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We have calculated the nonlinear current of a number of single band s-wave electron-phonon superconduct-
ors. Among issues considered were those of dimensionality, strong electron-phonon coupling, impurities, and
comparison with BCS. For the case of two bands, particular attention is paid to features resulting from the two
energy gap scales, the Fermi velocity anisotropy, the integration effects of the off-diagonal electron-phonon
interaction, as well as interband and intraband impurities. For the specific case of MgB2, we present results
based on the known microscopic parameters of band theory.
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I. INTRODUCTION

With the advent of high temperature superconductivity in
the cuprates and the possibility of exotic gap symmetry in-
cluding nodal behavior, a renewed effort to find experimental
probes of order parameter symmetry has ensued. One result
of this effort was the proposal by Sauls and co-workers1,2 to
examine the nonlinear current response of d-wave supercon-
ductors. They showed that a nonanalyticity in the current-
velocity relation at temperature T=0 is introduced by the
presence of nodes in the order parameter. One prediction was
that an anisotropy should exist in the nonlinear current as a
function of the direction of the superfluid velocity relative to
the position of the node. This would be reflected in an aniso-
tropy of a term in the inverse penetration depth which is
linear in the magnetic field H. Early experimental work did
not verify these predictions3 and it was suggested that impu-
rity scattering2 or nonlocal effects4 may be responsible.
However, a more recent reanalysis of experiment has
claimed to confirm the predictions.5 An alternative proposal
was given by Dahm and Scalapino6 who examined the qua-
dratic term in the magnetic response of the penetration depth,
which shows a 1/T dependence at low T as first discussed by
Xu et al.2 Dahm and Scalapino demonstrated that this upturn
would provide a clear and unique signature of the nodes in
the d-wave gap and that this feature could be measured di-
rectly via microwave intermodulation effects. Indeed, experi-
mental verification of this has been obtained7 confirming that
nonlinear microwave current response can be used as a sen-
sitive probe of issues associated with the order parameter
symmetry. Thus, we are led to consider further cases of gap
anisotropy and turn our attention to the two-band supercon-
ductor MgB2 which is already under scrutiny for possible
applications, including passive microwave filter technology.8

MgB2 was discovered in 2001 �Ref. 9� and since this time an
enormous scientific effort has focused on this material. On
the basis of the evidence that is available, it is now thought
that this material may be our best candidate for a classic

two-band electron-phonon superconductor, with s-wave pair-
ing in each channel.10 A heightened interest in two-band su-
perconductivity has led to claims of possible two-band ef-
fects in many other materials, both old11 and new.12

Our goal is to compare in detail the differences between
one-band and two-band s-wave superconductors in terms of
their nonlinear response, that would be measured in the co-
efficients defined by Xu et al.2 and Dahm and Scalapino.13

This leads us to reconsider the one-band s-wave case, where
we study issues of dimensionality, impurities, and strong
electron-phonon coupling. We find new effects due to strong
coupling at both high and low T. We then examine the situ-
ation for two-band superconductors, starting from a case of
highly decoupled bands. Here, we are looking for signatures
of the low energy scale due to the smaller gap, the effect of
integration of the bands, and the response to interband and
intraband impurities. Unusual behavior exists distinctly dif-
ferent from the one-band case and not necessarily understood
as a superposition of two separate superconductors. Finally,
we return to the case of MgB2 which was studied previously
via a more approximate approach.13 In the current work, we
are able to use the complete microscopic theory with the
parameters and the electron-phonon spectral functions taken
from band structure.10,14 In this way, we provide more de-
tailed predictions for the nonlinear coefficient of MgB2.

In Sec. II, we briefly summarize the necessary theory for
calculating the gap and renormalization function in two-band
superconductors, from which the current as a function of the
superfluid velocity vs is then derived. In Sec. III, we explain
our procedure for extracting the temperature-dependent non-
linear term from the current and we examine the character-
istic features for one-band superconductors in light of issues
of dimensionality, impurity scattering and strong coupling.
Section IV presents the results of two-band superconductors
and simple formulas are given for limiting cases which aid in
illuminating the effects of gap and Fermi velocity anisotropy.
The case of MgB2 is also discussed. We form our conclu-
sions in Sec. V.
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II. THEORY

The superfluid current has been considered theoretically
in the past by many authors for s-wave15–22 and for other
order parameters, such as d-wave and f-wave.1,2,23–25 Most
recently, the case of two-band superconductivity has been
examined13,26,27 with good agreement obtained between
theory and experiment for the temperature dependence of the
critical current.26

In this work, we wish to calculate the superfluid current as
a function of superfluid velocity vs or momentum qs and
extract from this the nonlinear term. To do this, we choose to
evaluate the expression for the superfluid current density js
that is written on the imaginary axis in terms of Matsubara
quantities.19,26 This naturally allows for the inclusion of im-
purity scattering and strong electron-phonon coupling in a
numerically efficient manner. Written in general for two-
bands having a current js1 and js2, for the first and second
band, respectively, we have

js = �
l=1

2
3enl

mvFl
�T �

n=−�

+� � i��̃l�n� − islz�z
���̃l�n� − islz�2 + �̃l

2�n�
�

l

, �1�

where e is the electric charge, m is the electron mass, T is the
temperature, sl=vFlqs, nl is the electron density, and vFl is the
Fermi velocity of the lth band �l=1,2�. The 	¯
l represents
an integration for the lth band which is given as �−1

1 dz /2 for
a 3d band and �0

2�d� / �2�� for a 2d band, with z=cos � in the
2d case. Also, in the expression for the current, the 3 should
be changed to a 2 for 2d. This is done within a mean-field
treatment and ignoring critical fluctuations near Tc. Here, we
have taken the approximation of a spherical Fermi surface in
3d and a cylindrical one in 2d as we will see further on that
the differences between 2d and 3d are not significant to more
than a overall numerical factor and so providing more pre-
cise Fermi surface averages will not change the results in a
meaningful way. To evaluate this expression, we require the
solution of the standard s-wave Eliashberg equations for the

renormalized gaps and frequencies �̃l�n�=Zl�n��l�n� and
�̃l�n�=Zl�n��n, respectively. These have been generalized to
two bands and must also include the effect of the current
through qs. With further details given in Refs. 10 and 22 we
merely state them here
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m

�
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where j sums over the number of bands and the sum over m
is from −� to �. Here, tlj

+ =1/ �2�
lj
+� is the ordinary impurity

scattering rate and n indexes the nth Matsubara frequency
�n, with �n= �2n−1��T, where n=0, ±1, ±2, . . . . The �lj

*

are Coulomb repulsions, which require a high energy cutoff
�c, taken to be about 6 to 10 times the maximum phonon
frequency, and the electron-phonon interaction enters
through

�lj�m − n�  2�
0

� ��2Flj���
�2 + ��n − �m�2d� �4�

with �lj
2 F��� the electron-phonon spectral functions and �

the phonon energy. Note that the dimensionality does not
change the gap equations when there is no current. For finite
qs, it does and we will see later the result of this effect.
Likewise, an essential ingredient is that the current enters the
Eliashberg equations and provides the bulk of the nonlinear
effect for temperatures above T�0.5Tc. Indeed, at Tc all of
the nonlinearity arises from the gap.

We now proceed to the case of one-band superconductors,
to illustrate the generic features of the superfluid current and
demonstrate how we extract the nonlinear term. In the sec-
tion following, we will return to the two-band case.

FIG. 1. The normalized current js / j0 as a function of qsvF /�0,
where j0=ne�0 / �mvF� and �0 is the energy gap at T=0. Shown are
the low temperature BCS curves for two dimensions �solid line� and
three dimensions �dashed line�, given for a reduced temperature
t=T /Tc=0.1. The inset is for near Tc at t=0.95.
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III. ONE-BAND s-WAVE SUPERCONDUCTORS

In Fig. 1, we illustrate that these equations reproduce the
standard results for js versus qs for a one-band supercon-
ductor in the weak-coupling BCS limit. Equations �1�–�3�
were solved for both the 2d and 3d cases at t=T /Tc=0.1 and
0.95. The T=0 result of past literature15,16,19 is recovered in
the case of 3d. One sees for t=0.1 at low qs, the curve is
essentially linear, reflecting the relationship of js=nsevs, with
ns the superfluid density. For strong coupling, the slope
would be reduced by approximately 1+� as the superfluid
condensate is also reduced by this factor. Likewise the reduc-
tion in the slope with temperature would reflect the tempera-
ture dependence of the superfluid density. Indeed, to provide
these curves using the Eliashberg equations, we used the
�2F��� spectrum of Al and made the corrections for the 1
+� factor. Al is a classic BCS weak-coupling supercon-
ductor, that agrees with BCS in every way and is generally
used for BCS tests of the Eliashberg equations. The � for Al
is 0.43. While at low T the curves show little deviation from
linearity at low qs, and thus the nonlinear correction will be
essentially zero �exponentially so with temperature in BCS
theory�, at T near Tc, one sees that there is more curvature for
qs→0 and hence a larger nonlinear term is expected. How-
ever, while the 2d and 3d curves differ in behavior near the
maximum in js, one finds that the behavior at low qs is very
similar. Indeed, the nonlinearity is a very small effect on
these plots and hard to discern, however, it will be borne out
in our paper that the nonlinear current does not show signifi-
cant differences in the T-dependence between 2d and 3d.
Nevertheless, we will still include both the 2d and 3d calcu-
lation in our two-band calculations as MgB2 has a 2d -band
and a 3d �-band, and there is a overall factor of 2/3 between
the two in the nonlinear term due to dimensionality.

To obtain the nonlinear current as qs→0, the general ex-
pression for the current can be expanded to second lowest
order in powers of qs leading to the general formula

js = j0�A�qsvF
*

�0
� − B�qsvF

*

�0
�3� , �5�

where only first and third order terms arise. Here by choice
j0=ne�0 / �mvF� and the variable for the expansion was taken
as qsvF

* /�0, where vF
* =vF / �1+��. A and B are temperature-

dependent coefficients which follow when solutions of the
Eliashberg equations �2� and �3� are substituted in the ex-
pression �1� for the current. In practice, it is complicated to
expand Eqs. �1�–�3� to obtain an explicit form B and so we
choose to extract A and B numerically by solving our full set
of equations with no approximations for js versus qs. From
this numerical data, we find the intercept and slope of js /qs
versus qs

2 for qs→0 from which we obtain the A and B,
respectively.

The results for A�T� and B�T� as a function of temperature
are shown in Fig. 2. One sees, in the inset, A�T� which, in the
one-band case, is just the superfluid density ns normalized to
the clean BCS value at T=0. There is no difference between
2d and 3d BCS. Also, shown is the A�T� extracted for the
strong electron-phonon coupling superconductor Pb with no
impurities and with impurity scattering of t+=Tc0. One sees

that strong coupling pushes the temperature dependence of
the curve higher, even slightly so at T=0, and this is a well-
documented effect.28 With impurities, the superfluid density
is reduced in accordance with standard theory. These curves
were obtained from our js calculations and agree exactly
with BCS and Eliashberg calculations done with the standard
penetration depth formulas,28 confirming that our numerical
procedure is accurate. The second term in Eq. �5� gives the
nonlinear current and the coefficient B�T�, which is a mea-
sure of this, is also shown for the four cases. �Note that B�T�
is the same as the ��T� of Ref. 6 for the one-band case.� Here
one does find a difference between the 2d and 3d BCS
curves showing that dimensionality can affect the nonlinear
current. In the case of strong coupling one finds an increase
in the nonlinear piece near Tc and also a finite contribution at
low T which is unexpected in the usual BCS scenario. Im-
purities have the effect of further increasing the low T con-
tribution and reducing the curve near Tc.

Near T equal to Tc �tT /Tc� in BCS, it can be shown
analytically that

A = 2�1 − t� �6�

and for 3d,

B =
7

6

��3�
��Tc�2�0

2 �7�

as obtained in our previous paper, Ref. 26. The value of B for
2d is increased by a factor of 3 /2. These numbers agree with
the numerical calculations in Fig. 2, where the 3d BCS curve
goes to 0.21 for 2d and 0.14 in 3d.

There are two definitions in the literature for the nonlinear
coefficient: one is denoted as ��T� due to Xu et al.2 and the
other, b�T�, used by Dahm and Scalapino,13 is the one that is

FIG. 2. The nonlinear coefficient B�T� defined in Eq. �5� multi-
plied by �Tc /�0�2 as a function of T /Tc. The solid curve is for 2d
BCS, while the dashed is for 3d BCS. The dotted-short-dashed
curve is for Pb in 3d, which has been evaluated within Eliashberg
theory, and the dotted-long-dashed curve shows the effect of impu-
rities on Pb, where t+=Tc0. The inset shows the temperature depen-
dence of the linear coefficient A�T� of Eq. �5�, which is proportional
to the superfluid density.
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related to the intermodulation power in microstrip resona-
tors. Rewriting Eq. �5� in the form

js = j0�qsvF
*

�0
�A�1 −

B

A3� js

j0
�2� , �8�

Dahm and Scalapino define13

b�T� 
B

A3 . �9�

Xu, Yip, and Sauls2 keep the form of Eq. �5� but define a
variable qsvF

* /�0�T�, where �0�T� is the temperature depen-
dent gap equal to �0��t�. With this they identify the coeffi-
cient

��T� 
B

A
�2�t� . �10�

In this work, we always take ��t� to be the usual BCS tem-
perature dependence of the gap function.

In Fig. 3, we show the calculations for the ��T� coeffi-
cient of Xu et al. Here, we have made a number of points.
First, the 2d BCS curve derived from our procedure agrees
with that shown by Xu et al.,2 once again validating our

numerical work for extracting the very tiny nonlinear coeffi-
cient. Second, for BCS one sees a difference between 2d and
3d in the nonlinear coefficient. The 2d curve goes to 1 at Tc
and to 2/3 for the 3d case. The question arises as to whether
the difference between 2d and 3d is simply a numerical fac-
tor and so with the dotted curve, we show the 3d case scaled
up by 3/2. We do note that there is a small difference in the
temperature variations at an intermediate range of T, but the
major difference between 2d and 3d is the overall numerical
factor of 2/3. Third, one might question the necessity of in-
cluding the effect of the current on the gap itself and to
answer this, we show the long-dashed curve where the qs
dependence was omitted in the Eliashberg equations �2� and
�3�. One finds that the nonlinear coefficient is reduced sub-
stantially at temperatures above �0.5Tc and disappears at Tc.
Thus, without the qs dependence in the gap, the true nonlin-
ear effects will not be obtained for high temperatures as the
gap provides the major contribution to the nonlinearity.

In the lower frame of Fig. 3, we examine the case of Pb to
illustrate strong electron-phonon coupling and impurity ef-
fects. It is seen that the strong coupling increases the value at
Tc and also gives a finite value at low T. The behavior at low
T is surprising in light of the BCS result,2 but is related to the
inelastic electron-phonon scattering which appears to in-
crease the nonlinear coefficient at small T in a similar way to
what is already known about the effect of impurities in
BCS.13 The strong-coupling behavior near Tc is similar to
that seen for other quantities such as the specific heat,28

where the downward BCS curvature is now turned concave
upward to higher values at Tc. Impurities have the effect of
reducing the nonlinearity near Tc and increasing it at low T.

Once again, in BCS we can provide some analytic results
near and at Tc for ��t� which provide a useful check on our
numerical work. For three dimensions near Tc,

��t� =
7��3�
12�2 ��0

Tc
�2�2�t�

1 − t
�11�

and, upon substituting for ��t�,

��t = 1� = 2
3 . �12�

Doing the same algebra for the two-dimensional case cor-
rects these expressions by a factor of 3/2 and gives 1 instead
of 2/3 for ��t=1�.

To characterize the strong-coupling effects seen in the fig-
ure for Pb, we can develop a strong-coupling correction for-
mula for ��t=0� and ��t=1�. These formulas have been pro-
vided in the past for many quantities and form a useful tool
for experimentalists and others to estimate the strong-
coupling corrections.28 This was done by evaluating this
quantity for 10 superconductors using their known �2F���
spectra and their Tc values. We used Al, V, Sn, In, Nb, V3Ga,
Nb3Ge, Pb, Pb0.8Bi0.2, and Pb0.65Bi0.35. These materials were
chosen to span the range of typical s-wave superconductors
with strong-coupling parameter Tc /�ln ranging from 0.004 to
0.2. The details of these materials and references for the
spectra may be found in the review by Carbotte.28 The pa-
rameter �ln is defined as

FIG. 3. The nonlinear coefficient ��T� defined in Xu, Yip, and
Sauls �Ref. 2� �Eq. �10�� versus T /Tc. In the top frame, we show
curves for 2d and 3d BCS. Multiplying the 3d BCS curve by 3/2
gives the dotted curve. The long-dashed curve illustrates, for the 3d
case, the effect of not including the qs-dependence in the gap equa-
tions. In the bottom frame, the strong-coupling Eliashberg theory
result for Pb is shown, with the 3d BCS curve repeated for refer-
ence. The dotted-short-dashed curve is for pure Pb and the dotted-
long-dashed is for t+=Tc0.
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�ln = exp� 2

�
�

0

�

ln���
�2F���

�
d�� . �13�

By fitting to these materials, we arrived at the following
strong-coupling correction formulas for three dimensions:

��Tc� =
2

3
�1 + 7.7� Tc

�ln
�2

ln�3�ln

Tc
�� �14�

and

��T = 0� = 1.6� Tc

�ln
�2

. �15�

Note that, even though ax2 ln�b /x� is the usual form of the
strong-coupling correction, in this last equation, we have
found no advantage in fitting with the additional parameter
offered by the log factor. These formula should be seen as
approximate tools to give the trend for Tc /�ln for values
restricted to the range of 0 to 0.2. Pb has Tc /�ln value of
0.128 and is intermediate to this range, and Al is a weak-
coupling superconductor with a value of 0.004.

In Fig. 4, we show the coefficient used by Dahm and
Scalapino13 for the same cases as previously considered.
With this coefficient one finds qualitatively similar curves.
The 2d and 3d BCS curves go to zero rapidly at low tem-
perature, but once again the strong coupling effects in Pb
give a finite value for b�T� at low T. With impurities the tail
at low temperature is raised significantly. Due to the diver-
gence in b�T� near Tc because of the division by three pow-
ers of the superfluid density which is going to zero at Tc, we

prefer to work with a new quantity b̄�t�, which removes this
divergence. Thus, we define

b̄�t�  b�t��1 − t�3 �16�

and this is shown in the inset in Fig. 4. It has the advantage
of illustrating the detailed differences between the curves
more clearly and providing finite values at Tc which can be
evaluated analytically in BCS theory. In this instance, we
obtain

lim
t→1

b̄�t� =
7��3�
48�2 ��0

Tc
�2

= 0.0557 �17�

for three dimensions in agreement with what we obtain from
our numerical work, shown in Fig. 4. Once again we can
develop strong-coupling formulas for this quantity and they
are given as

b̄�Tc� = 0.0557�1 − 42.8� Tc

�ln
�2

ln� �ln

3.8Tc
�� �18�

and

b̄�T = 0� = b�T = 0� = 1.4� Tc

�ln
�2

�19�

for three dimensions. Once again, there was no extra advan-

tage to fitting b̄�T=0� with the usual form that includes the
log factor.

This last quantity b�t� is related to the intermodulation
power in microstrip resonators and hence can be measured
directly. Having identified the features of one-band supercon-
ductors, we now turn to the two-band case where signatures
of the two-band nature may occur in these nonlinear coeffi-
cients.

IV. TWO-BAND s-WAVE SUPERCONDUCTORS

The generalization of Eq. �8� to the two-band case pro-
ceeds as follows. The total current js is the sum of the two
partial currents jsi, i=1,2 with �1,2�� ,�� for the two-
dimensional - and three-dimensional �-band, respectively.
For our numerical work, we do take into account the differ-
ent dimensionality of the bands but, for simplicity in our
analytic work below, we take them both to be three dimen-
sional. A decision needs to be taken about the normalization
of the current js in the second term. Dahm and Scalapino
have used j0�=n�e�0� / �mvF��. Here instead, we prefer to
use the more symmetric form

j00 = �
i=1

2

j0i = �
i=1

2
eni�0i

mvFi
, �20�

which reduces properly to the one-band case when our two
bands are taken to be identical, with n1=n2=n /2, where n is
the total electron density per unit volume. For the combined
system, Eqs. �9� and �10� still hold with A and B modified as
follows:

A =
1

j00
�1

2�
i=1

2
vFi

*

�0i
�−1

�
i=1

2

j0iAi
vFi

*

�0i
�21�

and

FIG. 4. The temperature dependence of the nonlinear coefficient
b�T� defined by Dahm and Scalapino �Ref. 13� �Eq. �9�� versus
T /Tc. Shown are results for 2d and 3d BCS �solid and dashed
curves, respectively� and 3d Pb in Eliashberg theory �dotted-short-
dashed�. As before these curves are for the pure case and one im-
pure case for Pb is shown �dotted-long-dashed curve� with t+=Tc0.

The inset shows b̄�T� versus T /Tc, which is defined in Eq. �16�.
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B =
1

j00
�1

2�
i=1

2
vFi

*

�0i
�−3

�
i=1

2

j0iBi� vFi
*

�0i
�3

. �22�

With these definitions Eq. �5� also holds with j00 replacing j0
and the Xu, Yip, and Sauls variable, qsvF

* /�0�T�, of the one-
band case is replaced by �qs /2��t���i=1

2 vFi
* /�0i, with ��t� the

usual temperature profile of the BCS gap. Other choices
could be made. The superfluid density ns is proportional to A
for the combined system, specifically ens /m is given by Eq.
�21� with the first two factors omitted.

In Fig. 5, we show both the B�T� and the b�T� for a model
which uses truncated Lorentzians for the �2Fij��� spectra.
This same model was used in our previous work10 and so we
refer the reader to that paper for details. Also, in Ref. 10 may
be found the curves for the �i�T�, the penetration depth, and
other quantities for the same parameters used here. The es-
sential parameters of this model are �11=1, �22=0.5 and the
interband electron-phonon coupling is varied from �12=�21
=0.0001 �nearly decoupled case� to 0.1 �more integrated
case�. In addition, the �ij

* =0, vF1=vF2, and n1=n2. In the
nearly decoupled case of �12=�21=0.0001, it can be seen
that the solid curve looks like a superposition of two separate

superconductors, one with a Tc which is about 0.33 of the
bulk Tc. The lower temperature part of this curve is primarily
due to the �-band �or band 2� which is three dimensional,
and indeed, when examined in detail, it has the characteristic
behavior of the 3d example studied in the one-band case. The
part of the curve at higher temperatures above about t
�0.35 is due to the -band �or band 1� which is taken to be
2d and indeed, in the case of B�T� it shows a dependence
approaching Tc that is expected for 2d strong coupling with
some interband effects. The relative scale of the two sections
of the curve is set by the value of the gap anisotropy u
=�02/�01 and the ratio �1+�11+�12� / �1+�22+�21�. The
overall scale on the y axis for b�T� differs from that of Fig. 4
due to our choice of j00 for the normalization in the nonlinear
term. Indeed, for nearly decoupled bands �solid curve�, the
value of the nonlinear coefficient b�T� is small at reduced
temperature t=0.4 just above the sharp peak due to band 2.
Specifically, it is of order 0.5. If it had been referred to j0

instead of j00, it would be smaller still by a factor of 1.7 and
comparable to the single band 2d BCS result at the same
reduced temperature �Fig. 4 bottom frame, solid curve�.
However, as the nondiagonal electron-phonon couplings �12
and �21 are increased and a better integration of two bands
proceeds, b�T� at t=0.4 can increase by an order of magni-
tude as, for example, in the dashed curve. The actual scale in
this region is set by the details of the electron-phonon cou-
pling �see later the specific case of MgB2�.

With more integration between the bands, one finds that
the sharp peak at lower T is reduced and rounded with a tail
reaching to Tc. When �12=�21=0.1, the feature characteristic
of the �-band Tc is almost gone in B�T� and absent entirely
in b�T�, even for modest interband coupling. The same con-
clusion holds for the effects of interband scattering �shown in
Fig. 5 for a value of t12

+ = t21
+ =0.1Tc0 for the nearly decoupled

case� which also integrates the bands and eliminates the
lower energy scale. However, while the structure at the lower
Tc is now reduced to the point of giving a monotonic curve
for b�T�, there still remains a large nonlinear contribution
well above that for the one-band s-wave case, which marks
the presence of the second band.

We can have further insight into these results and check
our work by developing some simple analytic results in
renormalized BCS theory �RBCS�. For a summary of the
approximations of RBCS and a comparison with full numeri-
cal solution for various properties including js, we refer the
reader to our previous work.10,26 For simplicity, we take both
bands to be three dimensional in the following. Near T=Tc,
Eqs. �6� and �7� are modified for each band to

Ai = 2�1 − t�
1

�i
�23�

and

Bi =
7

6

��3�
��Tc�2

�0i
2

�i�
, �24�

where the functions �i and �i� have been derived in Ref. 26
and vFi

*2�i� is independent of vFi
* , where vFi

* =vFi / �1+� j�ij�.
The �’s depend on the microscopic parameters of the theory.

FIG. 5. The temperature dependence of nonlinear coefficient
B�T� �top frame� and b�T� �bottom frame� for a model two-band
superconductor based on a Lorentzian model for the spectral densi-
ties �ij

2 F���, as described in the text. Shown is the effect of in-
creased interband coupling, beginning with a nearly decoupled
curve with �12=�21=0.0001 �solid� and progressing to more inter-
band coupling with �12=�21=0.01 �dashed� and 0.1 �dotted-
dashed�. The dotted curve is for �12=�21=0.0001 and with inter-
band impurity scattering of t12

+ = t21
+ =0.1Tc0 included.
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In RBCS, they are �ij, �ij
* , vFi, and ni, from which Tc and �0i

follow. While the expressions obtained for the �i and �i� are
lengthy, and hence we do not repeat them here, they are
explicit algebraic forms. It is useful in this work to consider
several simplifying limits. For decoupled bands �12=�21
=�12

* =�21
* =0 and A2=B2=0. As the band 2 does not contrib-

ute near Tc, A1 and B1 take on the form of the single band
case �Eqs. �6� and �7��. Another limiting case is the separable
anisotropy model.26 In this model, there are only two gap
values with a ratio of u= �1−a� / �1+a�, with a an anisotropy

parameter often assumed small. In this case, �̄11= �̄�1
+a�2 /2, �̄22= �̄�1−a�2 /2, and �̄12= �̄21= �̄�1−a2� /2, where

�̄=� / �1+�� and �̄ij =�ij / �1+�l�il�. As a result

1

�1
= �1 + a�2�1 − 5a2�,

1

�2
= �1 − a�2�1 − 5a2� , �25�

and

1

�i�
=

vFi
*2

�i
. �26�

In this model, taking in addition that vF1=vF2 and n1=n2
=n /2 leads to the one-band case and this can be used as a
check of our algebra.

To see the consequences of this algebra for our nonlinear
coefficient b�T�, we begin with the decoupled band case near
T=Tc for which A2=B2=0 and A1 and B1 reduce to their
single band value. In this limit of t→1,

b�t� =
B1

A1
3�1 + u

vF1

vF2
�2

, �27�

where u is the gap anisotropy parameter u=�02/�01, and �0i
is the gap at T=0. This expression shows explicitly the cor-
rections introduced by the two-band nature of the system
over the pure one-band case. Note that b�T� is always in-
creased by the presence of the correction term. In �27�, u can
never be taken to be one since we have assumed band 2 is
weaker than band 1. Before leaving the decoupled case, it is
worth noting that b�T� will show a change at the band 2
critical temperature Tc2. For T below Tc2, A2 and B2 will be
finite while above this temperature they are both zero. When
the coupling �12 and �21 is switched on but still small, we
expect that these quantities will acquire small tails and that
they vanish only at Tc. This is the hallmark of nearly decou-
pled bands.

For the anisotropic a2 model near Tc,

b�t� =
7��3�
6�2 ��0

av

Tc
�2 1 + 8a2

�2�1 − t��3 , �28�

where the average gap �0
av is related to Tc by 2�0

av/Tc
=3.54�1−3a2 /2�. For a2=0 this expression reduces properly
to the one-band limit. Therefore, it is seen that anisotropy
increases b�T� for T near Tc.

Another interesting limiting case is to assume both bands
are the same, i.e., isotropic gap case, but that the Fermi ve-
locities differ in the two bands. Near Tc, we obtain

b�t� =
7��3�
6�2 ��0

Tc
�2 1

�2�1 − t��3

1

8

�vF1 + vF2�2

�vF1vF2�2 �vF1
2 + vF2

2 � .

�29�

In this case, the Fermi velocity anisotropy changes the non-
linear coefficient, but when vF1=vF2 the expression reduces
properly to the one-band result. We find that the Fermi ve-
locity anisotropy increases b�T� near Tc, a result that is seen
in one of our calculations for MgB2 shown in Fig. 6.

With Fig. 6, we now turn to the specific case of MgB2,
where we have used the parameters and �2Fij��� given by
band structure calculations, and as a result, there are, in prin-
ciple, no free parameters other than varying the impurity
scattering rate. The basic parameters are �=1.017, ���

=0.448, ��=0.213, ��=0.155, �
* =0.210, ���

* =0.172,
��

* =0.095, ��
* =0.069, with a Tc=39.5 K and a gap aniso-

tropy of u=0.37. The ratio of the two density of states is
N��0� /N�0�=1.37 and of the Fermi velocities is vF� /vF

=1.2. We have found excellent agreement between theory
and experiment for these parameters, as have other
authors.10,26 As we have found in our previous work, MgB2
is quite integrated between the bands. It is also an interme-
diate strong coupler with Tc /�ln=0.05 and thus there is com-
petition between the strong-coupling effects and the two-

FIG. 6. The nonlinear coefficients B�T� �top frame� and b�T�
�bottom frame� versus T /Tc for the case of MgB2. The solid curve is
for the pure case �no impurity scattering�, the dashed for impurities
in the  band with t11

+ =Tc0 and dotted-dashed for t22
+ =Tc0. In the

pure case, increasing the ratio of vF2 /vF1=3 gives the dotted curve.
The inset in the top frame gives A�T� vs T /Tc and the bottom frame

inset shows b̄�T�.
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band anisotropy.10 In Fig. 6, the solid curve gives the
prediction for MgB2 for B�T� and b�T�. A strong nonmono-
tonic feature around the lower band energy scale is observed
in B�T�, but the b�T� is monotonically increasing with tem-
perature. To see the second band effects in b�T�, it is better to

plot b̄�T� �the inset� which accentuates the subtle variations
found at the lower energy scale associated with the � band.
Also shown in the inset for the upper frame is A�T�, which
gives the temperature dependence of the superfluid density.
The solid curve agrees with our previous calculation by other
means.10 The variation in A�T� appears to be sufficient to
remove the bump in B�T� when divided by three factors of
A�T� to obtain the definition of b�T�. Also, shown are the
effects of intraband scattering with t11

+ =Tc0 for the dashed
curve and t22

+ =Tc0 for the dotted-dashed curve. Scattering in
the �-band reduces its contribution and provides an impurity
tail at low T, as found for the one-band case. However, scat-
tering in the -band, while lowering B�T� near Tc as ex-
pected, does not appear to add weight at low T. This is be-
cause the parameters for MgB2 heavily weight the �-band
and the -band is a small component. Thus, upon compari-
son between - and �-band scattering, b�T� could be low-
ered at t=0.5, for example, by putting impurities in the
�-band, but it would be raised if the impurity scattering is in
the -band. The dotted curve in the figure is for pure MgB2
but where we have taken vF2 /vF1=3 to mimic a case where
transport may happen along the c axis. In this instance, the
bump in B�T� remains, but is gone in b�T�. We see that b�T�
is large due to the higher power of the Fermi velocity ratio
that enters the calculation, and, as a result, the nonlinearity is
greatly increased. As b�T� is a relevant quantity for micro-
wave filter design, this study provides some insight into
which factors may be used to optimize the material and re-
duce the nonlinear effects.

V. CONCLUSIONS

Study of nonlinear current response is important for de-
vice applications and for providing fundamental signatures
of order parameter symmetry, such as have been examined in
the case of d-wave superconductivity. In this paper, we have
considered the case of two-band superconductors. In so do-
ing, we also reexamined the one-band case and discovered
that there can exist extra nonlinearity at both low and high
temperatures due to strong electron-phonon coupling, for
which we have provided strong-coupling correction formu-
las, whereas the excess nonlinearity induced by impurity
scattering occurs primarily at low temperatures. At Tc, impu-
rities will give an enhanced or decreased contribution de-
pending on the particular nonlinear coefficient discussed. In

this paper, we have examined two nonlinear coefficients de-
fined in the literature, one due to Xu et al.2 and one defined
by Dahm and Scalapino, with an emphasis on the latter as it
is related to the intermodulation power in microstrip
resonators.13

We have also studied issues associated with dimensional-
ity motivated by the two-band superconductor MgB2, which
has a two-dimensional -band and a three-dimensional
�-band. Within our one-band calculation, aside from an
overall factor of 2/3, we find little difference in the tempera-
ture variation of the nonlinear coefficient in mean-field be-
tween 2d and 3d. This is further reduced by strong-coupling
effects.

For two-band superconductors, we show that for nearly
decoupled bands a strong signature of the small gap �-band
will appear in the nonlinear coefficients, but with increased
interband coupling or interband scattering, such a signature
will rapidly disappear. Likewise, intraband impurities in the
�-band will wash out the temperature variation of the
�-band, whereas the intraband impurities in the -band
largely effect the nonlinearity at higher temperatures above
the energy scale of the �-band, for the parameters typical to
MgB2.

We provide a prediction for the nonlinear coefficient in
MgB2 using the parameters set by band structure calcula-
tions. As the bands in MgB2 are quite integrated, we find that
the nonlinear coefficient b�T� is monotonically increasing in
contrast to a previous prediction, which was based on a num-
ber of approximations,13 and we find that the increased non-
linearity due to the �-band is best reduced at t=0.5 by add-
ing impurities to the �-band. Should the supercurrent sample
the c-axis direction, a larger value in the Fermi velocity ratio
between the bands would result and this effect is found to
increase the nonlinearity. Finally, several simple formulas
have been provided for near Tc which aid in the understand-
ing of the range of behavior observed in the numerical cal-
culations. We await experimental verification of our predic-
tions.
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