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We explore the underlying physics of dislocation ordering in deforming metals, where we focus on the
competing role of energy relaxation and the fluctuations �noise� in the local stress field. We investigate the
competition by employing a simple two-dimensional model that exhibits the essential physics, while avoiding
extraneous mechanisms that might cloud the issues. We show that noise and energetics are equally important
in determining the final state of the system. Quantitative functions for the energetic driving force for ordering
and the resistive force owing to the noise are developed that balance one another at the relaxed state. These
features follow from the system being scale invariant, with power law dependencies of the macrovariables on
the number of relaxing dislocations.
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I. INTRODUCTION

Perhaps the most intractable aspect of developing a theory
of the deformation in metals is to understand the physics
behind the formation of the partially ordered dislocation cells
delineated by a rather vague three-dimensional �3D� network
of dislocation walls that appear as the deformation proceeds.1

This ordering takes place while the system is far from ther-
mal equilibrium and in the presence of very large fluctua-
tions, or noise, in the relevant variables.2–4 The noise is such
a striking feature of the system that Hähner has proposed that
the transition to the cell structure should be considered pri-
marily noise generated.2,4 We have also presented support for
this view.5

The purely stochastic type of analysis by Hähner and
others2–5 neglects, however, all effects �except for the anni-
hilation of unlike dislocations� owing to the interaction en-
ergy �or forces� between the dislocations. We know, how-
ever, that the interactions between dislocations are large and
anisotropic6 and that these interactions lead to the formation
of a strong local order.7–9

The goal of this paper is to directly examine the relative
roles of the interaction forces and the noise in the ordering of
dislocations. We will show that the noise and energy drive
the system in opposite directions relative to the state of order
and come into balance at the relaxed state, in a somewhat
analogous way that thermal fluctuations and cohesive energy
balance each other in thermodynamic systems.

It is important to be clear about what we mean by noise in
this paper. We are not talking about thermal noise, which can
be viewed as an external fluctuating force acting on particles
in a system. Thermal noise is additive, in that the fluctuating
forces acting on a variable are independent of that variable.
Thermal noise is relatively unimportant in systems of dislo-
cations, however, because elastic interactions are so much
larger in magnitude than the thermal forces.10 �This is not to
say that temperature effects are not important; they are criti-
cal in defining atomistic-level activated events, such as
climb, cross slip, etc.�.

In contrast with thermal noise, the dominant fluctuations
in the forces in a system of dislocations are self-generated
and arise from the long-ranged elastic interactions between

the dislocations themselves. These fluctuations are tied self-
consistently to the evolving structure of the dislocations and
are thus not independent variables, as the temperature is in
thermodynamics. To be more specific, consider the force on a
mobile dislocation as it moves along its slip plane. The
highly anisotropic nature of the interactions between dislo-
cations leads to a frustration between forming locally or-
dered structures �driven by the attractive regions of the inter-
actions� and nonordered structures �driven by the repulsive
regions of the interactions�. This frustration arises from the
stochastic distribution of orientations between neighbors and
leads to large fluctuations in the forces acting on the dislo-
cations. A measure of these fluctuations �the standard devia-
tion of the local stress field� will be employed below as a
concrete definition of the noise. We note that this measure of
noise describes forces that depends on the variables upon
which they act �the dislocation positions� and thus is gener-
ally referred to as a multiplicative noise.11 This definition of
noise is consistent with that proposed earlier by Hähner.3,12

In the dislocation problem, there are actually several con-
tributions to the frustration. The first is the constraint of a
given dislocation to remain on a single slip plane, which
means that the climb that would permit a uniform distribu-
tion of dislocations in the walls �the low energy configura-
tion� is not allowed. A second contribution, arising from the
angular dependence of the force law and described in the
previous paragraph, frustrates complete wall formation irre-
spective of the distribution of dislocations within the walls.
In our simple model, these are the major issues. In more
complicated systems, there will be other contributions to the
frustration. For example, when more than one Burgers vector
is present, dipole formation is a form of frustration, and in
3D systems, entanglement is another form of frustration.

We explore in this paper the edge-ordering problem in the
simplest possible model in which the features described
above are dominant. The study is intended to throw light on
the ordering observed in deforming systems, and to do so,
we will simplify the actual deforming system, and reduce the
problem to one where the interaction between “noise” and
energy is central to the system, and all other aspects of dis-
location behavior, such as annihilation, jog formation, mul-
tiple slip plane effects, etc. have been eliminated. The system
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that does this most simply is that of 2D parallel edge dislo-
cations with a single slip plane and single-signed Burgers
vector.

We study the relaxation of an initially random configura-
tion of dislocations. The relaxation case is not unrelated to
steady-state deformation, because a deforming system does
not respond in a continuous manner to the external stress, but
with discrete stochastic strain bursts, or avalanches.13,14 After
each strain burst, the material in the vicinity of the strain
burst relaxes until the stress builds up to the new local �and
stochastic� critical stress. One of us has explored this behav-
ior as a percolation process,15 but here the focus is on the
relaxation after a strain burst. The result of the percolation
event will be the injection of a number of essentially �lo-
cally� randomly distributed new dislocations, which are
added to the partially relaxed configuration resulting from
the previous relaxation. So the situation after a percolation
event in the actual deforming metal is not unlike the simpli-
fied annealing system explored here.

A final observation is that the system under study will be
purely mechanical, with no overcoming of energy barriers by
thermal fluctuations. Again, we simplify in order to under-
stand, and can add additional complexity in later stages.

II. THE MODEL

We consider a system consisting of N edge dislocations,

with Burgers vector b� =bx̂, on a periodic square lattice in the
xy plane with �L=1000� lattice sites on a side. The disloca-
tion line direction is along the ẑ direction, so the system is
effectively two-dimensional. Since we ignore climb, motion
is possible only in the ± x̂ direction. The dislocations are
initially randomly distributed on the lattice. Periodic bound-
ary conditions are assumed, which means that the square box
with its dislocations is exactly replicated in each supercell of
the lattice. Thus, the interaction of a given reference disloca-
tion �the one on which the force is calculated� with a given
neighbor dislocation is actually an interaction with an infinite
wall of those neighbor dislocations along the ŷ direction,
with the repeat distance in the wall given by the supercell
size. Each vertical wall is repeated in the x̂ direction by ad-
ditional walls, again separated by the super cell repeat dis-
tance. The force on a single dislocation in the presence of a
wall extending infinitely in the ±ŷ direction is given by6,7

fx =
��b2

L�1 − ��
x�cosh�2�x�cos�2�y� − 1�
�cosh�2�x� − cos�2�y��2 , �1�

where x= �x2−x1� /L and y= �y2−y1� /L. �x1 ,y1� is the refer-
ence dislocation lattice coordinate and �x2 ,y2� is the lattice
coordinate of the neighbor �or field� dislocation. Lattice ro-
tations will be ignored. We normalize the expression in Eq.
�1� such that b=1 and �� / �1−��=1, where b is the Burgers
vector, � is the shear modulus, and � is Poisson’s ratio. Be-
cause of the periodic boundary conditions, there is an addi-
tional sum over the corresponding walls in each repeat su-
percell in the ±x̂ direction. We carry this �infinite� sum out to
a distance of seven supercells in the ±x̂ direction, which
leads to essentially complete convergence.

We sum the force on a reference dislocation from all its
neighbors and move the reference dislocation one lattice
spacing in the direction of the force. The calculation is re-
peated a few times �normally 10� with the neighbor disloca-
tions remaining in their original positions. Finally, the �relax-
ation� calculation is repeated for each dislocation serving in
turn as the reference dislocation and the whole process is
repeated until convergence is attained. We have found that
following this procedure leads to structures that are essen-
tially equivalent to those obtained by other methods.7,8 In
Fig. 1 we show the relaxed positions of a system with
N=100 dislocations. While there are reasonably well-defined
walls, the result is clearly not at the absolute minimum of
energy. Simulations starting with a different set of random
positions would yield similar, but different, microstructures.

We characterize the magnitude of the fluctuations in the
local forces acting on a dislocation �the noise� as the standard
deviation of the distribution of the resolved shear stress on
the slip plane. To calculate that quantity, we employ the re-
lation between the standard deviation �a of a fluctuating
quantity a and the average of the absolute value of that quan-
tity ��a � �,

�a � ��a�� , �2�

which holds when �a�=0. �Note that this relation also holds
for distributions other than a Gaussian.� More specifically,
we estimate the noise by determining the absolute value of
the stress at each lattice point of a slip plane �in our case on
the y=500 plane�. The absolute value of the stress is first
averaged over the slip plane, then averaged over many simu-
lations. We find that the average of that stress is zero and its
distribution is essentially Gaussian, so the calculated quan-
tity is proportional to the standard deviation of the stress
distribution and thus is a measure of the fluctuations in the
forces acting on a dislocation as it moves through the system.
We refer to this quantity as R�t ,N������, or simply the
“noise.” An example is shown in Fig. 2, where we plot the
noise versus the number of relaxation steps. Since the physi-

FIG. 1. �Color online� Output of a simulation for 100 relaxed
dislocations. Considerable, but not complete, wall formation is
apparent.
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cal system relaxes with increasing time, which is analogous
to the number of relaxation steps, for convenience we will
refer to the number of relaxation steps simply as the time.
R�t ,N� is a function of both the relaxation time and the
number of dislocations. The limited, partial, relaxation of R
is a direct measure of the frustration frozen in the relaxed
system, and will be employed to characterize the degree of
that frustration.

The interaction energy of a reference dislocation in the
presence of an infinite dislocation wall extending in the ±ŷ
directions is16

E =
�b2

4��1 − ���ln	cosh�2��x − n�� − cos�2�y�


−
2��x − n�sinh�2��x − n��

cosh�2��x − n�� − cos�2�y�
+ ln 2� , �3�

with x and y defined as before, and n is the index for a cell in
the x̂ direction. As for the force, the sum over n supercells in
the x̂ direction is extended to seven cells to the left and right
of the central supercell. The log term is chosen to make the
pair energy go to zero at infinite separation.16

The degree of order is derived from the standard pair
correlation function for a configuration, C�t ,x ,y�, which is
the probability that a second dislocation will be found at x ,y,
given that the first dislocation is at x ,y=0 at a relaxation
time t.7,8 There is a directional dependence to C, so that C
does not depend simply on the scalar distance to the field
dislocation. We define the differential wall correlation func-
tion q�t ,x ,N� as the sum of C over the direction vertical to
the slip plane,

q�t,x,N� = �
y

�C�t,x,y� . �4�

The sum is over the lattice sites in the y direction, except the
site at the reference dislocation, and q�t ,x ,N� is normalized
to the total number of dislocation pairs. According to this
definition, q�t ,x ,N� is a function of time, t the distance, x
between the two members of a pair, and N. We will write

q�� ,x ,N� for the fully relaxed differential wall correlation
function.

We now define an additional correlation function,
�w�t ,N�, to serve as the basis for our analysis, which we will
call the total wall correlation function, or just the wall cor-
relation function. This function represents the total excess
fraction of pairs that coagulate in a central wall as the system
relaxes for a given value of N. That is, for a given N, the wall
correlation function is defined as the sum over x of q�t ,x ,N�
for each relaxed state for which q�x��q�random�, where
q�random�=1/L=0.001 is the differential wall correlation
function for a completely random distribution of dislocations
�on a 1000	1000 lattice�,

�w�t,N� = �
q�x��q�random�

q�x� . �5�

This function, �w�t ,N�, is averaged over many simulations.
As we shall see below �e.g., Fig. 3�, when q�t ,x ,N� is plotted
as a function of x, there is a depleted region near the central
peak, where q�x�
q�random�; the sum in Eq. �5� is only
taken over the central peak to the left of the depleted region.

An additional variable of interest is the fractal dimension
of the relaxed dislocation structure. However, since our re-
sults on the fractal character of the dislocation distribution
only confirm reports by others,17,14 those results are not dis-
played here.

III. SIMULATION RESULTS

A. The idea of an ensemble

A system of dislocations is an example of a classic “com-
plex �mechanical� system.” The question arises whether there
are emergent properties of such a system that can be dis-
cerned. There has been a wide-spread faith that there are
very few macroscopic variables that fully characterize the
results of metallic deformation. Since the current system is a
highly abstracted version of a deforming system, if emergent
properties exist for the more complex physical system, such

FIG. 2. �Color online� Plot of noise distribution, R�t ,N=100�,
as a function of relaxation “time.” The data are for 100 dislocations
and averaged over 500 simulations.

FIG. 3. �Color online� Plot of the function, q�t= � ,x ,N=100�
for N=100, showing a strong peak at the origin surrounded by a
denuded region. The line at 0.001 corresponds to the correlation for
a random distribution.
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emergent variables �hopefully the same ones� will be present
here. We begin our search by defining an object that should
exhibit these properties. That object is a set of simulations.
This set of simulations has much of the character of an en-
semble of states, such as defined in thermodynamics, except
in our case, there is no temperature variable. Nevertheless,
we will term the set of simulations an ensemble or macro
system, since for each ensemble, one can define a set of
macroscopic variables. These variables are the ones we have
already used: the total number of dislocations in the simula-
tion, the average interaction energy per dislocation as a func-
tion of the relaxation of the ensemble, the correlation func-
tions, etc. The hope is that when the functional relationships
between the various macrovariables have been laid out, some
laws can be perceived between them that describe the overall
�emergent� behavior of the system.

It is important to keep in mind that the defining property
of all edge dislocation systems is the peculiar angular depen-
dence of the force law. This angular behavior is crucial, be-
cause it frustrates the ability of the system to achieve a well-
defined, ordered, ground state. The frustration, in itself, is
difficult to characterize quantitatively, but is very closely as-
sociated with the average noise on the slip plane, what we
have called R.

It is also useful to keep in mind that we have simplified
the dislocation system sufficiently that the change in energy
in a simulation is closely connected with the vertical order-
ing of pairs. However the energy is also lowered when a
shallow pair separates on the slip plane, so there are two
independent ways to lower the energy. Our hope is that we
can see how the part of the energy associated with vertical
ordering is connected in a general way to the overall energy
change in this relatively simple system.

B. Numerical results

In Fig. 2 we showed the relaxation with time of
R�t ,N=100�, the noise parameter, in a simulation with
N=100 dislocations. The relaxation shows a sharp initial �ex-
ponential� decrease, followed by a slow relaxation to its final
value. A plot of the energy, calculated with Eq. �3�, shows a
similar behavior as it relaxes to its final value.

Figure 3 shows the �relaxed� differential wall correlation
function, q�t= � ,x ,N=100�, for N=100 as a function of the
distance from the reference wall. We note that for ten or less
dislocations, there is a well pronounced sharp peak at the
midpoint of the basic cell, corresponding to just two well
developed “walls” 500 lattice spaces distant from one an-
other. For more than ten dislocations, q�x� loses the strong
maximum at the midcell point. Hereinafter, we shall concen-
trate on the systems with N�10.

In Fig. 4 we show the variation of the noise, R�t ,N�, as a
function of the number of dislocations for both the initial,
random state �t=0� and the final, relaxed state �t= � �. Note
that both quantities follow a power law of the form R�N�,
with �=0.5686±.0120 for the initial random configurations
and 0.5042±0.0122 for the relaxed states. Similarly, in Fig. 5
we show the variation of the relaxed wall correlation func-
tion, �w, as a function of the number of dislocations. It too

follows a power law with N, with an exponent given by
−0.3606±.0140. While we do not show the results, we find
that the energy is essentially linear with N, with a power-law
exponent of 0.998±0.001.

It has often been assumed that the noise �in our case R�
scales as the square root of N �or �, the dislocation
density�.3,12 We test that idea in Fig. 4 and indeed find that R
has an exact �within the computed precision� square root
dependence on N for the final relaxed configurations. There
is a slight, but measurable, difference in the power exponent
for the noise distribution found for the initial, random, con-
figurations.

The important conclusion from the power law N depen-
dence for the fully relaxed states is that all the fully relaxed
ensemble variables are connected functionally as power laws
to one another. For example, there is an inverse relationship
between the wall correlation variable, �w�� ,N�, and the
noise, R�� ,N�, for almost two orders of magnitude from
N=10 to N=800,

FIG. 4. �Color online� Initial �R�0,N�� and relaxed �R�� ,N��
noise on the slip plane as a function of N. For the initial random
state �upper curve�, the power-law exponent is 0.5686±0.0120 and
for the final relaxed state �lower curve�, the power is
0.5042±0.0122.

FIG. 5. �Color online� Relaxed wall correlation function
�w�� ,N�. The exponent in the power law is −0.3606±0.0140.
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�w�� ,N� �
1

R�� ,N�.734 . �6�

This direct functional relation between �w�� ,N� and R�� ,N�
is consistent with our central physical understanding that as
the noise increases, the order decreases. A similar direct
functional relation can be written between the interaction en-
ergy of the ensemble and the noise,

e�� ,N� � − R�� ,N�1.97, �7�

where e�t ,N� is the interaction energy of the ensemble per
dislocation as a function of time and N. This power relation
is, within the computational precision, simply a quadratic
function.

IV. SYSTEM DRIVING FORCE FOR ORDERED WALL
FORMATION

Having determined the power laws for the ensemble vari-
ables, the basic physics of the dislocation ordering problem
has been demonstrated, including the complementary roles
played by the noise and energy. However, it is possible to
take a significant step beyond this point, and to develop a
conceptual framework for the formation of ordered structures
in deformation and how that is related to the noise. We do
this by introducing an ensemble driving force that governs
the behavior of the macrovariables on their approach to the
relaxed state, which is analogous to the thermodynamic force
defined for thermodynamic systems.

The interaction energy of the macrostate per relaxed dis-
location was defined earlier as e=e�t ,N�, where the indepen-
dent variables are the relaxation time and the number of dis-
locations in the system. For this system, t and N constitute a
complete set of independent variables; if their values are
known, the state of the ensemble is fully described. There are
other configuration variables, however, such as �w�t ,N� and
R�t ,N�, that are also functions of the independent variables,
	t ,N
. The variation of the energy with respect to these other
variables acts as an ensemble driving force on the system.
Thus, a driving force for the formation of order for the sys-
tem at fixed N can be defined as

F�w
�t,N� = 
 −

�e�t,N�/�t

��w/�t



N

, �8�

where it is emphasized this is a derivative at fixed N.
A plot of F�w

as a function of time �not shown� indicates
that there is an initial fast exponential relaxation, followed
by a much longer relaxation that follows a drastically differ-
ent functional form. We define 
 as the relaxation time of the
initial fast exponential relaxation. 2
 corresponds to a relax-
ation of F�w

to something like 90% of its change from the
initial random state. 
 is small �of the order of 10�, reflecting
the initial fast relaxation time. The 
 point for F�w

shows a
small dependence on the number of dislocations N.

We will work with F�w
in the very restricted region where

t�2
. The region of interest is limited for smaller t by the
discreteness of the system and for larger t by the change of
the functional form of the relaxation. In the vicinity of

t�2
, however, the system can be described by a well-
defined analytic set of power laws and F�w

can be computed
from the fitted analytic exponential functions for e and �w.
We show F�w

�at t=2
� as a function of N in Fig. 6.
The noise term evaluated at t=2
, R�t=2
 ,N�, displays

the characteristic square root function between the noise and
N �as in Fig. 4�. Because both F�w

�2
 ,N� and R�2
 ,N� are
power functions of N, we can eliminate N and express the
functional relation between them as

F�w
� Rr

r = 2. �9�

This functional relationship between the driving force for
order formation, and the resistance to order exerted by the
noise is the primary result of the paper. This shows that at the
relaxed equilibrium state, the energetic driving force is ex-
actly in balance with the noise. At corresponding equilibrium
states, the driving force is a quadratically increasing function
of the noise. That is, as the noise increases, the driving force
has to increase disproportionately to achieve the relaxed
state. The exponent has the nominal value r=2 within the
range of the computation precision.

If the ensemble force introduced here is to have the nor-
mal attributes of a thermodynamic force, then the same
forces which have been defined at the relaxed state should
also operate throughout relaxation. Indeed, we find that the
magnitude of the resisting noise force relative to the positive
energetic ordering force increases uniformly as one starts at
the unrelaxed state, and approaches the relaxed state. That is,
the relative size of the two forces is a measure of the “dis-
tance” one is from the equilibrium relaxed state. The detailed
numerical results are not given for the sake of brevity.

V. CONCLUSIONS AND INTERPRETATION

We have demonstrated a simple linear relation
between the ensemble driving force for order formation,
F�w

�t=2
 ,N�, and the square of the noise, R�t=2
 ,N�,
showing explicitly the balance at the relaxed state between

FIG. 6. �Color online� The driving force at t=2
 as a function of
N, F�w

�t=2
 ,N�. The power exponent is 0.9411±0.0480.

MODELING ENERGETICS AND NOISE IN… PHYSICAL REVIEW B 73, 024104 �2006�

024104-5



the driving force for ordered wall formation and the frustra-
tion resistance, or noise. Beyond this central result, we find
that the fully relaxed ensemble variables are all power func-
tions of the number of dislocations �i.e., dislocation density�
in the system. Consequently, the set of ensemble variables
are thus expressible as direct power functions of each other.

Many studies of dislocations have demonstrated the self-
similar character of the dislocation system,18–21 and we be-
lieve this is a fundamental characteristic underlying disloca-
tion behavior. Likewise, the idea of a system ensemble is
generally applicable to all dislocation systems, in two as well
as three dimensions. Further, we expect the concept of slip
plane noise and the driving force for order to be generaliz-
able to any of these systems. If these systems are all self-
similar, then the driving force and noise will be power func-
tions of N. We thus expect that at the relaxed state, there will
be an invariant relation between the driving force for order
and the noise resistance force. Of course, these statements
for other systems than the one developed here are conjec-
tures, but the general scale invariant character of all disloca-
tion systems make the conjectures plausible and suggest that
the findings reported here may relate to corresponding find-
ings in more complicated cases. This conjecture amounts to
the invocation of a universality property for dislocation sys-
tems that could be very powerful, if true.

A direct comparison of the findings of this paper to the
results of the purely stochastic, and highly simplified, model
of Hähner et al.2,4 cannot be made. Nevertheless, in this
study, we have certainly demonstrated the essential action of
the energy in determining the final relaxed state of order and
shown that noise is not enough to account for subscale dis-
location structures.

Our idea of a macrostate of the system and its relation to
the microstate realizations of the system has a parallel mean-
ing to the concept of canonical ensembles in ordinary statis-
tical mechanics. It is suggestive to equate the fluctuating
back stress, which is the entity resisting the achievement of
order in the deforming system, to a kind of
pseudotemperature,22 because it is the energy fluctuations
caused by finite temperature that constrain an ordinary ther-
mal transition. However, in the present case, the noise fluc-
tuations do not constitute an independent variable in the
problem, but are self-consistent with the evolving configura-
tion. In the parlance of stochastic dynamics, the dislocation
system has multiplicative noise �a function of the evolving
variable� rather than the additive noise found in a thermally
driven system. Nevertheless, our introduction of quasither-
modynamic ideas for the dislocation system far from equi-
librium should be viewed as being in the same tradition be-
ing developed by Liu22,23 and others who explore the idea of

a quasitemperature for nonequilibrium mechanical systems,
and by Ngan24 who has shown how to define a quasifree
energy for the dislocation system. It is of interest to note that
the results here are modified by the presence of a “real”
temperature. For example, thermally induced climbs will
make it possible to overcome noise barriers, and less ener-
getic driving forces will be necessary to achieve a relaxed
state.

We find that the large magnitude of the back stress noise
generates enormous fluctuations in all aspects of the disloca-
tion system. That is, the pair correlation function, energy, and
structure of the equilibrium configuration all fluctuate wildly
from one realization or simulation to another, so that in the
three-dimensional case, it will be necessary to explore the
statistics of three-dimensional simulations in much the same
way we have done here for the two-dimensional case in order
to achieve serious predictability. That requirement places a
very serious barrier to achieving direct three-dimensional
simulation of physical results, given the great difficulty of
performing even a single three-dimensional simulation. This
conclusion puts a major priority on the development of sim-
pler theoretical techniques and models for three dimensions,
such as methods for constructing valid coarse graining tech-
niques, on the development of other two-dimensional models
of deformation, and on the development of statistical models
for the transport of strain through a system of assumed noisy
three-dimensional patterns.

One approach to finding an approximate description of
dislocation energetics in three dimensions has been to intro-
duce a coarse-graining volume and to divide the problem
into a long-ranged part �described with a multipole expan-
sion� and a short-ranged, or local, part.25–27 While the results
to date are encouraging, especially with regard to the treat-
ment of the long-ranged interactions, a major uncertainty has
been the development of a method to predict the local, short-
range order. While somewhat restricted in scope, we feel that
the work reported here is an important first step in develop-
ing the correct phenomenology of ordering necessary to ex-
tend and refine the coarse-graining methods.
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