding section.

For the hexatic term, in Eq. (16), we have

2 2
Ka (p| ) ~ KR~ ~ L (32)

a” R”
Since core energies arise as short-distance divergence’s simi-
lar to the hexatic term, they are a subleading contribution.
For a fluid membrane not on a frozen topography, Helfrich
terms arising from the extrinsic curvature H(x) as well as the
Gaussian curvature can be important. These scale in a way

similar to the hexatic term,

&2
[or2 1 _ €
deX\gH deX\,ng = kR ~M It
r 1 0 w2 e’
kg | dxVgK(x) ~ k dxvgﬁ =kR’ ~M e

(33)

Both terms would therefore contribute to the same order in
the M expansion as the hexatic term, although the last term is
purely topological. For crystals embedded in a frozen topog-
raphy we expect an expansion along the lines of Eq. (29),

2
ZETOT(M) = (a0M2 - E a[My/2+1_i) ]%, (34)
i=1

The nonextensive term ay,M? arises from the long-range in-
teractions. The next extensive contribution comes from the
interaction between Gaussian curvature and defects as well
as the extensive energy per particle in flat space. Hexatic
terms and bending rigidity contributions are higher order in
1/M and can be absorbed into a redefinition of the disclina-
tion core energy. Core energies also depend on nonuniversal
details of the short-distance physics. Core energies are in-
cluded explicitly in Egs. (19) and (29).

The results presented so far are strictly for systems at zero
temperature. In systems with short-range interactions, the
elastic constants can be strongly temperature dependent. An
extreme example is hard disks of radius a,, which may be
viewed as a limiting case of a power-law potential of the
form V(r) = €y(ay/r)?, with y—-oo. In this case, the elastic
constants are strictly proportional to temperature. It is
straightforward, however, to adapt the techniques of this pa-
per to the simpler problem of short-range pair potentials.

B. Energies of icosahedral configurations

The configuration on a sphere with the minimum number
of charge +1 defects is 12 +1 (5-valent) disclinations, which
minimize their energy by sitting at the vertices of an icosa-
hedron ). The energies of such configurations will be com-
puted for the discrete spherical tessellations described in Sec.
I C and compared with the predictions of continuum elastic
theory, as illustrated in Fig. 4. It is well established that for
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FIG. 4. (Color online) Illustration of the calculation done in the
text. The energy of the discrete (,n) configuration on the left-hand
side is extrapolated for large M and compared to the energy com-
puted with the continuum model on the right-hand side. While in
the continuum model only 12 degrees of freedom (the 12 disclina-
tions) need to be considered, the direct calculation of a family of
discrete models requires the consideration of the full lattice and a
careful extrapolation of the energies to large M.

sufficiently large values of M configurations with more than
12 disclinations (i.e., those with “grain boundary scars”)
have lower energies.'®!*2! It is of interest, however, to study
simple icosahedral configurations for large M, as metastable
states with a well-defined energy.

Within the continuum elastic theory it can be shown that
12 disclinations at the vertices of an icosahedron minimize
the energy’! when no further defects are allowed. The
C-coefficient of Eq. (29) for this configuration of defects has
been computed in?!%*

C()) =0.6043. (35)

Y here stands for a particle configuration with 12 defects at
the vertices of an icosahedron. Using the energy of Eq. (29),
the coefficient a,(y,)) appearing in the expansion of Eq.
(34) may be computed, with the results shown in Fig. 5 and
Table II.

From the results described in Sec. II C, the a, coefficient
may be extrapolated to very large numbers of particles using
the expansion derived from Eq. (34). Indeed, as shown in
Fig. 6, plots of

2R Eqor(M)]e? — ag(y)M?
IViEE

€M)= (36)

vs 1/M are linear, with a slope that determines a,(7y) and an
intercept related to the higher order core energylike contri-
bution. The results of these extrapolations are shown in Table
II. The agreement between the continuum elastic theory and
the explicit computation for the (n,n) configuration is re-
markable, holding to almost five significant figures. For the
(n,0) lattice there is agreement to four significant figures.
This agreement is even more striking when it is recalled that
the a; coefficient is obtained after subtraction of the term
ao(y)M?, as illustrated in Fig. 2. Furthermore, in the range
from y=0.125 to y=1.875, all the significant digits vary and
yet the accuracy of the calculation is virtually independent
of v.
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FIG. 5. (Color online) Energy coefficient a; as a function of
gamma (solid line) and from the numerical results with (n,m) con-
figurations (filled circles), for the icosahedral configurations. Plot of
ar(y,Y)=ar(y, )" (circles), a;(y,)=a;(y,))"? (diamonds),
a (7, V)"~ (y, V) (squares).

C. The energy difference of the (n,m) lattices

The a; coefficient computed within our continuum elastic
approach above does not depend on the icosadeltahedral
class (n,m). Results from the direct minimization of particles
do, however, show a weak dependence (in the fourth signifi-
cant digit) on the particular (n,m) configuration, as is appar-
ent from Fig. 2 and Table II. It should be noted that the
discrepancy from the continuum result has a well-defined
sign, and is therefore reasonably attributed to a term not
present in the energy expansion.

V. THOMSON PROBLEM WITH A CONTINUOUS
DISTRIBUTION OF DISLOCATIONS

When the number of particles is extremely large, the
minimum energy configurations can be approximated by a
closed analytical form, upon assuming a continuous distribu-
tion of defects. Only the sphere will be worked out here, but
other curved surfaces can be treated in a very similar fashion.

PHYSICAL REVIEW B 73, 024115 (2006)

TABLE II. Numerical values of the coefficient a;(y,)) (12 dis-
clinations on the vertices of an icosahedron) using the C-coefficient
from Eq. (35). The same coefficients from the (n,n) and (n,0)

lattices.

Y a(v.)) (n,n) (n,0)
1.875 445118 4.45110(4) 4.45095(4)
1.75 247175 2.47166(3) 2.47150(3)
1.625 1.82629 1.82621(2) 1.82603(2)
1.5 1.51473 1.51454(2) 1.51445(2)
1.375 1.33695 1.33683(4) 1.33667(4)
1.25 1.22617 1.22599(7) 1.22589(7)
1.125 1.15366 1.1535(2) 1.15340(2)
1.0 1.10494 1.10482(3) 1.10464(3)
0.875 1.07187 1.07174(3) 1.07160(3)
0.75 1.04940 1.04921(6) 1.04910(6)
0.625 1.03421 1.03413(5) 1.03398(5)
0.5 1.02392 1.02390(4) 1.02372(4)
0.375 1.01672 1.01663(6) 1.01656(6)
0.25 1.01115 1.01106(3) 1.01103(3)
0.125 1.00595 1.00592(2) 1.00589(2)

The formal elimination of the geometric frustration intro-
duced by the Gaussian curvature may be formulated as a
concrete set of equations in the case of the sphere. We shall
use the identity

-1.5134 ; -
-15136 =15 P
~ -1.5138 - L ]
\2, -1.5140 e P
w0 o ——
~15142 - . P ]
15144 . — s+ ]
N ° (n,0)
-1.5146 -~ s |
-1.5148 : \ ‘ 3
-1.0229 -
=0.5 e
S 10231 - = — :
L //m///
W 10233 - e /f
s //m/ . /F/ —
-1.0235 | %}@ e 1
10287 b— . ©(no) | -
_— = (n,n)
-1.0239 : : : ‘
0 0.001 0.002 0.003 0.004
1/M

FIG. 6. (Color online) Numerical estimate of (M) as a function
of 1/M for (n,0) and (n,n) icosadeltahedral lattices with 7y
=(1.5,0.5).
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TABLE III. Value of the a; coefficients for the G configuration Eq. (38).

Y a,(v.9) Y ai(y,9) Y a(y.9) Y ai(y.9)
1.875 4.45227 0.875 1.07297 1.75 2.47289 0.75 1.05044
1.625 1.82746 0.625 1.03515 1.5 1.51592 0.5 1.02473
1.375 1.33815 0.375 1.01737 1.25 1.22737 0.25 1.01161
1.125 1.15485 0.125 1.00620 1 1.10610
. . 2
s(x) = _E 4:9(x,X;) cos[ a; (6, )] = cos(@)cos(6y) — sin()sin(6y)cos ?k+ o).
3\rgl 1
(41)
1 I I+
= P 3R2% 21 Y, (6, ¢)E 4iY,, (6, &) The implicit form of Eq. (40) can be further simplified
1 e

-K(x>+—2 2 Yo (o, ¢)E 0., (0. ¢), (37)

=1 m=-1

which follows from the topological constraint Eq. (21). Pro-
vided a disclination configuration exists such that

N
E qufn(ai, ¢l) = 03 (38)
i=1

for each (I=1,m), the disclination density completely
screens the Gaussian curvature. A configuration of defects
satisfying Eq. (38) is an absolute minimum of the elastic
energy, a result easily understood by writing the energy in
the form

Yl (Hl’ (ZS[

Ré >

=1 m=-1

E=E,+ +NE,_,

12(1 +1)?
(39)

where the zero point energy E, in Eq. (16) is kept. A con-
figuration satisfying Eq. (38) will be denoted by G. (See
Table III.) For this hypothetical configuration, the
C-coefficient in Eq. (29) vanishes, although there is now a
large contribution (linear in R) from the dislocation core en-
ergies represented by the last term of Eq. (39).

The G configuration may be characterized more explicitly.
It consists of a density of dislocations that converges to the
local Gaussian curvature. It can be shown that upon approxi-
mating the dislocations (each regarded as a disclination di-
pole with spacing a) as a continuum distribution, this dislo-
cation density for a sphere becomes

6

- 1
b(6,¢) = 2 cota(6, @)]el. (40)
k=1

The summation here runs over the six coordinates of the
northern hemisphere of an icosahedron ((0,0) and
(6y,27k/5), where 6y= arccos(1/5) and ay is the angle 6
relative to a coordinate system with the north pole located at
(6y,27k/5) for k=1,...,5. This angle is given implicitly by

2
éi:f‘(b’, go){— sin(ﬁy)sin(?ﬂ-k+ (P)ég

+ [{cos(ﬁy)sin 6+ sin(6y)}cos Hcos((p + 2?Trk> ]é¢},
(42)

where f%(6, ¢)=1/sin(a,(6, ¢)).

Close to one of the 12 disclinations with charges
=+2m/6 Eq. (40) predicts a singularity in the dislocation
density®

S
27Ra’

(43)

For small angles, close to each disclination, there is a short-
distance singularity

b(0) = ﬁ + o, (44)

in agreement with known results in flat space.

Equation (40) represents a continuous distribution of dis-
locations, and neglects both dislocation discreteness and
their mutual interactions. It represents six families of dislo-
cations with azimuthal Burgers’ vectors associated with an-
tipodal pairs of the 12 original disclinations in the icosahe-
dron. When discreteness and interactions are taken into
account, we expect these dislocations to condense into grain
boundary arms containing quantized Burgers’ vectors and
variable spacing in the radial direction.”!* This discrete so-
lution consists of five radial grain boundaries from each of
the 12 icosadeltahedral configurations, with dislocations hav-
ing a variable spacing that is determined from the condition
that the resulting spherical tessellation, defined by both the
regular and defected sites, is made of optimally close to equi-
lateral triangles, thus determining a configuration whose
C-coefficient asymptotically approaches the C-coefficient of
a planar configuration, which is obviously zero.’” Numerical
verifications for the vanishing of the C-coefficient have been
provided in Ref. 36. It should be noted that the discrete so-
lution presented in Ref. 57 still shows some degeneracy such
as the number of radial arms from each disclination.
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FIG. 7. (Color online) Results of a minimization of 500 particles
interacting with a Coulomb potential, showing the appearance of
scars.

A. The intermediate regime

Within the continuum elastic approach, the dominant con-
figurations for a small number of particles are 12 defects
with an icosahedral symmetry.?! We have just seen, however,
that adding a continuous distribution of dislocations, as
might be appropriate when the particle number is large, can
more efficiently screen the Gaussian curvature on a sphere.
The natural problem then becomes to determine the precise
structure of the defect arrays for intermediate numbers of
particles when the discreteness of interacting dislocations is
taken into account.

We note first that the particular arrangement of defects
dominating in this regime will not be fully universal. The
particular array structure favored can vary from system to
system with fixed particle number, depending, e.g., on details
such as the dislocation core energy. This result may be traced
back to the M-expansion of Eq. (34), in which the subleading
terms which depend on nonuniversal properties influence the
dominant terms for finite values of M. Some typical defect
configurations obtained by direct minimization of particles
on the sphere are shown in Fig. 7 and show incipient scars,
already at number of particles of 500 (in Refs. 21 and 53 the
minimum number of particles where scars are systematically
found is predicted around 400). By using the geometrical
model described in this paper, where the energy is param-
etrized just by a Young’s modulus and a dislocation core
energy®?? one can simulate larger particle numbers and one
obtains results as in Fig. 8. Note the occurrence of low en-
ergy configurations with scars (m=2) in one instance and
pentagonal buttons (m=3) in another. The dislocation spac-
ing decreases the further a dislocation is from the central
disclination.

An overview of previous results involving grain boundary
scars is presented in Fig. 9. If a disclination is placed on a
perfect crystal, no additional defects will appear if the discli-
nation is located on the tip of a cone with total Gaussian
curvature equal to the disclination charge. If a disclination is
forced into a flat monolayer, then m low angle grain bound-
aries, with constant spacing between dislocations as shown
in Fig. 9 and grains going all the way to the boundary, will

PHYSICAL REVIEW B 73, 024115 (2006)

N

FIG. 8. (Color online) Ground state configurations for M
~2000 particles obtained from the continuum elastic formalism. In
the top figure one finds scars (m=2) and in the bottom pentagonal
buttons (m=5) forming a rhombic tricontahedron.
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Crystal with no defects

Disclination

e
K = n/35(8)

s=K=(n/3)5"(%)
No grain boundaries

Flat monolayer
K=0

m grain boundaries
Constant spacing of dislocations within a grain

Spherical cap
K=1R2

m grain boundaries
Grain boundaries have finite length
and variable spacing within a grain

FIG. 9. (Color online) Schematic illustrating the genesis of grain
boundary scars. A disclination is first constructed from a perfect
lattice. If this disclination is placed on a tip of a cone, with a delta
function of Gaussian curvature balancing the defect charge, then no
additional defects form. If the crystal is forced into a monolayer,
grain boundaries radiating out of the disclination radiate all the way
to the boundary. In the intermediate regime of constant nonzero
Gaussian curvature, rm grain boundaries of finite length and variable
spacing of dislocations form.

be favored (see Ref. 44 for a detailed discussion). In the
intermediate situation where a finite Gaussian curvature is
spread over a finite area, as in the case of a spherical cap, a
disclination arises at the center of the cap, and finite length
grain boundaries stretched out over an area of (7/ 3)R? with
variable spacing dominate, again as illustrated in Fig. 9.
Since several nonuniversal features, related to the size of the
core energies, commensurability properties and so on, will
have an important effect in this regime of M, the previous
argument should describe the general trends and will be re-
alized in an approximate form only.

Additional results may be obtained for the number of
arms within the grain boundary, the actual variable spacing
between dislocations within the grain and the length of the
grains as a function of the number of particles. The detailed
study of these questions will be reported elsewhere.

When grain boundary scars appear, we can estimate the
number of excess dislocations which decorate each of the 12
curvature-induced disclinations on the sphere using ideas
from Ref. 21. This estimate is in reasonable agreement with
experiments probing equilibrated assemblies of polystyrene
beads on water droplets.?> Consider the region surrounding
one of the 12 excess disclinations, with charge s=2/6, cen-
tered on the north pole. As discussed in Ref. 21, we expect
the stresses and strains at a fixed geodesic distance r from the
pole on a sphere of radius R to be controlled by an effective
disclination charge

PHYSICAL REVIEW B 73, 024115 (2006)

2 r
Seff(r):s_J d‘ﬁj dr,\’%K=7T/3—47TSin2<L>.
0 0 2R

(45)

Here the Gaussian curvature is K=1/R? and the metric ten-
sor associated with spherical polar coordinates (r, @), with
distance element ds*=d’r+R?sin*(r/R)d*¢, gives V@
=R sin(r/R). Suppose m grain boundaries radiate from the
disclination at the north pole. Then, in an approximation
which neglects interactions between the individual arms, the
spacing between the dislocations in these grains is?!

am

Ser(7) '

I(r) = (46)
which implies an effective dislocation density,

1 1 2
nyr)=—= —(z — 4 sin2(r/2R)> = —77<cos Iii‘ - 5/6) .

(r) ma\3 ma
(47)
This density vanishes when r— r,, where
r.=Rcos™' 5/6 =~ R(33.56°), (48)

which is the distance at which the m grain boundaries termi-
nate. The total number of dislocations residing within this
radius is thus

N, = mf ny(r)dr= Le

o
0 al

4 [T
— - —Wf sin?(r/2R)dr
alJo

[V11 =5 cos™!(5/6)](Rla) = 0.408(R/a). (49)

w3

As discussed in Ref. 37, it is also of interest to consider 27
disclination defects (appropriate to crystals of tilted
molecules®) on the sphere. The icosahedral configuration of
12 s=2/6 disclinations is now replaced by just two s=2m
disclinations at the north and south poles. Using the approxi-
mation discussed above, it is straightforward to show that the
density of dislocations in each of m (noninteracting) grain
boundary arms now reads

ny(r) = jTZ cos(é). (50)

This density vanishes at r.=(w/2)R, corresponding to a
hemisphere of area on the sphere for each cluster of arms.

It is of considerable interest to repeat the above calcula-
tion for a square lattice, as found, for example, in the protein
surface layers (s layers) of some bacteria.*’*® In this case the
basic disclination has s=2/4. The effective dislocation
density becomes

ny(r) = % = #(g —47 sinz(r/ZR)> = i—Z(cos Iie - 3/4) :
(51)

This density vanishes when r— r,., where
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r.=Rcos™' 3/4~R(41.4°), (52)

which is the distance at which the m grain boundaries termi-
nate. The longer angular length of square lattice scars reflects
the larger initial disclination charge (90°) that must be
screened. The total number of dislocations residing within
this radius is thus

Nd=mJ nd(l")d}":Q

4 (7
T 7 J sin2(+/2R)dr
0 a 2 a 0

- g[ﬁ— 3 cos (3/4)](Rla) =~ 0.75(Rla).  (53)

Thus the angular length of scars and the total number of
excess dislocations is a measure of the underlying topology
of the lattice tiling the sphere.

VI. CONCLUSIONS
A. Summary of results

In this section we summarize the most relevant results
obtained from the analysis presented earlier.

In Sec. II we treated several properties of planar and
spherical crystals which were subsequently used to test our
continuum elastic formalism. We computed the energy Eq.
(6) and elastic tensor Eq. (9) for triangular lattices in flat
space for a general long-range power-law potential of the
type Eq. (2). The continuum elastic formalism, where defects
such as disclinations and disclination dipoles = dislocations
are the relevant degrees of freedom and six-coordinated par-
ticles are treated as a continuous elastic background, was
discussed in Sec. III. It was shown that the total energy is
expressible as an expansion in powers in the total number of
particles [ Eq. (29)],

MZ
2E=<

- 1 Ml+'y/2
Zy_] (2 _ 7) aj (7|{ql}l—],...,N)

62

o (54)

- a2(7|{qi}i=1,4 . .,N)My/z)
where each coefficient has a clear geometric interpretation in
terms of continuum results.

Our approach was illustrated for the generalized Thomson
problem in Sec. IV. Using the elastic constants computed in
flat space, the continuum elastic theory gives concrete energy
predictions, with no fitting parameters, as a series expansion
in the total number of particles M, which can be compared
with the energies obtained numerically for spherical crystals.
We find agreement to five significant figures for (n,n)
icosadeltahedral lattices and to four significant figures for
(n,0) lattices, as presented in Table II. Only a small discrep-
ancy, of order the difference between (n,0) and (n,n) tessel-
lations, separates the continuum results from results for ac-
tual spherical crystals.

The limit of a very large number of particles M was dealt
with in Sec. V. A “Debye-Huckel”-type formulation where
dislocations are treated in a smeared continuum density of
Burgers’ vectors was proposed. The actual solution in the
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large M limit is a discrete version of the continuum solution
presented in this paper, and incorporates the discreteness of
the dislocation positions and charges and their mutual inter-
actions and has been briefly discussed in Sec. V. A more
detailed discussion can be found in Ref. 57. We should men-
tion that an alternative scenario for the Thomson problem
has been proposed,’® where at some finite value of number of
particles an instability to a “spontaneously magnetized” state
is predicted. Based on the results presented in this paper and
in Refs. 36 and 57 we conclude that such instability does not
appear for the generalized Thomson problem. It is possible
that an instability of the type predicted in Ref. 58 may appear
for charges on spheres under other types of constraints.

The intermediate regime was discussed in the preceding
section and it was shown that the underlying universality of
the result competes with several nonuniversal features of the
problem.

B. Outlook

The main goal of this paper was to introduce a continuum
elastic approach to address the problem of two-dimensional
crystals in frozen topographies. The formalism has been ex-
plicitly applied to the sphere, but it appears general enough
to be applicable to a variety of other geometries. The case of
crystalline order on a torus is currently under exploration.

We hope this presentation will inspire further work on the
problem of crystals on curved topographies. The long-range
pair interactions on a sphere studied here certainly do not
exhaust the possible problems.
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APPENDIX A: THE EVALUATION OF POTENTIALS

The details of the computation of the energy and the elas-
tic tensor, Egs. (6) and (9) are described in detail. The ap-
proach followed is a generalization of the one used by Bon-
sall and Maradudin.®* See also Ref. 61.

1. Computation of the energy

The energy for a system of M particles located at posi-

tions 13(1) of a 2D Bravais lattice, defined by vectors a; and
e; in direct and reciprocal space
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R(1)=1l,a, + La,, (A1)

G(h) = e, + hne, (A2)

is given by Eq. (5),

2 M 1 &2 1
M Gim S ———
2 50170 [f = R()|

e
2 R =R

= E(y). (A3)

M

To efficiently perform the sum (a generalization of the Ewald
method), we separate short and long distances contributions,
since they give rise to different singular behavior. This may
be achieved by the identity Eq. (B1),

| 1 |= 1 (f dtt—1+«//2e—r\£—15(1)|2
PR r(l) -
2
+J dtt—1+y/2e—z|£—15(1)2>
0
O.y/Z

=—— @, (ofx - R(1)| )
(3)

2
0.7/ 2

+
i
2
The definition of the Misra functions ¢, is given below in
Eq. (B2).
Using the Poisson summation formula Eq. (B5), the last

term in Eq. (A4) can also be expressed in terms of Misra
functions,

oo
E f dtt—1+y/2 —tolx - R(l)\zz _2 s xf dtt—y/Ze—t(|G\2/4(r)
1

1 -
J dlt—l+(y/2)e—m\f - R(1)|2' (A4)
0

ACO' 6 1
~2
m lGX (|G| )
=— _ , (AS
AC(TEé Py 4o (AS)

where G are the vectors in reciprocal space of the Bravais
lattice, and A is the area of the unit cell.
Upon combining Egs. (A4) and (A5), the energy Eq. (A3)
becomes
o262 o2

2 2
E(y) = F( )%%f/z 1(0'|x R(1)|) F( /2)
2

2 _yi2-1 - G2
+ me o E ezG-x(P_yn(u) .

AT (y2) < 4o (46)

Although the limit x— 0 is in general convergent, the term
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G=0 requires special attention. This term must be treated

separately by considering |G| small but nonvanishing,
meto V2!

eiéx <|é_|2>
T(y2) ¢ 77"\ 4o
_m2PT(1 - y/2) 2
G T (y2)

v
Al (y2)(1 = /2)

2+ 0(G)).

(A7)

Thus, the singularity as (§—>O, associated with the large dis-
tance behavior, has been explicitly isolated.

The results derived so far are completely general, valid
for any Bravais lattice. Since only the triangular lattice is
relevant to this paper, complete results for other Bravais lat-
tices will be published elsewhere. The two vectors a;, a,
defining the triangular lattice in direct space, and the two
vectors e;, e, in reciprocal space are taken as

’/_

2 V3
e]:_ 15__ )

a 3

a \6 2 \6
a = . €= O, 2 R
2 2 a 3

where a is the lattice constant. Further 51mp11ﬁcat10n is
achieved by choosing o as o=m/A (where Ac=13/24%), so
that the argument in the Misra functions has a similar form
for the sums in both direct and reciprocal space. Thus,

al = (a,o),

(A8)

oRY(1) = Al(lfa% + 20 Ly a, + 2ad), (A9)
0
G(h
( ) = _(hlel + 2h1h2e1e2 + h%e%)
4o
= —(hlal 2hihya,a, + h3ald). (A10)

Our final form for the energy is then

&2 a \"? 4
E(”:‘r(y/z){<A_C) { 2 Eow_ya( R(l))

o0 -
- _ —R21>
#2()907/21(14 ()}}

w227 (1 - y/2) 2
+ lim ——e¢".
160 Ac/GI> T (v/2)

(A11)

The summation over the Misra functions is exponentially
convergent; just a few terms give a very accurate result.

2. Computation of the elastic tensor

The response function is defined in Eq. (8). Using some
simple algebra, the explicit form for this tensor response
function II follows:
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[R(1) - R(1)LLR(L) - R(1)] O, ,
-y +2) Ty 1#1,
1, 4(1,1") = [R(1) - R(1)])” [[R(D) -RAH]™ (A12)
_EHaﬁ(1’1,)9 1=1/
1+l
I
The property R(1)-R(1’)=R(1-1')-R(0) implies transla- L4 o (AL6)
tional invariance I1(1,1")=I1(1-1",0). The response func- 2+al(y2)’
tion is better studied in Fourier space. The Fourier trans- The full ion for th function is th
formed elastic tensor can be computed from the identity ¢ full expression for the response function 1s then
) » o 5+ GF
IL,5(P) == [Sap(P) = Sap(0)], (A13) 4P = —E (F+G)alp+ G- 'y/2( o
Acl(y/2) 4o
with S,z defined as
p mo? o (|G| )
o P -——2.G,Ggo_
aﬁ(p)_hm 32 ( —1p'x2 elp[x—R(l)] 1 ) ACF(’}’/Z)E BP—y2 4
20 0a0p\ 10 =R
2 20_«//2+1E o -
. e~ PRI _q R(1
_ [im ; FEp), T(72) #0( )<Py/2[(7| ( )| 1
¥0 %afp 4722
3 (e 1)
l p-(x— R(l)) F(ylz) 1#0
FEp = ——— (Al4) . .
CE- RO XR(1),R(1) g1yl lR(D)]. (A17)

The function F can be computed by further using Egs. (A4),
(A5), and (B5), with essentially the same steps as in previous
computations, leading to the expression

F(x.p Ry (i R(DP
(x.p) = F( /2)1#0 (Py/z 1(0’|x ( )| )
2ol
_ o di 12t
[(y2)Jo
ol P lp+ é|2
+ i(p+G)-x : (
Acr(y/z)g‘oe P2\ 4o

o1 <|ﬁ+ é|2)

Al5
AT (y2) T\ 4o (A15)

Upon inserting the derivatives of the Misra functions ob-
tained from Eq. (B3) and (B4) and using Eq. (A14), we have

R s (|l;+ 6|2)
SapP) == =2 (5 +G) o5+ G poyp| ——
(D) AT /2)2(19 )o(P + G)ge_yn 1o
20_y/2+1 - R
“Tom) 2 RV (olR(DP)
1#0
Y242

T 2 IR D01 oAR)

As in the computation of the energy, it is convenient to iso-

late the G—0 contribution since it usually gives rise to
nonanalyticities. A Taylor expansion for the G — 0 contribu-
tion leads to a final expression

2277l (1 - y2) ppg 22777l (1-v/2)

Ha (-))= N +
pP AT(2) 7T AL(2)
[ (PR ()
LT - y2) \ 4o 40
770'7/2 ! (|p+G|2)
+G +G
A /2)2(17 )P )B(P—'y/2 4o
Y N (|é|2>
-_—_— G G » -
ACr(y/z)% P2\ Yy
20.‘}//2+l L= R
o 2 el R, alolR(DP]
1+0
4722

F()’/Z)go{l cos[p - R(l)]}

XR(1)4R(1) g4 yal o R(DI]. (A18)

Since all the terms in the previous expression but the first
one are analytical functions of the momentum, the response
function at large distances goes like
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(A19)

The results derived are valid for any Bravais lattice. Again, only the triangular lattice is of interest in this paper. The tensor

65

A for the triangular lattice is

afuv

o) 2 (e
A =- —| — G, (1)Gg1)@1_yp| —R(1) | -
afuv 4F(’y/2) A = a( ) B( )(Pl 2 AC ( )

#T(y2)\Ac) S

—_
8L (y/2)\Ac 1#0

2 o\ 722
' r(y/2)<A_C> 2 RiDRYDR (DR (D 1

The form of the elastic tensor can be parametrized by two
coefficients 6(y) and 7(1y),

4 77(7)[

2 5 0.

(A21)

afuv= Cap+ p(y (4, (

a result that can just follow from the symmetry properties of
the triangular lattice.%?

APPENDIX B: MATHEMATICAL IDENTITIES USED

In this section useful mathematical identities are listed
without further remarks to make the paper as self-contained
as possible and for the purpose of fixing the notation.

1. Identities present in Ewald sums
(i) The gamma identity,

_,L = ;f dir D g
’ 0

(3]
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1 T v2-2
(_> > G (DGMG, DG,y

80080+ 82,55 (1)7/2
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|
(i1) Misra function definition,
0,(z) = f dtt"e™. (B2)
1
(iii) Misra function derivatives,
Vf()on(a|£_rﬁ|2) =—2a(f—n€)¢1+n(a|f—ﬁl|2), (BS)
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(iv) Poisson summation formula for Gaussian integrals,
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