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We report quantum Monte Carlo (QMC), plane-wave density-functional theory (DFT), and interatomic
pair-potential calculations of the zero-temperature equation of state (EOS) of solid neon. We find that the DFT
EOS depends strongly on the choice of exchange-correlation functional, whereas the QMC EOS is extremely
close to both the experimental EOS and the EOS obtained using the best semiempirical pair potential in the
literature. This suggests that QMC is able to give an accurate treatment of van der Waals forces in real
materials, unlike DFT. We calculate the QMC EOS up to very high densities, beyond the range of values for
which experimental data are currently available. At high densities the QMC EOS is more accurate than the
pair-potential EOS. We generate a different pair potential for neon by a direct evaluation of the QMC energy
as a function of the separation of an isolated pair of neon atoms. The resulting pair potential reproduces the
EOS more accurately than the equivalent potential generated using the coupled-cluster CCSD(T) method.
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I. INTRODUCTION

One of the most important goals of ab initio computa-
tional electronic-structure theory is the development of accu-
rate methods for describing interatomic bonding. Quantum
Monte Carlo (QMC) techniques are useful in this regard, as
they can provide a highly accurate description of electron
correlation effects. Although QMC methods are computa-
tionally expensive, they can be applied to systems that are
large enough to model condensed matter.

In this study we have considered solid neon, in which the
bonding arises from the competition between short-range re-
pulsion and the van der Waals attraction between the atoms.
High-quality experimental measurements of the equation of
state (EOS) exist, which can be used as reference data. Fur-
thermore, various neon pair potentials have been developed
using experimental and theoretical data, which can also be
used for comparison purposes. Solid neon is therefore an
ideal system in which to test the descriptions of van der
Waals bonding and short-range repulsion offered by various
theoretical methods.

We have calculated theoretical EOS’s for crystalline neon
using the QMC and density-functional theory (DFT) ab ini-
tio electronic-structure methods as well as various inter-
atomic pair potentials. Standard DFT methods do not de-
scribe van der Waals bonding accurately, but they might be
expected to work quite well at high densities, where the
short-range repulsion dominates. The high-pressure proper-
ties of neon are of some experimental interest, because neon
is often used as a pressure-conducting medium in diamond-
anvil-cell experiments.! We have therefore extended the
range of our QMC EOS for neon to very high pressures
(about 400 GPa).

The zero-point energy (ZPE) of the lattice-vibration
modes makes a small but important contribution to the total
energy of solid neon. We have therefore studied the lattice
dynamics of solid neon within the quasiharmonic-phonon ap-
proximation and within the Einstein approximation, using
DFT methods and pair potentials.

For some time there has been considerable interest in de-
veloping neon pair potentials in order to test the accuracy of
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theoretical methods for calculating the properties of
materials.” We have performed a direct calculation of the
neon pair potential using QMC. We compare the accuracy of
the EOS predicted by this pair potential with the results ob-
tained using other pair potentials, including one obtained
from coupled-cluster CCSD(T) calculations.?

Detailed information about our computational methodolo-
gies is given in Sec. II and DFT calculations of the phase
stability and band gap of solid neon are reported in Sec. III.
The calculation of a neon pair potential using QMC is de-
scribed in Sec. IV. The lattice dynamics of solid neon are
studied in Sec. V. We compare the EOS’s obtained using
different methods in Sec. VI. Finally, we draw our conclu-
sions in Sec. VIL

Hartree atomic units (a.u.) are used throughout, in which
the Dirac constant, the magnitude of the electronic charge,
the electronic mass, and 47 times the permittivity of free
space are unity: 7i=|e|=m,=4me)=1.

II. METHODOLOGY
A. DFT calculations
1. DFT total-energy calculations

Our DFT calculations were performed using the CASTEP
plane-wave-basis code.* The local-density approximation
(LDA) and Perdew-Burke-Ernzerhof (PBE)
generalized-gradient-approximation®  exchange-correlation
functionals were used. The Ne®* ionic cores were repre-
sented by ultrasoft pseudopotentials.* The EOS calculations
were performed using a 4 X4 X4 Monkhorst-Pack k-point
mesh and a plane-wave cutoff energy of 200 a.u., for which
the DFT energies have converged to about 7 significant fig-
ures. The self-consistent-field calculations were judged to
have converged when the fractional change in the energy was
less than 107!!. The DFT band-gap calculations reported in
Sec. III B were performed using the same parameters, except
that the plane-wave cutoff energies ranged from 100 a.u. for
the lowest densities to 800 a.u. for the highest densities.
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2. DFT force-constant calculations

We used the quasiharmonic approximation® to evaluate
the DFT ZPE of the lattice-vibration modes and we used the
method of finite displacements and the Hellmann-Feynman
theorem to evaluate the density-dependent force constants.
Symmetry and Newton’s third law were imposed iteratively
on the matrix of force constants.” The DFT force-constant
calculations were carried out using a plane-wave cutoff en-
ergy of 60 a.u., a 3 X3 X3 Monkhorst-Pack k-point mesh,
and ultrasoft pseudopotentials.* The force constants were
converged to about 107 a.u. with respect to the plane-wave
cutoff energy and the k-point mesh. In the production force-
constant calculations, the displacement of the neon atom
from its equilibrium position was 2.12% of the nearest-
neighbor distance in each case, which ensures that anhar-
monic effects are negligible. The force-constant calculations
were carried out in both 2 X2 X2 and 3 X 3 X 3 supercells of
the primitive unit cell, and the difference in the resulting
ZPE’s was found to be negligible. The dispersion curves
shown in Sec. V were produced using a 3 X 3 X3 supercell,
while the ZPE’s that were combined with the static-lattice
EOS’s were calculated in a 2 X2 X2 supercell.

3. DFT orbital-generation calculations

DFT-LDA calculations were performed in order to gener-
ate orbitals for the trial wave functions used in the QMC
calculations. The QMC calculations made use of relativistic
Hartree-Fock neon pseudopotentials,®” and these were also
used in the DFT orbital-generation calculations. The Hartree-
Fock pseudopotentials are much harder than the ultrasoft
pseudopotentials. Plane-wave cutoffs in excess of 250 a.u.
were used in each orbital-generation calculation, so the DFT
energy was converged to around 1073 a.u. This cutoff is
very large by the normal standards of DFT calculations, but
there is evidence that using large basis sets reduces the vari-
ance of the energy in QMC calculations.'”

B. QMC calculations
1. VMC and DMC methods

In the variational quantum Monte Carlo (VMC) method,
expectation values are calculated using an approximate trial
wave function, the integrals being performed by a Monte
Carlo technique. In diffusion quantum Monte Carlo'!?
(DMC) the imaginary-time Schrédinger equation is used to
evolve an ensemble of electronic configurations toward the
ground state. The fermionic symmetry is maintained by the
fixed-node approximation,'® in which the nodal surface of
the wave function is constrained to equal that of a trial wave
function. Furthermore, the use of nonlocal pseudopotentials
to represent the Ne®* cores necessitates the use of the locality
approximation,'* which leads to errors that are second order
in the quality of the trial wave function.'?

Our QMC calculations were performed using the CASINO
code.'® The trial wave functions were of Slater-Jastrow form,
with the orbitals in the Slater wave function being taken
from DFT calculations and the free parameters in the Jastrow
factor being optimized by minimizing the unreweighted vari-
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ance of the energy.!”!® The DFT-generated orbitals were rep-
resented numerically using splines on a grid in real space
rather than an expansion in plane waves in order to improve
the scaling of the QMC calculations with system size.!>?
The Jastrow factors consisted of isotropic electron-electron,
electron-nucleus, and electron-electron-nucleus terms.?! The
electron-electron terms describe long-ranged correlations and
therefore play the most important role in describing van der
Waals forces.

2. Finite-size bias

The QMC simulations of crystalline neon were carried out
in supercells of finite size subject to periodic boundary con-
ditions. The electrostatic energy of each electron configura-
tion was calculated using the Ewald method.?”> The QMC
energy per atom obtained in a finite cell differs from the
energy per atom of the infinite crystal due to single-particle
finite-size effects and Coulomb finite-size effects. The former
result from the fact that the allowed k points for the Bloch
orbitals form a discrete lattice, so that the single-particle en-
ergy components change when the size of the simulation
supercell is changed. The latter, which are the more impor-
tant in insulators, are caused by the interaction of the charged
particles with their periodic images. At any given instant,
each electron feels itself to be part of an infinite crystal of
electrons.>>?* The resulting bias is negative, and is generally
believed to fall off as 1/N, where N is the number of atoms
in the simulation cell.!>>-27

In order to eliminate the finite-size bias, simulations were
carried out in supercells consisting of 3X3X3 and 4 X4
X 4 primitive unit cells. The error in the DFT results arising
from the use of a 3 X3 X3 k-point mesh is small (about
0.0001 a.u.), so we conclude that single-particle finite-size
effects are negligible. The assumed form of the Coulomb
finite-size bias was therefore used to extrapolate the results
to infinite system size. The static-lattice energy per atom in
the infinite-system limit is given by

B =B+ 2, (1)

where EIS\,L(V) is the Vinet fit (see Sec. II D) to the DMC
static-lattice energy-volume data obtained in a set of N-atom
simulation supercells, V is the primitive-cell volume, and
b(V) is a parameter determined by fitting. Since we only
have energy-volume data for two different system sizes, N
and M, we may eliminate b(V) and write

NEY(V) = ME3F(V)

ESNV) =
V) N

(2)

The pressure due to the static-lattice energy at infinite system
size is given by
dES- _ Npy (V) = Mpj(V)
v N-M

SL(v/\ —
pe (V)= ; 3)
where py-(V)=-dEy-/dV is the static-lattice pressure in an
N-atom simulation supercell.

The zero-temperature, static-lattice energy-volume curves
of neon, calculated using DMC in different sizes of simula-
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FIG. 1. (Color online) Low-density static-lattice DMC energy of
FCC neon as a function of volume, evaluated in simulation super-
cells consisting of n X n X n primitive unit cells using different time
steps T.

tion supercell are shown in Figs. 1 and 2. Vinet EOS’s are
fitted to the data. The corresponding pressure-volume data
are shown in Figs. 3 and 4. It can be seen that the DMC
pressure-volume curves converge steadily with system size,
and that the DMC pressure extrapolated to infinite system
size using Eq. (3) is close to the pressure of the 4 X4 X4
supercell. This implies that the error introduced by the ex-
trapolation is small, because the extrapolation is itself a
small correction.

3. Time-step bias

The fixed-node DMC Green’s function is only exact in the
limit of a zero time step; the use of a nonzero time step
biases the DMC energy. An example of the bias in the DMC
energy of a pseudoneon crystal is shown in Fig. 5. On the
other hand, as shown by the 2X2X?2 supercell results in
Figs. 3 and 4, the pressure is very insensitive to the time step.
We used time steps of 0.005 and 0.02 a.u. in our production
calculations for the 3 X3 X3 and 4 X4 X4 supercells, re-
spectively. A time step of 0.002 a.u. was used in the DMC
pair-potential calculations. The target population was at least
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FIG. 2. (Color online) The same as Fig. 1, but at higher
densities.
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FIG. 3. (Color online) Low-density static-lattice pressure ob-
tained by fitting Vinet EOS’s to the DMC energies obtained in
simulation supercells consisting of n X n X n primitive unit cells and
at different time steps 7. The pressure extrapolated to infinite system
size is also shown.

320 configurations in each case, while a target population of
1000 configurations was used for the pair-potential-
generation calculations.

C. Pair-potential calculations

1. Forms of neon pair potential

We have used the following forms of pair potential: (i) the
HFD-B potential proposed by Aziz and Chen?® with the pa-
rameter values given by Aziz and Slaman;*-° (ii) the form
of potential proposed for helium by Korona et al.,' contain-
ing the parameter values determined by Cybulski and
Toczytowski® using all-electron double-excitation coupled-
cluster theory with a noniterative perturbational treatment of
triple excitations [CCSD(T)] and an av5z+ Gaussian basis
set; and (iii) a fit of the potential of Korona et al.3! to our
DMC energy data, as described in Sec. IV. We believe the
HFD-B pair potential to be the most accurate neon pair po-
tential in the literature to date.

2. Static-lattice energy-volume curve using pair potentials

Let the pair potential between two neon atoms at R and
R’ be ¢(|R—R’|). Let A be a large radius. We evaluate the
static-lattice energy per atom as

120 % T T T . T T
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| \ 2x2x2 supercell; T=0.01 a.u.
100
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FIG. 4. (Color online) The same as Fig. 3, but at higher
densities.
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FIG. 5. DMC energy of solid neon plotted against time step for
a simulation supercell consisting of 3 X3 X3 FCC primitive unit
cells. The primitive-cell volume is 85.75 a.u. 960 configurations
were used in the DMC simulations.

ESL ~ l(

| 4w2¢<r>dr), @

N
0<|R|<A ViJa

where the {R} are the lattice sites and Ny./V is the number
density of neon atoms. This expression becomes exact as A
goes to infinity. The integral in Eq. (4) was evaluated ana-
lytically for each pair potential, while the sum was evaluated
by brute force. A was increased until ES" converged.

3. Force-constant calculations using pair potentials

Pair potentials were used to generate force-constant data
for a quasiharmonic® calculation of the ZPE of neon. The
method of finite displacements’ was used to generate the
force constants in a finite supercell subject to periodic
boundary conditions. It was ensured that the force constants
were highly converged with respect to the size of the dis-
placements and the number of periodic images of the neon
atoms that contributed to the force constants. Following the
evaluation of the force constants, the calculation of the ZPE
proceeded, as described in Sec. IT A 2.

D. EOS models

Let E(V) be the total energy of a neon crystal as a func-
tion of primitive-cell volume V. It has previously been
noticed* that a Vinet EOS of the form

4BV |3 v ]
E(V)__(35-1)2{1_2(8"_1)[1_<V0) }

13
Xexp{%(Bé—l)[l—(%) }}+C, (3)

where the zero-pressure volume Vj,, bulk modulus B, pres-
sure derivative of the bulk modulus By, and integration con-
stant C are fitting parameters, gives a better fit than a third-
order Birch-Murnaghan EOS,
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FIG. 6. DFT band gap of FCC neon against the primitive-cell
volume, calculated using the LDA and PBE exchange-correlation
functionals.

9 v e
E(V)=- RBO((4 - B('))W - (14 - 336)W
V5/3
+(16—SB(’))#>+C, (6)

to DFT results for solid neon. In some cases the Vinet EOS
gives a lower x? value when fitted to our DMC data than the
Birch-Murnaghan EOS; in others it gives a higher y? value.
For example, using DMC data obtained in simulation cells
consisting of 2X2 X2 primitive cells and a time step of
0.01 a.u., the Vinet and Birch-Murnaghan EOS models give
)(2 values of 10.0914 and 35.3561, respectively, whereas at a
time step of 0.0025 a.u. the EOS models give x> values of
20.6609 and 4.8967, respectively. The resulting pressure-
volume curves are essentially indistinguishable in each case,
however. To be consistent, we have fitted Vinet EOS’s to all
of our theoretical data.

III. DFT STUDY OF PHASE STABILITY AND BAND GAP
A. Phase transitions in solid neon

We have compared the DFT energies of face-centered cu-
bic (FCC) and hexagonal close-packed (HCP) phases of
solid neon. For HCP neon the lattice-parameter ratio c/a was
optimized, but the optimal ratio always turned out to be
V8/3, which is the ratio appropriate for an ideal HCP lattice.
The DFT energy difference between the FCC and HCP
phases is typically less than 0.0005 a.u.: too small for us
reliably to identify any phase transition. Experimentally,
Hemley et al.’* have found that solid neon adopts the FCC
phase up to pressures of at least 110 GPa at 300 K. We have
therefore used the FCC lattice in all of our calculations, apart
from those described in this section.

B. Band gap of solid neon

The band gap of solid neon, calculated using DFT, is
shown in Fig. 6. The band gap is large at the equilibrium
volume, and increases significantly when the material is
compressed. The DFT calculations predict that neon is still
an insulator when it is compressed to a primitive-cell volume
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FIG. 7. (Color online) Neon pair potential, calculated using
DMC. The statistical error bars on the DMC results are smaller than
the symbols. A fit of the form of pair potential proposed by Korona
et al. (Ref. 31) to the DMC data is also shown, as is the pair
potential generated by Cybulski and Toczytowski using CCSD(T)
theory (Ref. 3). All are plotted relative to the HFD-B pair potential
of Aziz and Slaman (Ref. 29).

of 2 a.u., corresponding to a pressure of about 366 TPa. The
use of the ultrasoft neon pseudopotential (with a core radius
of 0.9 a.u.) probably causes the DFT results to become un-
reliable at such high densities; nevertheless, our results indi-
cate that the metalization pressure of neon is of the order of
hundreds of TPa. Hemley et al.3} concluded that neon re-
mains a wide-gap insulator over the range of pressures that
they studied using diamond-anvil cells (up to 110.4 GPa),
while Hawke er al.>* used a magnetic-flux compression de-
vice to show that solid neon remains an insulator up to at
least 500 GPa.

The DFT-LDA and DFT-PBE band gaps at the experimen-
tal equilibrium primitive-cell volume (150 a.u.) are 11.85
and 12.04 eV, respectively, compared with the experimen-
tally determined value of 21.51 eV.3> As usual, DFT substan-
tially underestimates the band gap. The GW band gap of
20.04 eV, calculated by Galami¢-Mulaomerovi¢ and Patter-
son, is relatively accurate.’® The DMC method can also be
used to perform highly accurate band-gap calculations,3”-3
although we have not done this for neon.

IV. DMC-CALCULATED PAIR POTENTIAL FOR NEON

The difference between the DMC pair potential, evaluated
as the fixed-nucleus total energy of a neon dimer, and the
HFD-B potential is shown in Fig. 7. The DMC energy data
have been offset by a constant that was determined by fitting
the data to a pair-potential model.>* We have used the form
of potential proposed by Korona et al. for helium,?' which
can be written as

8
S =Aexpl-ar+ B+ D fulnb) 2, (1)
n=3 r

where r is the separation of the neon atoms. The dispersion
coefficients C,, are taken from Cybulski and Toczytowski®
(C¢=6.28174, C3=90.0503, C,,=1679.45, C;,=4.18967
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FIG. 8. (Color online) Phonon dispersion curves calculated us-
ing DFT and pair potentials for FCC neon at a primitive-cell vol-
ume of 41.593 75 a.u. The Einstein frequencies evaluated using
DFT-LDA, DFT-PBE, the HFD-B pair potential, the CCSD(T) pair
potential, and the DMC pair potential are 83.102 34, 87.571 10,
63.778 43, 65.739 11, and 63.008 58 meV, respectively. The quasi-
harmonic ZPE evaluated using the HFD-B potential is
0.003 321 155 a.u.

X 10%, C14,=1.36298%10° and C,4=5.629 06X 107) and
Sfau(r,b) is the damping function proposed by Tang and
Toennies,*®

2n

br)¥
f2n(r»b) =1- exp(_ bl")E ( )

k=0 k!

(8)

A, a, B, and b are adjustable parameters, which were deter-
mined by a X2 fit to the DMC data, as was the constant
offset. The fitted parameter values (in a.u.) are A
=84.956 788, «=2.0683266, B=-0.11767673, and b
=2.689 986 8. The difference of the resulting pair potential
with the HFD-B potential is shown in Fig. 7, as is the corre-
sponding curve for the CCSD(T) data. It can be seen that
over a wide range of separations the DMC pair potential lies
closer to the HFD-B pair potential than the CCSD(T)-
generated pair potential.

V. LATTICE DYNAMICS AND ZERO-POINT ENERGY

By comparing the results obtained using a Lennard-Jones
potential in the harmonic approximation with the VMC*! re-
sults obtained using the same potential by Hansen,*> Pollock
et al.¥ have demonstrated that the harmonic approximation
is valid for solid neon at high pressures. We consider two
methods for calculating the ZPE: (i) the ZPE of quasihar-
monic phonons can be evaluated in a supercell of several
primitive cells, or (i) the ZPE can be computed within the
Einstein approximation by evaluating the quadratic potential
felt by each atom as it is displaced from its equilibrium po-
sition with all the other atoms held fixed.

Examples of phonon dispersion curves at two different
densities are shown in Figs. 8 and 9. Inelastic neutron-
scattering data** are also shown in Fig. 9. At high density the
DFT-LDA and DFT-PBE dispersion curves are in good
agreement, but at low density the DFT-LDA phonon frequen-
cies are significantly lower than the DFT-PBE frequencies.
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FIG. 9. (Color online) The same as Fig. 8, but with a primitive-
cell volume of 149.068 94 a.u. (close to the experimental equilib-
rium density). Experimental data from Ref. 44 are also shown. The
imaginary frequencies of unstable modes are plotted as negative
numbers. The Einstein frequencies evaluated using DFT-PBE, the
HFD-B pair potential, the CCSD(T) pair potential, and the DMC
pair potential are 5.378 53 meV, 4.078 95 meV, 6.739 75 meV, and
6.061 13 meV, respectively. The quasiharmonic ZPE evaluated us-
ing the HFD-B potential is 0.000 216 603 a.u.

Unstable (imaginary) phonon modes start to occur at a
primitive-cell volume of about 133 a.u. in the LDA. By con-
trast, there are no unstable phonon modes, even at a
primitive-cell volume of 182.25 a.u., when the PBE func-
tional is used. The DFT and pair-potential results are in
agreement at high densities, indicating that the DFT results
are accurate in this regime. Overall, the DFT-PBE dispersion
curves appear to be more accurate (that is, closer to the
HFD-B and experimental results) than the DFT-LDA disper-
sion curves.

The pressure arising from the ZPE of solid neon as cal-
culated using different methods is plotted relative to the
HFD-B results in Fig. 10. Within DFT, the Einstein approxi-
mation is excellent. It can be seen that the difference be-
tween the LDA and PBE results is appreciable at low densi-
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FIG. 10. (Color online) Difference of zero-point pressure of
FCC neon calculated using various methods and the HFD-B result
for the zero-point pressure. (The noise is due to the fact that Monte
Carlo methods were used to sample the first Brillouin zone when
calculating the zero-point energy, and the resulting curve was dif-
ferentiated numerically to obtain the zero-point pressure.)
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FIG. 11. (Color online) EOS of FCC neon, obtained by experi-
ment and various theoretical techniques.

ties, but that the difference between the Einstein and
quasiharmonic zero-point pressures is more significant at
high densities. As expected from an examination of the dis-
persion curves, the HFD-B zero-point pressure is closer to
the DFT-PBE results than the DFT-LDA ones; nevertheless,
all the zero-point-pressure results are in good agreement.

The DFT quasiharmonic zero-point pressures have been
added to the corresponding static-lattice pressures to give the
final EOS’s. The DFT-PBE quasiharmonic zero-point pres-
sure has been added to the DMC static-lattice pressure to
give the final DMC EOS. For the pair potentials, the quasi-
harmonic zero-point pressure calculated using each pair po-
tential has been added to the corresponding static-lattice
pressure in order to obtain the final EOS.

VI. ZERO-TEMPERATURE EOS OF NEON

Zero-temperature EOS’s for solid neon, calculated using
DFT-LDA, DFT-PBE, DMC [extrapolated to infinite system
size using Eq. (3)], and pair potentials are shown in Fig. 11,
and the differences of the theoretical EOS’s with the experi-
mental EOS are plotted in Fig. 12. (The low-density experi-
mental pressure-volume data of Anderson et al.* shown in
Fig. 11 were obtained at 4.2 K, while the high-density ex-
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FIG. 12. (Color online) A comparison of theoretical EOS’s of
FCC neon. The difference of the calculated pressure is plotted
against the experimental pressure as a function of volume.
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perimental data of Hemley et al.* were obtained at 300 K.
Hemley et al. reduced their pressure-volume data to the zero-
temperature isotherm using a Mie-Griineisen model and fit-
ted their results to a third-order Birch-Murnaghan EOS, with
the zero-pressure primitive-cell volume and bulk modulus
being the values obtained by Anderson et al. The resulting
EOS* is valid at both low and high densities and is regarded
as being the definitive experimental EOS.) The parameter
values for a Vinet fit (Eq. (5)) to our DMC data (including
the DFT-PBE ZPE) are V,=128.52597 a.u.,, B,
=2.753 9319 GPa, and B|=7.651 074 4.

At low densities the DFT-LDA and DFT-PBE EOS’s dif-
fer markedly. The strong dependence of the DFT results on
the choice of exchange-correlation functional implies that the
description of van der Waals bonding within DFT is unreli-
able, as one would expect, given the local nature of the ap-
proximations to the exchange-correlation functional. DMC
produces a considerably more accurate EOS than DFT, sug-
gesting that DMC is capable of giving a proper description
of van der Waals bonding. The HFD-B pair potential®® gives
an EOS of similar accuracy to the DMC EOS at low to
intermediate densities. At higher densities, the EOS calcu-
lated using DMC is better than any of the pair-potential
EOS’s. Although the difference between the DMC and ex-
perimental pressures is significant at high densities, it should
be emphasized that the fractional error remains small.

The pair potential calculated using CCSD(T) theory?
gives a poorer EOS than the DMC-generated pair potential.
On the other hand, the EOS obtained using the DMC pair
potential is significantly poorer than the HFD-B EOS. Taken
together with the fact that the direct DMC EOS is excellent,
this suggests that many-body interactions play a significant
role in solid neon, and that such interactions are included to
some extent in the HFD-B potential.

VII. CONCLUSIONS

We have performed DMC calculations of the energy of
FCC solid neon as a function of the lattice constant and the
energy of the neon dimer as a function of atomic separation.
Other calculations using DFT methods and pair potentials
have been performed to evaluate the ZPE and for comparison
purposes.

We have calculated the phonon dispersion curves of solid
neon using the DFIT-LDA and DFT-PBE methods, the
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HFD-B pair potential, and CCSD(T)- and DMC-derived pair
potentials. We believe the results obtained with the HFD-B
pair potential are likely to be the most accurate. DFT-PBE
gives more accurate dispersion curves than DFT-LDA, for
which the phonon frequencies are too low. The dispersion
curves obtained with the DMC pair potential are more accu-
rate than those obtained using either DFT or the CCSD(T)
pair potential. We have calculated the ZPE of solid neon
using the DFT-LDA and DFT-PBE methods, and the HFD-B,
CCSD(T), and DMC pair potentials, within the quasihar-
monic approximation. At low pressures, the ZPE depends on
the calculation method used, but the contribution to the EOS
is small, while at high pressures the dependence on the cal-
culation method is relatively weak, although the contribution
of the ZPE to the EOS is significant. The Einstein model
gives ZPE’s in very good agreement with the quasiharmonic
values over the pressure range considered.

We have calculated the zero-temperature EOS of solid
neon using the DFT and DMC methods, including correc-
tions for the ZPE. We have shown that the DFT results de-
pend strongly on the choice of exchange-correlation func-
tional, while the DMC results are close to the experimental
EOS. We therefore have evidence that DMC gives a better
description of van der Waals bonding in real materials than
DFT. At high pressures the DMC EOS is closer to the ex-
perimental results than the EOS obtained using the HFD-B
pair potential. However, the statistical errors of about
0.0002 a.u. in the DMC energy data for solid neon are too
large to determine an accurate value for the lattice constant
of the solid. We have shown that the neon pair potential
determined by DMC calculations gives a more accurate EOS
than the pair potential determined by CCSD(T) calculations,
although the DMC pair-potential results are not as accurate
as those obtained using the semiempirical HFD-B potential.
Overall, our results demonstrate the accuracy and reliability
of the DMC method and the high quality of the neon pseudo-
potentials that we have used.
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