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The conditions for structural transitions at the core of a grain boundary separating two crystals was inves-
tigated with a diffuse interface model that incorporates disorder and crystal orientation �Kobayashi et al.,
Physica D 140, 141 �2000��. The model predicts that limited structural disorder near the grain boundary core
can be favorable below the melting point. This disordered material is a precursor to a liquid phase and therefore
the model represents grain boundary premelting. This model is shown to be isomorphic to Cahn’s critical point
wetting theory �J.W. Cahn, J. Chem. Phys. 66, 3667 �1977�� and predicts first- and higher-order structural grain
boundary transitions. A graphical construction predicts the equilibrium grain boundary core disorder, the grain
boundary energy density, and the relative stability of multiple grain boundary “complexions.” The graphical
construction permits qualitative inference of the effect of model properties, such as empirical homogeneous
free energy density and assumed gradient energy coefficients, on properties. A quantitative criterion is derived
which determines whether a first-order grain boundary transition will occur. In those systems where first-order
transition does occur, they are limited to intermediate grain-boundary misorientations and to a limited range of
temperatures below the melting point. Larger misorientations lead to continuously increasing disorder up to the
melting point at which the disorder matches a liquid state. Smaller misorientation continuously disorder but are
not completely disordered at the melting point. Characteristic grain boundary widths and energies are calcu-
lated as is the width’s divergence behavior at the melting point. Grain boundary phase diagrams are produced.
The relations between the model’s predictions and atomistic simulations and with experimental observations
are examined.
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I. INTRODUCTION

Two-dimensional defects, such as free surfaces and inter-
nal interfaces, contribute free energy to a material system in
proportion to their area. In principle, these interfaces could
adopt more than one metastable “complexion” �i.e., distinct
interfacial structure or composition profile�. �91� Assuming
that interfaces can rapidly equilibrate with their abutting
phases by local atomic motion, only metastable complexions
�i.e., those with local minima in free energy with respect to
available degrees of freedom� will be observed. Generally,
the metastable complexions, including the one with the low-
est free energy �the globally stable complexion� will each
have distinct, reproducibly measurable physical properties
�densities, structures, compositions, etc.� that differ from
those of the abutting bulk materials or crystalline phases. The
complexions’ stability ranking and physical properties de-
pend on imposed constraints such as temperature, stress, and
one or more chemical potentials. As in bulk-phase equilib-
rium coexistence, interfacial complexions could stably coex-
ist at certain subsets of the possible values of fixed pressure,
temperature, chemical potentials, etc. Grain boundary �GB�
complexion coexistence identifies conditions where bound-
ary thermodynamic properties �i.e., structure, composition,
etc.� would undergo predictable alteration; derivative physi-
cal properties such as transport, creep behavior, and fracture
may undergo profound changes as a consequence.

Classical �or continuum� thermodynamic considerations
omit the complexity that is inherent at length scales of the
order of a crystalline lattice parameter. For free surfaces of
crystals, which are generally described by two geometrical
variables that specify the inclination of the surface with re-
spect to the crystal, such complexity arises from relaxation
of atomic positions in the surface region. For grain bound-
aries, three additional parameters are required to specify the
misorientation between the abutting crystals. Explicit calcu-
lations of GB structure based on atomic potentials or ap-
proximations to electron density functions provide methods
for direct, often accurate, calculations of structures and ex-
cess energies, and detect short-wavelength interfacial phe-
nomena. However—for behavior over a range of tempera-
ture, stress, chemical potentials, misorientations, and
inclinations in a variety of stable crystal phases—such cal-
culations are not feasible. Classical thermodynamics pro-
vides methods for generic stability predictions based on em-
pirical properties. Atomistic structural and energetic
calculations �which are thermodynamic minimizations in the
static case� can provide information that supplements empiri-
cal data and affirm or refine continuum models.

In this paper, we extend classical interfacial thermody-
namics to a simplified model of grain boundaries in fixed
stoichiometric systems. The diffuse interface model is pa-
rametrized with a single misorientation variable �such as a
tilt or a twist about a common crystallographic axis� and is
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isotropic with respect to GB inclination. Departure from per-
fect crystallinity in the vicinity of a boundary is described by
a spatially varying parameter that serves to characterize the
“disorder” associated with a given GB structure. A resulting
geometric construction predicts transitions between com-
plexions with different disorder for a fixed misorientation
and the complexion coexistence temperatures. This construc-
tion permits categorical predictions of GB transitions from
qualitative aspects of empirical properties.

II. BACKGROUND

Faceting �i.e., deroughening� and premelting are examples
of complexion transitions that have been observed and
treated theoretically for free surfaces of pure and multicom-
ponent systems.3 Such transitions have also been proposed
for grain boundaries.4–6 Corroborative evidence exists but, as
direct observations for GBs are much more troublesome than
for free surfaces, it is often based on abrupt changes in ma-
terial properties that derive from GB structure or composi-
tion.

Free-surface composition transitions are also known: for
an alloy with a fixed amount of each component, the alloy’s
container �which may be vapor� provides an interface where
stable composition gradients develop. Such transitions are
treated in Cahn’s critical point wetting theory �CPWT�2 for
two-component liquids, which employs a compositionally
diffuse interface approximation and a molar free energy of
mixing, �F�X ,T�, that gives a phase diagram with a misci-
bility gap.7 For purposes of discussion, suppose the phase
diagram has phase � that is rich in component A �small X�
and phase � rich in B �large X� that has the lower surface
energy with the container, �c�. For compositions within the
miscibility gap, CPWT predicts a wetting transition tempera-
ture, Twet, above which � is a perfect wetting phase that
separates the � phase and the container �i.e., �c�+�����c��.
For the A-rich single-phase ��� region, a subset of composi-
tions and temperatures, X�T�, exists along which two free-
surface complexions, �R and �P, can coexist: �R has large B
adsorption, �B

rich and wide characteristic interfacial thickness
Lthick; �P has smaller values of �B

poor and Lthin. The curve X�T�
specifies locations of a first-order complexion transition be-
tween �P and �R characterized by ��B and �L. X�T� inter-
sects the two-phase region at �X� ,Twet�. In the single-phase
region between X�T� and the miscibility gap, interface com-
plexions are those �R that reflect the bulk-phase wetting
behavior.2 Such transitions have been directly observed in
organic and metallic liquid systems.8,9

The complexion transition at X�T� is an example where a
microstructural property characteristic �e.g., absorbed layer
thickness� can be superimposed onto a bulk equilibrium
phase diagram. Such diagrams could be constructed when-
ever a microstructural defect produces local variations from
equilibrium bulk compositions, structures, or other proper-
ties. Each defect �e.g., interface� feature will have character-
istic quantities, such as a width and composition, that have
equilibrium values and these could be included on a micro-

structure phase diagram. These microstructural aspects do
not produce additional degrees of freedom that would
modify the rules governing the topology of bulk phase dia-
grams. However, conditions for changes in macroscopic
physical or mechanical properties that depend on microstruc-
tural features can be inferred �e.g., GB diffusivities or migra-
tion rates�.

Interfacial melting is another complexion transition. Free-
surface melting has been observed to initiate at temperatures
TSM below the bulk melting point, TM, in various
materials.10–12 For crystals, TSM can depend on interface in-
clination n̂.13,14 At TSM �T�TM, the stable surface configu-
ration for a particular orientation may be a surficial film with
finite equilibrium thickness, w�T�. The surficial film has a
different structure than the equilibrium crystal phase; the
structure is usually less ordered and less dense.11,15,16 For
metallic systems, as T→TM, w diverges as w�w0 ln��TM
−TSM� / �TM −T�� and the surficial film’s structure approaches
that of the liquid.11,17–19 In addition, well below the onset of
premelting, a roughening transition usually initiates for fac-
eted or vicinal surfaces.3,15 Finally, bulk melting usually
starts from 2D defects like a free surface or GB.

Although grain boundary melting might also be expected,
evidence is scant and contradictory. Observations from de-
rivative macroscopic properties �e.g., boundary dihedral
angles, GB diffusion, slidings, or migration� allude to some
type of GB transitions that occur well below TM even in
nominally pure metals20–23—however, these could often be
plausibly attributed to other causes, including kinetic transi-
tions such as breakaway from solute clouds.24,25 Direct TEM
imaging of boundaries in aluminum specimens indicates
preferential melting, but only above 0.999TM,26 and, simi-
larly, that high-angle bismuth GBs are wet by the Bi liquid at
TM.27 Nonetheless, whether, to what extent, and in what sys-
tems GB melting actually can be observed is an open ques-
tion.

These questions are addressed, but not well resolved, by
numerical simulations using interatomic potentials. A lattice
gas model for a tilt GB �Refs. 6 and 28� exhibits an onset of
GB disorder at T�0.5TM, which increases towards a liquid-
like state as T→TM, and the disordered region thickens as
w0 ln�TM / �TM −T��. A number of molecular dynamics �MD�
simulations using empirical potentials have also found that
various high-angle GBs tend to increase continuously in dis-
order with rising temperature,29–32 though some others report
that GBs do retain significant crystallinity at temperatures
close to TM.33,34 These simulations suggest that GB melting
is continuous. Other simulations indicate that a first-order
transition occurs rather than continuous disordering35 and
give wide boundaries well below TM.36 Such inconsistencies
might originate from numerical artifacts, failure to ascertain
the thermodynamic melting point due to finite simulation
size, superheating, use of different boundary conditions, dif-
ferences in atomic potentials used, and difficulties in achiev-
ing the lowest energy equilibrium structures.34,37–39 Further-
more, a standard measure or algorithm for departure from
crystallinity has not been elucidated. Nonetheless, some MD
or Monte Carlo �MC� simulations detect multiple structures
that are demonstrably metastable.40–44 Additional indications
for a GB structural transition are associated with discontinui-
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ties in activation energies for GB diffusion or migration.45–47

In this paper, a diffuse interface model—based on the
polycrystalline phase-field model from Kobayashi, Warren,
and Carter �KWC�1,48,49—is used to develop a thermody-
namic construction to predict GB premelting, often associ-
ated with distinct order-disorder transitions. The thermody-
namic construction extends previous work of Lobkovsky and
Warren that established, and numerically demonstrated, pre-
melting near TM.50 Our construction becomes identical to
CPWT �Ref. 2� if GB disorder is replaced with surface ad-
sorption. Several predictions emerge herein. Boundaries tend
to disorder when a disordered phase �liquid or amorphous�
has a molar free energy, Fdis, that is not too much greater
than that for the stable crystal Fxtal—as would pertain at
temperatures and pressures near a coexistence line, or when a
highly ordered GB has a large energy, �GB, related to a large
dependence on misorientation �GB��	�. This paper verifies
and quantifies a heuristic argument that such transitions
could occur if �GB��	��2�sl+w�F �at large �	� where w is
an equilibrium width for the disordered region and �sl is the
superficial energy density of the liquid- �or amorphous-�
crystalline interface. Furthermore, stable boundaries may
have intermediate structures between fully disordered struc-
tures and perfectly crystalline structures. A set of general GB
phase diagrams is also derived.

Finally, the construction developed herein pertains to ma-
terial systems with fixed stoichiometry everywhere. As more
degrees of freedom appear, interface complexion transitions
will become more intricate and conditions for their appear-
ance less exceptional. For metals, and especially ceramics,
empirical evidence for GB transitions is more abundant, di-
rect, and compelling for systems wherein GBs can adjust
both their structure and composition.51–58 Generalizations
and extensions to the present theory, to be published in a
sequel, are consistent with such observations.

III. THEORY

In the KWC model, the free energy of a two-dimensional
polycrystalline structure is a functional of two field variables,
which are the local crystallinity field 
�x�� and orientation
field 	�x��. The orientation field, 	, is a local coarse-grained
measure of the “most likely” crystallographic orientation
with respect to a fixed axis. �92� The crystallinity 
 is a
coarse-grained scaled measure of structural disorder. A pos-
sible coarse-grained scheme is discussed in the Appendix.
The values 
=1 and 0 are usually defined as denoting crys-
talline and liquid states, respectively. A GB in the KWC
model is a place where local crystallinity takes values be-
tween 0 and 1 and the local orientation exhibits a change
from one value to another. Although fine structure character-
istics of grain boundaries are eliminated by the coarse-
graining procedure, features such as GB thickness and aver-
age crystallinity are retained and allow predictions of
macroscopic trends.

As derived for the KWC model, the free energy functional
that, at equilibrium, obtains a minimum with respect to 	�x�
and 
�x� is1,49

F�
,	;T� = �
Vsys

��f�
,T� +
�2

2
��
�2 + sg�
�	�		
dV

= A�
Lsys

��f�
�x�,T� +
�2

2
�d


dx

2

+ sg�
�x��

��d	

dx
�
dx �1�

where the second integral in Eq. �1� is the one-dimensional
model to be employed herein. All fields are uniform in the
GB plane, which is taken to be normal to the x coordinate. In
the following, A is set to be unit area.

The integrand that defines F�
 ,	 ;T� is a low-order ap-
proximation to the inhomogeneous free energy density, i.e.,
the integrand includes the values of 
 and 	 and their spatial
derivatives; the temperature T is assumed to be uniform. The
differing gradient forms, 	�		 and ��
�2��
 ·�
, follow
from KWC and are discussed briefly below as well.

The homogeneous free energy per unit volume, f�
 ;T�, is
the free energy density of a uniform material with disorder
characterized by 
 at temperature T. Then, �f is defined here
as f�
 ;T�− f�
=1;T�, i.e., the reference state is a single
crystal �with uniform 
=1 and 	=const�. Thus, Eq. �1� is an
excess quantity describing all the interface contributions. Be-
cause F must be rotation invariant, �f must be independent
of 	: �f =�f�
 ,T�. To model boundary disordering transi-
tions, �f�
 ,T� is assigned the form of a triple well with
equal minima at 
= ±1 and is symmetric about another
minima at 
=0. �n.b. The negative 
 are introduced as sug-
gested in the Appendix, but positive values of 
 are mean-
ingful in this model.� At T�TM, f�
=1�− f�
=0���fdevit

�0—the free energy density change upon devitrification is
negative. We assume that point defects in the proximity of an
interface obtain equilibrium concentration profiles, and these
equilibrium fields are implicity included in �f . By extending
�f to be a function of defect and solute concentrations, the
effects of their spatial variation on the stability of GB struc-
tures would be an extension of the current model framework.
Similar extensions that include stresses are possible. It is
assumed in this paper that kinetic mechanisms allow atomic
transport between the bulk and the interfaces. Therefore, in-
terfacial stress reduces to interfacial tension. Constraints on
such transport or upon the number of surface sites would
require extension of this model to cases where interfacial
stresses are included.

� and s, the remaining parameters in Eq. �1�, scale the
gradient penalty contributions relative to the homogeneous
free energy for the disorder and orientation gradient penal-
ties, respectively. The prefactor function, g�
�, designates
the effect of disorder on reducing the orientation gradient
penalty: there should be no orientation gradient penalty at
complete disorder and it must only increase to a maximum at

=1. A quadratic form g�
�=
2 has been used for phase-
field simulations,1,49,50,59 but this will be generalized below.

To model a bicrystal with a planar lying GB normal to the
x axis, the boundary conditions


�x = ± 
� = 1, 	�x = − 
� = 	−, 	�x = 
� = 	+ �2�

are used. Assuming symmetry about the GB and that 
 at-
tains its only minimum at the boundary core, only the posi-
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tive axis is necessary and boundary conditions Eq. �2� be-
come


�x = 0� = 
GB, 
�x = 
� = 1, 	�x = 0� = 	+ −
�	

2
,

	�x = 
� = 	+, �3�

where �	�	+−	− and �	�0 is assumed with no loss of
generality.

Equilibrium is obtained when F�
 ,	 ;T� in Eq. �1� is
minimized with respect to the functions 
 and 	 subject to
Eq. �3�. Because of the g�
�	d	 /dx	 term, plus the assump-
tions that g�
� is monotonically increasing and that 
�0�
=
GB

eq is the only minimum, the equilibrium 	 field localizes
all of its change at the minimum of 
,1,60 giving

	eq�x� = �
	−, − 
 � x � 0,

	+ −
�	

2
, x = 0,

	+, 0 � x � 
 .
� �4�

The GB is isotropic as sg�
� in Eq. �1� is independent of the
boundary inclination, �: tan���= ��
 /�x� / ��
 /�y� and of the
particular crystallographic orientation of either grain �	− and
	+�.

Combining Eqs. �4� and �1� with the relation d	eq /dx
=�	��x� �i.e., �h�x���x−x��dx=h�x��� produces a functional
in 
�x�,

F = s�	g�
GB� + 2�
0


 ��f�
� +
�2

2
�d


dx

2
dx , �5�

which remains to be minimized with respect to 
�x� and the
unknown 
GB. The first term in Eq. �5�, s�	g�
GB�, derives
from the boundary condition and favors the smallest possible

GB value �i.e., 
GB=0, a disordered GB�. The integral in Eq.
�5� favors a homogeneous crystal �i.e., 
�x�=1�. The equi-
librium GB crystallinity, 
GB

eq , results from the competition
between these two terms.

The energy functional, Eq. �5�, is exactly the same as that
used in CPWT,2

F = ��cs� + �
0


 ��f�c� + ��dc

dx

2
dx , �6�

if the concentration in a two-component fluid, c, is ex-
changed for crystallinity 
. In CPWT, the short-range sur-
face interaction ��cs� term favors a composition profile with
the surface adsorption, cs, at the minimum of �. The integral
in CPWT similarly favors a uniform bulk. This analogy sug-
gests, under some conditions, that first-order GB structural
transitions may exist at temperatures below that where the
boundary is completely wet by the crystal’s equilibrium melt
as a parallel to the first-order adsorption transitions in
CPWT.

The following graphical construction, similar to Cahn’s
analysis for CPWT, determines the conditions for this tran-
sition. The 
�x� that minimizes Eq. �5� has a vanishing varia-
tional derivative �c.f. Ref. 61�, which requires

�2d2


dx2 =
��f

�

for x � 0, �7�

and its variable boundary condition is subject to

�d


dx
�

x=0+
=

s�	

2�2 � dg

d

�


=
GB

. �8�

Multiplying Eq. �7� by d
 /dx and integrating once yields

�2

2
�d


dx

2

= �f�
� for x � 0, �9�

where the integration constant is determined to be zero be-
cause 
�x=
�=1, and �f�
=1�=0. As d
 /dx�0 for all x
�0, Eq. �9� is equivalent to

d


dx
=�2�f�
�

�2 for x � 0, �10�

and its integral gives an implicit solution for the equilibrium
profile:

x�
� = �

GB


 � �2

2�f�
��
d
�. �11�

By inserting the following identity,

g�
� = �
0


 dg

d
�
d
�, �12�

and Eq. �9� into Eq. �5� and changing the integration variable
from x to 
,

F

2
= �

0


GB s�	

2

dg

d

�
�d
 + �


GB

1
�2�2�f�
�d
 , �13�

F becomes the sum of two integrals. The only unknown
quantity in Eq. �13�, 
GB, is determined by inserting Eq. �10�
into Eq. �8�,

�2�2�f�
GB� =
s�	

2
� dg

d

�


=
GB

. �14�

The 
GB that satisfy Eq. �14� are 
GB
eq .

An example of 
�x� and 	�x� solutions appears in Fig. 1.
Because 
GB=0 bounds the range of possible values of


GB
eq , it may itself be an equilibrium value if the extremal

values of F �i.e., extremal with respect to variation of 
�x��
comprise an increasing function of 
GB

eq near 
GB
eq =0. For

such “boundary extrema,” the condition Eq. �14� will be re-
placed by an inequality. To find this inequality, consider two
extremal solutions to Eq. �5�, 
0�x� and 
+�x�, with fixed
boundary conditions at x=0: 
0�x=0�=0 and 
+�x=0�
=�
GB, where �
GB is a positive infinitesimal quantity. Be-
cause the variational extremum still holds, Eqs. �7� and �13�
hold for 
GB=
0 and 
+. The corresponding values of F are
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F0 = 2�
0

1
�2�2�f�
�d


F+ = 2��
0

�
GB s�	

2

dg

d

d
 + �

�
GB

1
�2�2�f�
�d



= 2�� s�	

2
� dg

d

�


=0
− �2�2�f�0�
�
GB

+ �
0

1
�2�2�f�
�d

 . �15�

F+−F0 is the minimum increase of excess energy for a small
positive departure �
GB away from 
GB=0. Therefore, the
condition that 
GB=0 is a boundary minimum is

s�	

2
� dg

d

�


=0
− �2�2�f�0� � 0. �16�

As g�
� is a monotonically increasing function, its leading
order behavior at 
=0 is g�
�=
p with p�0. The boundary-
minimum condition, Eq. �16�, is never satisfied for any p
�1 below TM. For p=1, the inequality is met within a range
of temperatures below TM where �f�0� is small enough. For
0� p�1, the inequality is met for all T�TM. On the
grounds that completely disordered boundaries are minimiz-
ers for large undercoolings if p�1, this range can be elimi-
nated because it produces unphysical results. Therefore, in
the remainder of this paper, the following power law behav-
ior for g�
� at 
=0 is used

g�
� = 
p, p � 1. �17�

An inequality opposite to that in Eq. �16� applies at 
=1, but
has no consequence in this model.

A graphical construction, to permit assessment of solu-
tions, is obtained from Eqs. �13� and �14�. The equilibrium
value of crystallinity at the GB core, 
GB

eq , and the value of
the GB energy can be represented by plotting the two inte-
grands in Eq. �13� against the integration variable 
 �see Fig.
2�. According to Eq. �14�, 
GB

eq is determined by the intersec-
tion of the curves for �s�	 /2�dg /d
 and �2�2�f . According
to Eq. �13�, one-half the GB energy, F /2, is the area under

the first curve between 0 to 
GB
eq plus the area under the

second curve from 
GB
eq to 1. This representation demon-

strates the competition between the boundary condition and
the bulk integral terms in Eq. �5�: The boundary condition
term, arising from the region 0�
�
GB

eq , and the bulk term,
from 
GB

eq �
�1, are directly coupled through 
GB
eq .

The graphical construction permits prediction of trends in
the temperature dependence of GB complexions based on
qualitative aspects of the assumed double-well form of �f�
�
and of the monotonic, temperature-insensitive, behavior of
�s�	 /2�dg /d
. The later follows from Eq. �17�, or modified
versions used elsewhere.1 The values of the metastable mini-
mum of �f�
� at 
=0 increase with the magnitude of under-
cooling, �T�TM −T, below the melting temperature TM, and
therefore the intercepts of �2�2�f also increase with �T, as
shown in Fig. 3. This figure depicts several situations that
differ depending on the relative curvatures of the two inte-
grands. At large undercoolings, �Tlarge, in the situation in
Fig. 3�a�, a single intersection exists at an 
GB

eq close to
1—predicting a relatively ordered GB. As supercooling de-
creases �increasing T�, this intersection moves continuously
towards a more disordered 
GB

eq . At the same time, with the y
intercept of �2�2�f�
� decreasing, the two curves come
close to each other at low 
GB values. At decreased under-
cooling, �Tmed, Fig. 3�a� illustrates the appearance of two
additional equilibrium solutions characterized by smaller
�i.e., more disordered� values of 
GB

eq .
When two additional intersections appear in Fig. 3�a�, the

middle intersection �i.e., the solution with a value between
those of the relatively more ordered 
GB

eq-ord and more disor-
dered 
GB

eq-dis� is an unstable solution of 
GB
eq —it maximizes

the area below the two curves. The remaining solutions,

GB

eq-ord and 
GB
eq-dis, are �meta�stable with stability rankings

that depend on the hatched areas in Fig. 3�a� as discussed
below. “Ordered” and “disordered” have relative meanings,
since neither GB structure is purely crystalline nor liquid-
like. Consideration of Eq. �11� shows that the disordered GB
has a larger thickness because of its smaller lower integration
limit.

When three intersections exist as in Fig. 3�a�, their rela-
tive stability is graphically determined by considering their
areas. For the leftmost �
GB

eq-dis� and rightmost �
GB
eq-ord� inter-

FIG. 1. Equilibrium profiles for 
�x� and 	�x� for a one-
dimensional symmetrical GB. The discontinuity in first derivatives
of 
, which is collocated with the discontinuity of 	 at the boundary
core, x=0, is a consequence of Eq. �8�.

FIG. 2. Graphical construction for GB complexions �see Eqs.
�13� and �14��. The equilibrium GB crystallinity, 
GB

eq , is the inter-
section of the curves represented by the integrands in Eq. �13� and
the sum of the two shaded areas is half of the free energy of an
equilibrium GB.

DIFFUSE INTERFACE MODEL FOR STRUCTURAL… PHYSICAL REVIEW B 73, 024102 �2006�

024102-5



sections, the total area is equal to that below all segments of
the two curves, plus the one hatched area that is opposite
each specific intersection �i.e., plus area B in Fig. 3�a� for the

GB

eq-dis intersection and plus the area A for 
GB
eq-ord�. Thus, the

intersection adjacent to the larger hatched area—area A in
Fig. 3�a�—is the globally stable solution. The area associated
with the middle intersection’s solution is that under both
curves plus both enclosed areas A and B; therefore it is
greater than 
GB

eq-ord or 
GB
eq-dis. As multiple intersections begin

to develop, the area adjacent to the extant solution is initially
the largest and subsequently decreases as the area associated
with the metastable solution increases. Therefore, with de-
creased undercooling, the relative stability of the 
GB

eq-ord and
the 
GB

eq-dis solutions may switch, with 
GB
eq-dis becoming glo-

bally stable at the transition temperature for a given bound-
ary. If the system parameters support such a switch, this tem-
perature will characterize a first-order GB order-disorder
structural transition. As undercooling is reduced further,

GB

eq-dis approaches zero, and the GB structure becomes liquid-
like as the system approaches TM. An additional aspect is
that the solid-liquid energy barrier �in �f� may become low
enough so that the middle and right intersections will merge
and disappear, as shown in Fig. 3�a�, resulting in a loss of the

GB

eq-ord solution, and the only stable complexion just below
TM would be 
GB

eq-dis.
However, this sequence and the behavior with undercool-

ing depend on the shapes of the two curves in Fig. 3. Two
other modalities of GB behavior near TM can be distin-
guished by increasing the curvature of �s�	 /2��dg /d
� rela-
tive to that of �2�2�f or by varying the misorientation �	. In
Fig. 3�b�, only one intersection, 
GB

eq , is generated, and it
evolves continuously from 
GB

eq �1 to 
GB
eq �0 as �T→0. In

this case, there is no first-order GB transition below TM, but
the very small �T behavior is the same as for smaller �more
negative� curvatures just described �viz. Fig. 3�a��. This is
the case of continuous GB disorder leading continuously to
preferential melting. Figure 3�c� illustrates the third small �T
modality. Again, a single intersection, 
GB

eq , is generated that
decreases with decreasing �T, but its value remains finite as
T→TM. In such systems, GBs are stable against complete,
continuous preferential melting upon approach to TM from

below; moreover, they will not be perfectly wet by the liquid
at equilibrium at TM. �That 
GB

eq →0 corresponds to perfect
wetting at TM �i.e., 2�sol-liq=�GB� will be justified below.�

Thus the three transition modalities have differing impli-
cations for macroscopic system behavior. The modalities can
be cataloged based on two distinguishing phenomena:
whether a first-order transition exists below TM, and whether
the GB is perfectly wet �i.e., 
GB

eq →0� at T=TM. The particu-
lar behavior depends on the modeled system through the
forms of �f�
 ;T� and g�
� plus the values of gradient coef-
ficients s and �, and on the misorientation �	. How �	 af-
fects GB behaviors is of particular interest because it will
vary from boundary to boundary in a polycrystal while the
others are “system parameters” fixed by the material. An
extended graphical analysis of misorientation effects and
also of these system parameters follows.

By inserting the leading behavior for g�
� from Eq. �17�,
Eq. �14� becomes

��f�
GB
eq ��� = �
GB

eq , �18�

where

� =
1

2�p − 1�
, � = � sp

2�2�
�	
2�

, p � 1. �19�

Equations �17� and �18� permit a general graphical construc-
tion for 
GB

eq by plotting the two sides of Eq. �18� against 
.
In Eq. �18�, the g-dependent curve is a straight line that

passes through the origin with a slope � proportional to
��	�2�, and the homogeneous free-energy curve is a double-
well function raised to a power �.

For a given system, the range of GB misorientations is
represented by a fan of lines emanating from the origin. For
the case illustrated in Fig. 4�a�, when there is at least one
boundary misorientation that produces three intersections
with ��f�
��� below TM, two bounding tangent lines, asso-
ciated with an upper �	U and a lower �	L misorientation,
are produced by the fan. �It is assumed for this demonstration
that both �	U and �	L lie within the range of allowable
misorientations which would be 0��	�2� with low-
symmetry crystals and reduced by additional crystal symme-

FIG. 3. Constructions depict differing GB transition behaviors for a range of undercoolings. The first frame, �a�, illustrates the possibility
of a first-order GB disorder transition below TM. Frames �b� and �c� illustrate other types of GB behavior arising from changing curvature
for the orientation gradient energy prefactor g�
�. In �b� only one solution exists that decreases continuously to 
GB

eq =0 as T→TM. In �c� only
one solution exists, but has a limiting finite value, 
GB

eq �0, at T=TM.
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try.� Any misorientation �	L��	��	U will have two
�meta�stable GB structures at the given �T. A particular
�	FO�T� that has the equilibrium first-order transition at the
temperature for which the plot is obtained separates the fan
into an upper region, wherein 
GB

eq-dis is globally stable, and a
lower region, where 
GB

eq-ord is globally stable.
However, the two tangent lines of ��f�� that define �	U

and �	L may not exist at all temperatures. To establish a
criterion for their existence, consider the first inflection point
of ��f�� �i.e., the inflection with the smallest 
 value�. Of all
the tangent lines from ��f��, the one at this point yields the
smallest y-intercept value Ymin �as drawn in Fig. 4�b��. �The

=0 intercept is Y�
�= ��f�
���−
��f� /�
 for a line tan-
gent to �f� at 
. Extreme values of Y�
� determined by
Y�=0 occur at any inflection point of ��f�� where 
�0.� No
tangent lines can pass through the origin if Ymin�0. How-
ever, two such lines ��	U and �	L� do exist if Ymin�0,
which is a necessary condition for a first-order GB order-
disorder transition to occur.

In some systems, a critical temperature can be defined for
an undercooling �Tcrit where Ymin=0, as illustrated in Fig.
4�b�. Then, for T�TM −�Tcrit, Ymin will be positive and no
first-order transition will appear for any misorientation angle.
At T=TM −�Tcrit, only that tangent line for the first inflection
crosses the origin. The slope of that tangent line defines a
critical misorientation, �	crit. Misorientations of �	��	crit
will always have greater values than �	U�T� at temperatures
T�TM −�Tcrit. Therefore, the dashed lines in Fig. 4 for �	
��	crit have only one intersection with �f� which ap-
proaches the origin as �T→0 �i.e., 
GB

eq →0�. Their associ-
ated complexions thus will exhibit continuous melting and
have perfect wetting behavior �as elaborated below�. For mi-
sorientations just less than �	crit, three intersections will ap-
pear above T−�Tcrit, and a first-order GB transition is pos-
sible when �	��	FO�T�. Finally, when �	 is less than
�	FO�T� below TM, there is only one intersection and it re-
mains at a finite 
GB

eq value as T→TM. Such GBs will not be
fully disordered nor wet by liquid at TM.

Plotting the three characteristic misorientation angles,
�	FO, �	L, and �	U, against temperature yields three curves
on the T-�	 plane forming an interfacial complexion dia-
gram. These lines represent the first-order GB order-disorder
transition line and the two metastable existence limits. The
three lines terminate at the critical point �Tcrit ,�	crit�, as
shown in Fig. 5. The critical conditions, �Tcrit ,�	crit�, are
determined from the construction by

0 = ��f�
crit;Tcrit��� − 
crit� ��f�

�

�


crit,Tcrit

,

0 = � �2�f�

�
2 �

crit,Tcrit

,

�	crit =
2�2�

sp �� ��f�

�

�


crit,Tcrit


1/2�

. �20�

Within the limits of the metastable existence curves in Fig. 5,
both the ordered and disordered configurations can exist in
�meta�stable equilibrium, whereas outside these limits only
one complexion exists. The complexions may coexist stably
only at temperatures and misorientations indicated by the
first-order transition curve.

FIG. 4. Extended construction
to reveal behavior as a function of
GB misorientation. �a� The �	U

and �	L define upper and lower
bounds to a fan of lines for those
�	 having three intersections.
Frame �b� illustrates how the sign
of the y-axis intercept, Ymin, of the
tangent line of the nearest inflec-
tion point of ��f�
��� evolves
with temperature. No first-order
transition at any GB is possible
when Ymin is positive.

FIG. 5. An example of a GB-complexion diagram �the interface
equivalent of a phase diagram� for a system that admits a first-order
interfacial transition. The solid curve delineates first-order grain
boundary transitions—on the low T and �	 side, the more ordered
complexion �
GB

eq-ord� is more stable, while the more disordered com-
plexion �
GB

eq-dis� is more stable on the other side. The first-order
curve terminates at a critical point �Tcrit ,�	crit� at which the transi-
tion is higher order. The dashed curves indicate existence limits
�spinodes� for the metastable extensions of the 
GB

eq-ord solution �up-
per, dash-dotted curve� and 
GB

eq-dis solution �lower, dashed curve�.
The extension of the 
GB

eq-ord spinode to T�TM indicates whether an
ordered GB could metastably superheat.
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Finally, if Ymin�0 for all T�TM, multiple intersections
will not be generated, and the three lines will not appear as in
Fig. 5. In this case, GBs will have continuously increasing
disorder up to T=TM.

As T→TM, the asymptotic behavior of GBs can be ana-
lyzed by expanding �f�
 ;T� about 
=0 and T=TM:

�f�
� �
�hM

TM
�T + A
q, �21�

where �T=TM −T is the small undercooling, �hM is the
melting enthalpy per volume, A is a positive constant, and q
is greater than 1. Using Eq. �17� for g�
�, Eqs. �14� and �21�
give

�hM

TM
�T + A
q � � sp

2�2�
�	
2


2�p−1�. �22�

Equation �22� implies that, for both stable and metastable
disordered GBs, 
GB

eq goes continuously to zero as �T1/�2p−2�

when 1�q / �2p−2�. When 1=q / �2p−2�, complete melting
also occurs, but only for GBs with �	��	wet=2��2A /sp.
When q / �2p−2��1, there is no solution to Eq. �22� at 

�0 because the left-hand side always exceeds the right when

 is sufficiently small. For this case, 
GB

eq remains finite at
TM, which infers unconditionally that complete GB premelt-
ing at TM does not occur for any �	, nor does perfect liquid
wetting.

The asymptotic behavior of the GB thickness can be ob-
tained from Eq. �11� by assuming a fixed 
 value �near 1�
specifies the edge of the GB core. The thicknesses of disor-
dered GBs always diverge as T→TM. However, the diver-
gence rate is either logarithmic for q=2 or obeys a power
law relationship for q�2,

WGB � �ln�TM/�TM − T�� , q = 2,

��TM − T�/TM�1/q−1/2, q � 2.
� �23�

The logarithmic divergence of film thickness for q=2 is a
typical result of mean field theories, and it agrees with the
results of other modeling methods.6,28,62 The logarithmic di-
vergence results from a �f that is quadratic near 
=0. How-
ever, in one MD study it was noted that the widths could fit
��T�−1/4,62 which would agree with the above relation for q
=4.

The above analysis establishes that, as T→TM, a disor-
dered GB with vanishing 
GB

eq widens due to the gradient
penalties. The misorientation penalty disappears as the
boundary thickness increases. In this limit, Eqs. �5� and �13�
become

�GB

2
= �sl = �

0

1
�2�2�f�
,TM�d
 , �24�

which is the solid/liquid interfacial energy at TM.
Thus, any disordered GB that premelts upon approach to

TM is also perfectly wet by the equilibrium liquid at TM. On
the other hand, ordered GBs have a finite 
GB

eq at TM and are
not perfectly wetted. For this reason, �	L�TM� corresponds to
�	wet, the wetting transition misorientation, as in Fig. 5.

A perfect solid can be superheated in the absence of liquid
nucleation. The free surface provides barrierless nucleation if
the liquid perfectly wets the solid surface. Not all crystal
surfaces are perfectly wet by their equilibrium melt at T
=TM; pure Pb is an example.13 Grain boundaries will also
provide nucleation sites, and their wetting behavior will de-
termine whether a solid can be superheated in the absence of
free surface nucleation, or suppress superheating and pro-
mote melting, especially for confined solids with no free sur-
faces. To analyze superheated GBs, the complexion diagram
can be extended to temperatures above TM using the graphi-
cal analysis. Figure 5 shows that, of the three characteristic
lines, only the 
GB

eq-ord curve extends above TM. The 
GB
eq-dis

complexion �liquid in this case� is more stable than the

GB

eq-ord complexion for all T�TM, but the ordered GB is
metastable for �	��	U and will melt given a nucleation
event. The 
GB

eq-ord complexion is unstable for �	��	U
above TM.

IV. NUMERICAL EXAMPLES

Our first numerical example uses the following model,

�f�
� =
�hM

TM
�TM − T��1 − 
�3�1 + 3
 + 6
2� +

a2

2

2�1 − 
�2

+
b2

2

4�1 − 
�4,

sg�
� = s
2. �25�

The first term of �f approximates a step function that de-
creases from ��hM /TM��T−TM� to 0 at 
= 1

2 ; the second and
third terms simulate an energy barrier between liquid and
crystalline states.

The calculation of 
GB
eq , the GB energy, and thickness fol-

lows Eqs. �11�, �13�, and �14�. The GB thickness is calcu-
lated by setting the edge of GB core at 
=0.9. The model
can be scaled and the only significant parameter is the b /a
ratio. Figure 5 is the calculated GB phase diagram for this
model when b /a=10 �in Fig. 5 the coordinate labels are
omitted but they are (�hM�T / �a2TM� ,s�	 / �a��)�. The first-
order GB transition line and the two metastable GB-phase
existence limits in Fig. 5 terminate at a critical point
(�hM�Tcrit / �a2TM� ,s�	crit / �a��)= �0.0148,1.722�. The GB
energy and thickness are plotted in Figs. 6�a� and 6�b� for
several misorientations as functions of temperature. First-
order and continuous GB transitions are exhibited for two of
the larger misorientations. Their thicknesses diverge as
log�TM / �TM −T��, consistent with Eq. �23�, and their energies
are twice the liquid/solid interface energy at TM. The GB
with a smaller misorientation has finite thickness at TM and
its energy is less than 2�sl.

In previous simulations of KWC, the 
4�1−
�4 term in
�f was absent from Eq. �25� �b=0�. Its absence gives a
liquid/solid energy barrier that is less steep than the present
model and produces the result that the three characteristic
lines in Fig. 5 shrink to a single critical point at �TM ,�	crit

=a� /s�. In this case, a GB either has no transition below TM

TANG, CARTER, AND CANNON PHYSICAL REVIEW B 73, 024102 �2006�

024102-8



when �	��	crit, or undergoes a continuous melting for
�	��	crit. The first-order GB transitions were not observed
in simulations for b=0.49,50 The GB energies and thicknesses
for the b=0 model are plotted in Fig. 6 for comparison.

The �f and g�
� can be generalized to

�f�
� =
�hM

TM
�TM − T��1 − 
�3�1 + 3
 + 6
2�

+
a2

32
�4
�1 − 
��q, q � 2.

sg�
� = s
p, p � 1, �26�

which produces a model that depends on the choice of p and
q. It becomes the previous model with b=0 when p=q=2. At
the melting point, Eq. �18�, which determines equilibrium
GB states, becomes

�4
GB�1 − 
GB��q/�2p−2� = �4ps�	

�a

1/�p−1�


GB. �27�

Figure 7 shows how Eq. �27� depends on the value of
q / �2p−2�.

For q / �2p−2��1, the slope of the left-hand side of Eq.
�27� is 0 at 
GB=0. 
GB=0 is always a �meta�stable solution
of Eq. �27� as judged by either Eq. �16� or from graphical
analysis. Therefore, all GBs are wetted by liquid at the melt-
ing point in this case and �	wet→0 in Fig. 5. However, some
misorientations may produce three intersections �e.g., �	1 in
Fig. 7� while others produce only one �e.g., �	2�. Therefore,
complete GB wetting can be produced continuously or by a
first-order transition.

For q / �2p−2��1, the slope of the left-hand side of Eq.
�27� is 
 at 
GB=0, and 
GB=0 is an unstable solution for all

FIG. 6. Normalized grain boundary thicknesses and energies as functions of reduced temperature and misorientation for two models of
�f . The GB thicknesses are normalized with � /a, and GB energies normalized with 2�sl �i.e., twice the solid/liquid interface free energy at
TM�. �sl is calculated as �0

1�2�2�f�
 ,TM�d
. In �a� and �b�, small �	 shows limited disorder up to TM, intermediate �	 exhibits a first-order
transition, and large �	 continuously premelts. The �c� and �d� frames illustrate how reduced barrier steepness �the b=0 case in Eq. �25��
moves the critical point to TM and thereby eliminates the first-order transition from the complexion diagram. The dashed lines represent
metastable extensions of ordered and disordered GBs. The dotted lines represent the unstable solution.

DIFFUSE INTERFACE MODEL FOR STRUCTURAL… PHYSICAL REVIEW B 73, 024102 �2006�

024102-9



�	. Therefore, no GB is wetted by a liquid at TM and there is
no GB transition at any �	 below TM.

The intermediate case, q / �2p−2�=1, has a finite slope in
Fig. 7. The 
GB=0 is a stable solution for �	��a /s �e.g.,
�	2� but not stable at smaller misorientations �e.g., �	1�.
Complete wetting only occurs at GBs with misorientations
larger than �a /s.

Therefore, the phenomenon of complete GB wetting at TM
and GB transitions below TM can be predicted from the ratio
of q / �2p−2�. This is in agreement with the GB asymptotic
behavior analysis in the previous section.

V. DISCUSSION

Our results predict that grain boundaries will have an
equilibrium complexion selected from a spectrum of disor-
dered structures. The tendency to disorder increases with
misorientation and with temperature up to the melting point
where the crystal stably coexists with a completely disor-
dered �e.g., liquid or amorphous� structure. These results can
be understood heuristically if the energy increase resulting
from a layer of nonequilibrium bulk material is compensated
by an energy decrease obtained by converting an ordered
grain-boundary interface into two lower energy interfaces.
This observation suggests that a continuous increase in grain
boundary width and disorder as T→TM could be considered
a “premelting” localized at those grain boundaries with suf-
ficiently large defect energies.

Moreover, the model identifies the conditions that some
materials systems will possess first-order transitions between
disordered complexions at a specific curve in misorientation-
temperature space. Figure 5 is a grain-boundary complexion
diagram that indicates the temperatures and misorientations
where two types of grain-boundary “phases” exist as a stable
or a metastable complexion. The curve at which complexions
co-exist at equilibrium is analogous to that in Cahn’s CPWT
phase diagram:2 
GB

eq is analogous to �B
eq which also has two

coexistant equilibrium values for which the difference van-
ishes at a critical point. This similarity is inevitable because
KWC and CPWT have isomorphic free energy functionals
�Eqs. �5� and �6��. However, in this model, the interface term
s�	g�
GB� is derived from a GB functional in Eq. �1�.

In this model, no special misorientations are associated
with cusps in �GB��	� �except at �	=0� that have been ob-
served elsewhere �e.g., Refs. 63–66�. Including multiple
cusps in a KWC model would be possible through modifica-
tion of the 	�		 term in Eq. �1� with a function t�	�		� that
has multiple minima. Furthermore, this model does not pro-
vide an upper bound for misorientation—�	 can be at most
2� in crystals with the lowest possible symmetry, and this
upper bound will be smaller in most systems of interest.
Therefore, in practice, complexion diagrams will be re-
stricted to lower subregions of Fig. 5 and the curve of first-
order transitions may intersect—and thus terminate without a
second-order transition—at the maximum allowed misorien-
tation.

Polycrystalline materials will typically contain grain
boundaries with all possible misorientations; therefore, at a
fixed temperature, observable complexions would range over
those which appear along a constant temperature �vertical�
line in Fig. 5. However, microstructural evolution or texture
affect the distribution of GB misorientations, and the fre-
quency of observed complexions may not be directly related
to their relative line intersection lengths. The behavior of a
fixed polycrystalline microstructure may have a complex
temperature relationship: some grain boundaries may have
continuous or first-order premelting behavior until the grain
boundary is replaced with a perfectly wetting liquid at T
=TM; others could remain ordered without nucleating a more
disordered complexion as T→TM. The ranges of misorienta-
tions for which these behaviors are possible are separated by
the values of �	 where the curves for the two spinodes and
the first-order transitions intersect the line T=TM.

Specific composition diagrams can be obtained numeri-
cally for particular models of free energy, �f , and misorien-
tation gradient penalty. The manner through which �f and
g�
� combine to create a spectrum of diagrams were ex-
plored by developing a test model that depends on a ratio
q / �2p−2� relating the steepness of the misorientation pen-
alty �via q in Eq. �25�� to �f �via p in Eq. �17��. This generic
model could also serve as a foundation upon which material-
specific models for p and q could be tuned by comparing
model predictions to empirical observation. However, such a
tuning scheme would not serve as an independent verifica-
tion of this model. Preferably, those continuum-model pa-
rameters which cannot be obtained through direct observa-
tion could be obtained through coarse-graining of atomistic

FIG. 7. Specific examples of three characteristic shapes of
�f�
 ,TM��� �4
�1−
��q/�2p−2� that cause different limiting behav-
ior as T→TM. Intersections with the straight lines define the behav-
ior of GBs. Three different types of wetting behavior emerge de-
pending upon the types of intersections possible. For q / �2p−2�
�1, first-order or continuous disorder transitions lead to complete
GB wetting at TM for all �	. For q / �2p−2�=1, complete GB wet-
ting can result for �	��	wet= ��a� /s, but not for �	��	wet. For
q / �2p−2��1, every GB will have limited disorder at TM, and the
liquid will not perfectly wet its equilibrium solid phase. The inter-
sections with circle markers represent local energy minima. Those
with square markers are local maxima.
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simulation data �e.g., the decaying length of solid-liquid in-
terface observed in MD and classical density functional
theory�.

Some corroborative evidence for the qualitative behavior
of the model presented in this paper can be obtained by com-
parison to published atomistic grain boundary simulations.
Molecular dynamics simulations of metallic grain boundaries
have demonstrated that grain boundary cores tend to disorder
with increasing temperature and that this tendency is in-
creased for larger misorientations.66,67 Considering that a
fixed �	 requires that a grain boundary system must promote
collective bond distortion, this trend could be rationalized
through the thermodynamic consideration of entropic and en-
thalpic differences between ordered grain boundary cores
with overlapping elastic fields and disordered cores with re-
duced elastic energy densities. Such considerations are con-
sistent with the form of Eq. �1�; in fact, it is possible to
modify g�
� so that �GB is the Read-Schockley form derived
from interacting dislocations at small misorientations.1

Molecular dynamic determination of bulk melting tem-
perature is troublesome and incurs errors of at least a few
percent.33,34,37 Consequently, molecular dynamic confirma-
tion of grain boundary transitions, such as premelting, is dif-
ficult and more uncertain. Structural fluctuations and sto-
chastic grain boundary migration can be misinterpreted as
evidence of a complexion transition. We have no estimates of
the values for nucleation barriers to complexion transitions
which could be used to estimate the duration of an MD simu-
lation which might produce them. Furthermore, characteriza-
tion is hindered by the absence of a standard measure for
local disorder, such as 
. Moreover, the complexion dia-
gram’s sensitivity to model parameters �such as p and q in
Eqs. �25� and �17�� may indicate a similar sensitivity of ato-
mistic simulations to models of interatomic potentials. Sys-
tems that are likely candidates for complexion transitions
�i.e., those that form glasses, have complex grain boundary
structures, or highly-populated unit cells� are probably the
most difficult to subject to reliable MD simulations.

Nevertheless, extant simulations do provide evidence that
premelting occurs for higher-energy GBs. Simulations on tilt
boundaries have demonstrated increasing disorder and char-
acterized divergent grain boundary widths as T→TM.6,28,62

In other simulations, tilt and twist boundaries exhibited wide
disordered structures at 0.98TM, but the TM asymptotic be-
havior was not characterized.40,68,69 In Si simulations, low-
angle twist boundaries �about �111�� remained narrow and
crystalline at 0.95TM, but higher-energy density GBs show
increasing disorder with T.31,70 However, other simulations
report that these boundaries remain narrow and retain some
of crystallinity at 0.95TM.33,34

Molecular dynamics evidence for first-order grain bound-
ary transitions is often indirect. In one MD study, high-
energy GBs clearly disordered below TM; at TM, low �	
remained structurally stable, and intermediate cases exhib-
ited ranges of disorder.62 Several MD and Monte Carlo stud-
ies found two or more GB metastable configurations for the
same boundary at fixed temperature.35,40–44

Other indirect evidence is available from simulations of
temperature-dependent grain boundary properties. Simula-
tions of GB migration and diffusion in fcc metals suggest

discontinuous reductions in activation energies at
�0.6–0.8�TM and may indicate a first-order GB
transition.45–47 Futhermore, atomic displacements within the
GB core become more isotropic above the transition which is
consistent with a more disordered GB structure.45,46

In experiments and simulations, there may be a bias to-
wards special boundaries that have higher symmetry and
lower energy than random boundaries and towards materials
that do not easily form glass. Such a bias would tend to
underrepresent observations of complexion transitions sug-
gested by Fig. 7.

Interpretation of reported TEM evidence is also non-
trivial. First, absence of observation does not imply absence
of phenomenon; transitions tend not to occur at the lower
end of the grain boundary energy spectrum. Second, pre-
sumptions that premelting must result in a completely amor-
phous core may have led researchers to neglect observations
of partially ordered GBs. The structural difference between
ordered and disordered GBs could be subtler and harder to
discern than expected. To be observed in the best conditions,
a disordered region must be several atomic layers thick.

However, an in situ TEM study of a Bi tilt boundary near
TM showed the dihedral angle, �, where a GB intersects
solid/liquid interface, decreased with increasing �	, and �
dropped discontinuously to zero at �	=15°.27 One interpre-
tation is that the GB energy was discontinuous at �	=15°,
but this is puzzling for complete equilibrium. It may be in-
dicative of a first-order transition allowing coexistence of
metastable GB complexions.

Because free-surface premelting is a similar, and a per-
haps related, phenomenon, it is instructive to consider the
requirements for its observation at the surfaces of pure met-
als. Premelting of various metallic surfaces has been ob-
served with melted layer widths of approximately five mono-
layers at TM −T=1° characterized by ln�TM / �TM −T��.18,19

That premelting is only observed in TEM observations of Al
GBs above 0.999TM �Ref. 26� is qualitatively consistent with
surface premelting observations. Metallic free surfaces ex-
hibit about one monolayer of disorder that develops more
than 10° below TM.18,19

At 0.5–0.9TM, some metallic free surfaces can have
roughening transitions15 where ledges and kinks disorder.
For grain boundaries well below TM, comparable phenomena
are that the population of point defects and dislocations in
the core’s vicinity increases with temperature. TEM observa-
tions showed that secondary GB dislocations in pure Al per-
sisted to 0.96TM.26,71 Observations show that particle rota-
tions which are driven by grain boundary anisotropy persist
up to 0.96TM and 0.99TM in Cu and Ag.72,73 Both observa-
tions indicate that some boundary-core coherency remains
even though they may premelt closer to TM. It is also known
that roughening �also known as defaceting� transitions of
faceted GBs in pure metals occur at 0.6–0.9TM �Refs. 74 and
75�, suggesting that the resultant stable general GBs are
more disordered than the lower-temperature faceted GBs.

Our model does not include effects of dispersion forces on
GB structure and width �most atomistic simulations also dis-
regard these forces�. Although they are small in comparison
to forces that directly affect bonding, dispersion forces are
known to be repulsive in premelted surface layers and in-

DIFFUSE INTERFACE MODEL FOR STRUCTURAL… PHYSICAL REVIEW B 73, 024102 �2006�

024102-11



crease layer width.18 Because the core of a GB is probably
less dense, GB dispersion forces will be attractive GB.76 For
an ordered GB in SrTiO3, the dispersion energy accounts for
�5% –10% of the total binding energy.77

Our model suggests that it may be possible to superheat
the metastable 
GB

eq-ord solution above TM in Fig. 5 for grain
boundaries with �	��	U. This can be compared to melting
at free surfaces, at which detectable superheating is rare. In
rare cases, for example Pb�111� and Ge�111�, surfaces ex-
hibit some disorder but do not fully premelt.14,78 Moreover,
not all Pb surfaces are wet by the pure liquid at TM.13 Re-
cently it was shown that these highly ordered surfaces could
be flash heated to 1.15TM without fully disordering—
suggesting first-order transition behavior.79,80

Of the three transition modalities depicted in Fig. 5, the
two spinodals pertain for metastable behavior at T�TM. The
higher of the two, �	U�T�, is the stability limit for ordered
complexions. At T�TM, a GB with �	��	U will spontane-
ously disorder as quickly as interfacial kinetics permit—it
cannot be further superheated. However, GBs that have a
metastable 
GB

eq-ord structure ��	��	U� could be super-
heated; solids containing only such GBs thus could be super-
heated metastably until a nucleation event occurs. However,
we expect that triple junctions would provide heterogeneous
nucleation sites or would melt spontaneously. The other spin-
odal, �	L�T�, goes to �	=0 at T�TM; thus the more stable

GB

eq−dis solution allows barrierless melting. Simulations of su-
perheated Si and metallic grain boundaries showed that GBs
directly disordered, and the liquid band grew as fast as inter-
facial kinetics allowed.33,34,37 We suggest that GBs that
melted without incubation above TM �Refs. 33, 34, and 37�
would completely premelt as T→TM. This is based on ob-
servation that the same simulations showed that melting at
low-energy free-surface orientations did require incubation at
T�TM.

Thus, we suggest that the general predictions of GB dis-
order made in this paper, including the possibility of a first-
order transition in boundary structures, is not inconsistent
with published TEM and simulation evidence. Verification of
the existence of partially ordered grain boundaries and their
transitions, or a demonstration of their absence, constitutes a
challenge to the TEM and simulation communities.

If metallic systems are not ideal for the observation of GB
structural transitions, which systems would be better? GB
disorder is promoted in materials where the molar free en-
ergy difference between crystalline and liquid states is small.
Systems with short-range order in their liquid phase, as with
liquid silicates, will have larger atomic complexes which par-
ticipate in disorder, so disordered boundary cores will be
widened and thus easier to see. The gradient coefficient s
should probably increase with the length scale of short-range
order. Increased energy barrier height in �f permits greater
undercooling for stabilized disorder GBs �as in Fig. 6� and
premelted GB films should occur over a wider temperature
range in good glass formers. Polymeric systems, particularly
semi-crystalline polymers, polycrystalline metals that readily
form bulk-metallic glasses, and liquid crystals are candi-
dates.

Finally, sure evidence of GB structural transitions exists
for multicomponent ceramic systems. Nanometer thick, equi-

librium films, rich in SiO2 or Bi2O3, comprise the GBs in
various ceramics.53,54,81–83 Such films have thicknesses that
depend on the additive chemical potential,53,54,81,82,84 distinct
compositions compared to those of the bulk liquid phases
present,53,83–87 and exhibit thermodynamic stability.52–54,82–84

We propose that such intergranular amorphous films are a
high-temperature GB complexion resulting from a coupled
prewetting/premelting transition. In addition, considerable
evidence from kinetic behavior points to the existence of GB
transitions yielding similar GB structures in multicomponent
metallic systems.51,55,57,58 This view is supported by a similar
analysis of the KWC model extended to binary systems �yet
to be published�.

VI. CONCLUSIONS

The KWC diffuse interface model for grain boundaries
predicts disorder transitions. The model predictions of disor-
dered GB core material can be associated with the appear-
ance of a liquid phase, and therefore this diffuse interface
model can be considered a premelting theory for grain
boundaries as a function of their misorientation. The graphi-
cal construction for equilibrium grain boundary properties
can be used to construct a “grain boundary complexion dia-
gram” that predicts which of two more and less ordered grain
boundary structures would be most stable for values of tem-
perature and misorientation. The model predicts the possibil-
ity that first-order transitions between a more ordered and a
less ordered grain boundary structure can occur with increas-
ing temperature below the melting temperature. The types of
grain boundary structures and the temperature behavior for
transitions between the structures will directly affect macro-
scopic material properties, such as creep and grain boundary
migration, for polycrystals. The features on the GB complex-
ion diagram depend on the homogeneous free energy density
for the crystalline and noncrystalline fixed stoichiometric
material and on models for energy penalties for inhomog-
enous distributions of disorder and crystallographic orienta-
tion. The diagram’s possible features are �1� the critical
point’s location �Tcrit /TM ,�	crit�, �2� a spinodal curve for the
upper stability limits for the more disordered structure, �3� a
spinodal curve for the lower stability limits for the less dis-
ordered structure, and �4� the upper limit to grain boundary
misorientations with equilibrium structures that do not per-
fectly wet the boundary at TM. Not all features will appear on
a given complexion diagram, as illustrated and predicted
from a quantitative measure q / �2p−2� of power law ap-
proximations to the free energy density �q� and the disorder
dependence of gradient coefficient function for misorienta-
tion �p�.

Along with premelting behavior, extensions of the model
above the melting point show that, when the equilibrium
structure perfectly wets its grain boundary, no barrier to
melting occurs at T�TM. However, low misorientation
boundaries in some material systems can have nonperfectly
wetting metastable structures that could be superheated ab-
sent a finite nucleation event.

Some experimental observations and some atomistic
simulations have qualitative behaviors that are consistent
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with the model’s predictions. A subset of these simulation
models has some quantitative measure that could be used to
calibrate model parameters. However, the absence of stan-
dard methods to characterize a continuum of disorder from
collections of atomic positions from simulation data or from
diffraction data make direct model verification difficult.
Characterization of continuous spatial distributions of order
is a challenge for materials simulators, theorists, and experi-
mentalists.
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APPENDIX

For a plausible, but untested, example, a local crystallinity

measure might be defined by an atom’s �located at ��� radial

distribution function �rdf�x� −���,88 or its bond-angle distribu-

tion function �bda����,89,90 or the ratio
�surface area� / �volume�2/3 of its Voronoi tessellation, �V.89

In each case, a distance metric �,� �i.e., ������ ,�xtal� that
scales with the departure from an ideal crystal, and

������ ,�amorph� for an amorphous structure� could be defined
and for each atom


���� � � ������,�amorph�

������,�xtal�

2

, �A1�

which should range from 0 for amorphous to 1 for ideally
crystalline structures. Using similar methods, perhaps related

to an atom’s bond-angle distribution, a bond orientation 	����
could be likewise assigned. Finally, the continuous fields
could be defined through the following coarse-graining pro-
cedure:


�x��ei	�x�� =

�atoms�j� �
V

��x� − �� j�
��� j�ei	��� j�dV

�atoms�j� �
V

��x� − �� j�dV

, �A2�

where ��x�� is a convolution function �i.e., with compact sup-
port� such as exp�−x� ·x� /�2� where � is a coarse-graining
length, typically on the order of a few bond lengths.
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