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Exact static nondegenerate stripe and checkerboard ground states are obtained in a two-dimensional gener-
alized periodic Anderson model, for a broad concentration range below quarter filling. The random droplet
states, also present in the degenerate ground state, are eliminated by extending the Hamiltonian with terms of
different physical origin such as dimerization, periodic charge displacements, density waves, or distortion lines.
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I. INTRODUCTION

Quasi-one-dimensional intrinsic inhomogeneities called
stripes1 represent the most challenging problems in under-
standing self-organized structures ever since the discovery of
high Tc cuprates.2 Such textures have been observed in other
than superconducting cuprates, most notably in manganites,3

nickelates,4 and rare-earth compounds.5 Most recently it has
been shown that all cuprates exhibit intrinsic inhomogene-
ities in some form or another: checkerboard structures have
been identified in lightly hole-doped copper oxides,6 while
the electron-doped cuprates show droplet formations.7,8

These textures are so predominant in high Tcs, that they have
been even suggested9,10 as the best candidate for the electron
pairing mechanism in these materials.

After the existence of stripes had been established in a
broad spectrum of materials, it became clear that they
emerge due to a microscopic incompatibility between two
phases.2,6,9,10 However, this interplay not always leads to
stripe formations, but could also lead to droplets �or blobs�7,8

as well. Macroscopic inhomogeneity cannot occur as long as
long-range forces are present. But when such forces are ab-
sent, depending on doping, local inhomogeneities appear in
the form of stripes or other forms of clustering, e.g.,
droplets.8,11

Even though stripes had been known to exist much before
high Tc were discovered,12 their theoretical understanding
lacks rigorous description. Hereafter we want to fill this gap.
Hence we present an exact solution of a generalized periodic
Anderson model �PAM� with ground states exhibiting intrin-
sic inhomogeneities of the stripe, checkerboard, and droplets
types. Using a two-band model as a starting point of our
analyses renders the obtained results to be more generally
applicable, since real materials are mostly of multiband type.
These models are usually addressed by projecting the multi-
band structure into a few-band picture,13 which we stop for
mathematical convenience, at a two-band level. However,
our study is not a simple two-band model but rather an ex-
tended PAM which contains the added feature of strong cor-
relation effects originating from the on-site Coulomb repul-
sion U present in the correlated �f� band, an arbitrary Ud

�0 extra Hubbard interaction in the free �d� band, leaves our
results unchanged.

Since stripes and checkerboards are observed in a broad
spectrum of materials, we are primarily focusing on ground

states which exhibit these inhomogeneities, being less inter-
ested in the properties of the homogeneous phases in which
they appear.

Our exact results can be summarized as follows. Below
quarter filling, two stripe ground states emerge. One �I� with
insulating and paramagnetic stripes, while the second one
�II� with itinerant and ferromagnetic stripe lines. This second
solution allows checkerboard structures as well. In both
cases, i.e., I and II, the interstripe line regions contain empty
sites, hence are insulating. The obtained ground states are in
general degenerate. The degeneracy is provided by a random
blob structure corresponding to the same energy, the blobs
�random shape clusters� possessing the same properties as
the stripe lines in cases I and II. The degeneracy of the
ground state can, however, be lifted, the resulting nondegen-
erate ground state remaining of pure stripe or checkerboard
character. The lifting factor we find may have different
physical origin as distortion lines, dimerization, or periodic
charge displacement �density waves�. The obtained stripe
formation processes are generic and are less sensitive to the
properties of the homogenous phases present at quarter fill-
ing. We further note that marginal to the stripe problem, but
interesting for the PAM itself, we were able to prove rigor-
ously that the studied two-dimensional �2D� PAM is ferro-
magnetic at quarter filling in a restricted region of its param-
eter space. Similar result has been recently reported for
three-dimensional �3D� PAM as well.14

The remaining part of the paper is structured as follows.
Sec. II presents the exact transformation of the Hamiltonian
in a positive semidefinite form, Sec. III describes the ob-
tained ground state solutions, Sec. IV presents a discussion
of the obtained results, and Sec. V, concluding the paper,
closes the presentation.

II. THE TRANSFORMATION OF THE HAMILTONIAN

Our starting Hamiltonian is thus, Ĥ= Ĥ0+ Û, written for a
free �d� and a correlated �f� band, where we allow for hop-
ping in both bands,

Ĥ0 = �
i,�
��

r
� �

p=d,f
tr
pp̂i,�

† p̂i+r,� + Vr�d̂i,�
† f̂ i+r,� + f̂ i,�

† d̂i+r,��

+ H.c.�+ V0�d̂i,�
† f̂ i,� + H.c.� + Efn̂i,�

f � . �1�

To keep the description as general as possible, the above
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Hamiltonian is defined on a 2D Bravais lattice with unit cell
I and primitive vectors �x1, x2�. In Eq. �1� tr

p, Vr, V0, and Ef

represent the hopping amplitudes for p=d , f electrons, the
nonlocal and on-site hybridization, and the local f electron
energy, respectively. The coordinate r, with possible values
x1, x2, x2±x1, is allowed to extend to all sites of I. Within
the unit cell Ii defined at i, the lattice sites rIi

= i+r��, with
r��=�x1+�x2, � ,�=0,1, can be numbered by n�� ,��=1
+�+3�−2�� without reference to Ii; see Fig. 1�a�. The

correlated f band has in addition Û=U�in̂i,↑
f n̂i,↓

f acting on it
with 0�U�� on-site Hubbard repulsion.

It is known that exact solutions exist mostly in 1D sys-
tems and in higher dimensions is almost impossible to find

rigorous results. Thus, to find the exact ground state of Ĥ in

2D we use a method which is based on transforming Ĥ into
a representation which is positive semidefinite. Quantum me-
chanics tells us that the minimum possible eigenvalue of a

positive semidefinite operator, e.g., Ô, is zero. Hence the

ground state, e.g., �	g	 of Ô can be constructed from

Ô �	g	=0. The fact that ground states containing intrinsic
inhomogeneities can be obtained in this manner for a
“non-integrable”15 model as 2D-PAM does not come as a
surprise, since the applied procedure works even in disor-
dered case.16 We further note that the method is described in
detail in Ref. 14 and has been previously used to solve gen-
eralized PAM type models at 3

4 filling in 2D �Ref. 17� and
even in 3D.18 In the present case the transformation is per-
formed and described in 2D at a lower filling region.

The transformation proceeds in the following way: first
we transform exactly the starting Hamiltonian in a positive
semidefinite form. This is accomplished with the use of the
operators

Âi,�
† = �

�,�=0,1
�

p=d,f
an��,��,p

* p̂i+r��,�
† , �2�

which are linear combination of the original fermionic op-
erators acting on the corners of an elementary plaquette; see

Fig. 1�a�. It can be easily seen that P̂=�i,�Âi,�
† Âi,� contains

exactly the same operators from Eq. �1�. Hence, properly

choosing the coefficients an,p, n=n�� ,��, Ĥ0 from Eq. �1�
can be written as Ĥ0= P̂+Eg, where Eg is a constant. The
proper mapping is

�
j=1

lM

amj,p
anj,p�

* = T
,r
p,p��tr

p,tr
p�,Vr,Ef� , �3�

where for the r=�1x1+�2x2 values allowed by �1�, and

p , p�=d , f , T
,r
p,p� is given by

T
,r
p,p� = �1 − �
,0�
�p,p�tr

p + �1 − �p,p��Vr�

+ �
,0��p,p�
�p,dK + �p,f�Ef + K�� + �1 − �p,p��V0 ,

nj = j�
,0 + �j + ��1 − �2���
,2 + �� j,2 + �4��1� + 2��2��� j,1��
,1,

mj − nj = 2�
,2 + �
,1
7 − 4j + �6j − 10���1� + �6j − 8���2�� ,

2lM = 8 − 5
 + 
2, 
 = ���1� + ��2�� . �4�

Furthermore, Eg=−KN, where N is the number of electrons,
and K=�n=1

4 �an,d�2. Consequently, the starting Hamiltonian,

Ĥ, becomes positive semidefinite

Ĥ = P̂ + Û + Eg, �5�

except the additive constant Eg. The transformation of the
starting Hamiltonian based on the plaquette operators from
Eq. �2� into Eq. �5� is possible only if Eq. �3�, containing 19
nonlinear coupled equations, allows solutions for the an,p pa-
rameters. The different type of solutions of these nonlinear
equations are presented in the following sections.

III. GROUND STATE SOLUTIONS

We found that there are two types of solutions which sat-
isfy the system of nonlinear equations �3�. These two types
of solutions will be denoted by R= I and R= II. In I, for

an,d
* /an,f

* =qn=q= real for all n, Âi,� reduces to one-site form

Âi,�=�n=1
4 an,dÂi+rn,�, Âi,�= d̂i,�+ f̂ i,� for all i. While in II,

qn�q=real, and such a reduction of Âi,� into Âi,� is not
possible.

In the following we will analyze in details the ground
state corresponding to the solutions I and II: �a� We first
determine the homogeneous phases at quarter filling �N
=N�, N� being the number of lattice sites�; �b� by decreasing
N we find degenerated droplet, stripe, and checkerboard
ground states which we will present in detail, and �c� exten-

sions of Ĥ are identified to lift the degeneracy leading to
pure, non-degenerate stripe and checkerboard ground states.

A. Ground states at quarter filling

To find the ground state at quarter filling, a complemen-

tary unit cell operator14 B̂i,� is defined by

FIG. 1. �a� Unit cell �I� and �b� the B̂i,s operator defined at an
arbitrary site i, x are the primitive vectors, and n is the i indepen-
dent notation of the sites in Ii. For �a� arrows indicate hopping and
hybridization matrix elements �J= t ,V�. In �b�, the bn,p, p=d , f co-
efficients are shown together with a decomposition in horizontal

components B̂i,s= B̂i,s
h1+ B̂i+x2,s

h2 of the complementary operator B̂i,s.
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�Âi,�,B̂i�,��
†  = 0, ∀ i,i�,�,��. �6�

For case II, B̂i,�=��,�=0,1�p=d,fbn,pp̂i+rn,�
† , 
as shown in Fig.

1�b��, and defining n��� ,��=3+�−�−2��, and taking w
=b1,d /a3,f

* , one finds

bn,f = − wan�,d
* , bn,d = + wan�,f

* . �7�

While, for case I, B̂i,�=�n=1
4 bn,dB̂i+rn,�, and �Âi,� , B̂i�,��

† =0,

B̂i,�= d̂i,�− f̂ i,� holds.

Introducing D̂i,�
† �R�= �Ĉi,�

† �R,I+ B̂i,�
† �R,II�, where Ĉi,�

= �B̂i,�
† +viB̂i,−�

† � and vi are arbitrary coefficients, the exact
ground state at quarter filling becomes

�	g,R,1/4	 = �
i=1

N�

D̂i,�
† �R��0	, R = I,II , �8�

where �0	 is the bare vacuum. This is the ground state wave

function, i.e., �P̂+ Û� �	g,R,1/4	=0. Here Û �	g,R,1/4	=0 since,
for R= I the electrons with arbitrary spins are introduced on

different sites, and for R= II all B̂i,�
† in �8� have the same

fixed spin �, so the double occupancy for both p is excluded.

Besides, based on �6�, further we have P̂ �	g,R,1/4	=0. Since

the minimum eigenvalue of P̂+ Û is zero, thus �	g,R,1/4	 is
the ground state for nonzero, positive, although arbitrary U.
The ground state for case I is degenerate and globally para-
magnetic, with one electron on each site, i.e., the state is
localized. While in case II the ground state is nondegenerate,
is a saturated ferromagnet, with 0, 1, or 2 electrons on any i
site, e.g., the state is itinerant.

B. Ground states below quarter filling

1. Random droplet ground states

Decreasing the number of D̂i,�
† operators in the product of

Eq. �8�, the exact ground state below quarter filling can be
written as well. In case I, for N�N�, we obtain

�	g,I,1/4�n�0	 = �
i=1

N

Ĉi,�
† �0	 , �9�

where sites i can be arbitrarily chosen. With empty sites
present, the ground state is an itinerant paramagnetic phase.

In case II, the ground state is reached only if touching B̂i,�
†

operators defined on different sites 
for example, B̂19,� or

B̂25,� in Fig. 2�a�� have the same spin in order to maintain the

Û �	g	=0 condition. These neighboring B̂i,�
† operators with

fixed spin build up different blocks �droplets� Blj containing
NBlj

particles. Two different blocks have no common lattice
sites, and their spin is noncorrelated. If we denote by NBl the
number of blocks, then the ground state wave function be-
comes

�	g,II,1/4�n�0	 = �
j=1

NBl ��
i=1

NBlj

B̂i,�j

† ��0	 , �10�

where � jNBlj
=N, but otherwise, NBlj

and the shape of the
blocks remain arbitrary, as on the example shown in Fig.
2�b�. This state is itinerant and represents a fully saturated
ferromagnet up to N�N�−8. In the limit N=N�−8 there is
always a possibility for a new block to appear on the lattice,
in a way that is not in contact with other blocks and as such
it can have opposite spin. For example, in Fig. 2�a�, the
middle block B15,↓ is isolated and has opposite spin com-
pared to the big block surrounding it. Hence, for N�N�−8
the ground state is no longer fully saturated. Further decreas-
ing N, the ground state remains ferromagnetic19 until two
disjoint blocks with the same number of sites but opposite
spins can be constructed. This happens at Np

c =N�−2L, where
N�=L�L. Thus, for N�Np

c, the ground state is globally
paramagnetic.

2. Degenerated stripe ground state solutions

Decreasing N below Np
c, stripes emerge in the ground state

in both Eqs. �9� and �10� as vertical stripes �Fig. 3� or diag-

FIG. 2. �a� Isolated plaquette with opposite spin at site i=15,
and �b� droplet solutions for case II. The blocks Bi,� introducing the

B̂i,�
† operators in the ground state wave function of case II are pre-

sented as shaded plaquettes in �b�.

FIG. 3. Example of vertical stripe solutions for case I shown in
�a� and II in �b�. For �a� �or b�, full circles �or shaded plaquettes�
denote sites �or unit cells� whose Ĉi,�

† �or B̂i,�
† � contribution is in the

ground state wave function Eq. �8�, see for example, site j2 in case
I 
unit cell �i2, i3, i5, i6� in case II�. In both cases d1 �d2� repre-
sents a measure of the stripe line width �interstripe line distance� in
x direction and �x1� units.
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onal stripes �Fig. 4�. The ground state wave function contain-
ing NSt vertical stripe lines is

�	g,R,ISt
	 = �

j=1

NSt � �
i�ISt,j

D̂i,�j

† ��0	 , �11�

where ISt,j in case I �II� represents the stripe line j �plaquette
stripe column j�, and ISt=� jISt,j. For example, from �11�, the
vertical stripes are obtained in case I �II� by a displacement
along periodic vertical lines �vertically constructed plaquette

columns� of Ĉi,�
† �B̂i,�

† � operators. In Fig. 3�a� case I is shown
with column stripes, while Fig. 3�b� depicts case II with
plaquette columns. For diagonal stripes, the vertical displace-
ment must be changed to diagonal one, as shown in Fig. 4. In
the case II at d1=d2, see Fig. 5; the stripe structure turns into
a checkerboard one. The stripe lines for case I are paramag-
netic and insulating, while they are itinerant and ferromag-
netic for case II. Different stripe lines which are not in con-
tact have noncorrelated spin.

C. Non-degenerated stripe and checkerboard ground states

For N�Np
c, droplet 
see Fig. 2�b�� and stripe solutions

coexist as the ground state is degenerate. However, the drop-
let contributions can be eliminated in exact terms from the

ground state by adding new Hamiltonian contributions to Ĥ.

For example, let us consider ĤA=−�W1 ��i�ISt
n̂i, where n̂i

=��,pn̂i,�
p . If ISt� contains all lattice sites from D̂ISt�

†

=� j=1
N D̂ij,�j

and ISt= ISt� holds, then 
�i�ISt
n̂i�D̂ISt�

† =D̂ISt�
† 
N

+�i�ISt
n̂i� provides the minimum possible eigenvalue for ĤA

via ĤA �	g,R,ISt
	=−�W1 �N �	g,R,ISt

	. If however, ISt� � ISt 
for
example, if j2 moves to the in j1 position, Fig. 3�a��, then

�	g,R,ISt
	 is no longer an eigenstate of ĤA. Consequently,

�	g,R,ISt
	 becomes the unique, nondegenerate ground state of

Ĥ+ ĤA. If we add to ĤA the term ĤA� = �W2 ��i�ISt
n̂i, as well,

the results remain unchanged. A Hamiltonian term of the

form ĤA is motivated in case of cuprates by low temperature

tetragonal fluctuations.20 The potential W in H̄
ˆ

A= ĤA+ ĤA� can
be generated by a periodic charge displacement or charge
density wave �see Fig. 6�, which is able to stabilize a stripe
phase. Such a behavior has been already seen22 in cuprates.
Similarly, the checkerboard state also can be made stable.21

A checkerboard is obtained, for example, in Fig. 4�b�, if we
take d1=d2=2, see Fig. 5. This is stabilized by a Hamil-

tonian term ĤA, which has a set of lattice sites ISt, in such a
way that it contains only next-nearest-neighbor sites on each
second diagonal.

Furthermore, the vertical stripes from Fig. 3�b� will be

stabilized by a dimerization term of the form ĤB

=���i�IE
Êi,�

† Êi,�, Êi,�=�p=d,f�e1,pp̂i,�+e2,pp̂i+x1,��, where IE

contains only each second site of horizontal lattice rows23;

see Fig. 7. For ĤB described in Ref. 23, the stable stripe
phase occurs above the surface presented in Fig. 8. Modify-
ing IE, other stripes can be addressed as well. The important
effect of dimerization on stripe stabilization has been re-
cently shown using numerical simulations.24

FIG. 4. Example of diagonal stripe solutions for case I shown in
�a� and case II in �b�. Notations are as in Fig. 3.

FIG. 5. Checkerboard originating from diagonal stripes at d1

=d2, see also Fig. 4�b�. For the meaning of shaded plaquettes see
Fig. 3�b�.

FIG. 6. Ĥ0 parameters for case I vs t= tx

f / tx

d , at �tx
d�2 , �ty

d�2

�4tx+y
d ty−x

d . The inset shows the potential W created by H̄
ˆ

A acting on
the charge degrees of freedom in x direction stabilizing the stripes
from Fig. 3�a�.

FIG. 7. Bond alternation in x direction to stabilize the stripes
from Fig. 3�b�, Jx= tx

p ,Vx.
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IV. DISCUSSION OF THE RESULTS

The obtained inhomogeneities are not connected in prin-
ciple either to certain special values of the parameters or to
special properties of the homogeneous phases present at
quarter filling. In the following we present several remarks to
support this and, in closing, the obtained stripe formation
process is summarized.

Firstly, for a given Hamiltonian, a given decomposition in
positive semidefinite operators at a given filling factor is not
unique.14,25,26 The decomposition itself can be done in sev-

eral different ways, leading to different Âi,� operators, differ-
ent matching conditions, hence different interdependencies
between microscopic parameters obtained during the solu-
tion of the matching conditions 
i.e., equations of the type
�3��, providing similar solutions, and similar characteristics
in different regions of the parameter space. For example, as
shown in Ref. 25, instead of plaquettes, rhombi can also be

used in defining Âi,�, obtaining the same type of solutions,
but in other regions of the parameter space. Other possibili-
ties are to simply tilt the unit cell14 or to decompose in

�iÂi
†Âi, where Âi=��Âi,�, as described in Ref. 26, etc.

Secondly, the different solutions of the matching condi-
tions all give homogeneous phases at quarter filling. Stripes
will appear from each of these homogeneous phases with
�hole� doping. This can be easily understood from the obser-

vation that the B̂i,� �or B̂i,�� operators which are characteris-
tic of the stripe ground state 
see e.g., Eqs. �6� or �7�� can

appear for arbitrary Âi,�. Consequently, the obtained stripe
formation process is weakly dependent on the properties of
the homogeneous phase from which the stripes emerge.

Thirdly, each homogenous phase �and hence each stripe
structure originating from it� appears for different, well-
defined conditions. For example, see also Ref. 19, stripes
with ferromagnetic and itinerant stripe lines can be obtained
from the itinerant ferromagnetic homogenous phase when
the one particle part of the Hamiltonian in �1� has such pa-

rameters that Ĥ0 will have a diagonalized partially filled
lower flat band. One the other hand, insulating paramagnetic
stripe lines are obtained in a different parameter space re-
gion, where localized homogenous phase can occur, etc.

Fourthly, an additional repulsive Hubbard term acting in
the d band will not change the obtained results. Conse-
quently, the obtained ground states and inhomogeneities are
valid not only in the 2D PAM, but also in a more general 2D
two-band Hubbard model as well.

Lastly, in our rigorous description we obtained a nonde-
generate ground state exhibiting stripe structure in the fol-
lowing steps: we doped the homogeneous phase at quarter
filling. This resulted in a degenerate ground state to appear,
which contained both random droplets and stripe solutions.
In the last step we lifted the degeneracy by adding a so-
called stabilization term to the Hamiltonian. By doing this
we eliminated the random droplets from the degenerated
ground state, obtaining a nondegenerated stripe ground state
solution.

V. CONCLUSIONS

In conclusion, providing exact results for stripe, checker-
board, vs droplet interplay, we show how such intrinsic in-
homogeneities appear in a 2D Hamiltonian as nondegenerate
ground states. For this, �1� a generalized PAM is used and
cast in a positive semidefinite form, �2� the ground states are
explicitly constructed at and below quarter filling, and �3� the
ground state degeneracy provided by random droplets is
eliminated using extension terms representing, e.g., distor-
tion lines, dimerization, or density waves. The inhomogene-
ities were shown to exist in a broad concentration range be-
low quarter filling and they are either �case I� paramagnetic
and localized, or �case II� itinerant and ferromagnetic. In
both of these cases the interstripe lines are insulating. As has
been emphasized, stripes can emerge from different homoge-
neous phases so are less sensitive to microscopic parameters

of Ĥ. As marginal for the stripes, but important for PAM, we
derive an exact ferromagnetic ground state, as well, in 2D at
quarter filling. An extra Hubbard interaction in the d band,
Ud�0 leaves the above results unchanged. The presented
positive semidefinite decomposition is not unique, and can
be effectuated in several ways, leading to similar results also
in other regions of the parameter space.
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FIG. 8. �Color online� The Ef / �tx
d� surface in function of t

= tx
f / tx

d and the anisotropy parameter z= ��ty
f �−�tx

f � � / �tx
d� above which

the R= II stripe ground state from Fig. 3�b� emerge stabilized by ĤB

in conditions from Ref. 23. For hybridization Vx=V0=0, and for
other r, �Vr � / �tr

f � =��t� holds. The inset shows the required tx
d alter-

nation introduced by ĤB. For ĤB=0, FM is present on the plotted
surface at 1

4 filling.
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agonalized Ĥ0 has a partially filled lower flat band.
20 Y. Shibata, T. Tohyama, and S. Maekawa, Phys. Rev. B 64,

054519 �2001�.
21 S. R. White and D. J. Scalapino, Phys. Rev. Lett. 91, 136403

�2003�.
22 J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Moodenbaugh, Y.

Nakamura, and S. Uchida, Phys. Rev. Lett. 78, 338 �1997�.
23 We must consider B̂i,�= B̂i,�

h,1+ B̂i+x2,�
h,2 , where B̂i,�

h,l

=�p=d,f�b3l−2,pp̂i,�+bl+1,pp̂i+x1,��, as shown in Fig. 1�b�, and
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f �, obtaining Êi,�=ei,d�d̂i,�− d̂i+1,�� for all even i in
every lattice row with arbitrary ei=even,d=ed, and ei=odd,d=0.

24 K. H. Ahn, T. Lookman, and A. R. Bishop, Nature 428, 401
�2004�.

25 Z. Gulácsi, Eur. Phys. J. B 30, 295 �2002�.
26 Z. Gulácsi, Phys. Rev. B 66, 165109 �2002�.

ZSOLT GULÁCSI AND MIKLOS GULÁCSI PHYSICAL REVIEW B 73, 014524 �2006�

014524-6


