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We investigate magnetic properties of lightly doped antiferromagnetic Mott insulators in the presence of
nonmagnetic impurities. Within the framework of the t-J model we calculate the doping dependence of the
antiferromagnetic order parameter using self-consistent diagrammatic techniques. We show that in the presence
of nonmagnetic impurities the antiferromagnetic order is more robust against hole doping in comparison with
the impurity-free host, implying that magnetic order can reappear upon Zn doping into lightly hole-doped
cuprates. We argue that this is primarily due to the loss of coherence and reduced mobility of the hole
quasiparticles caused by impurity scattering. These results are consistent with experimental data on Zn-doped
La2−xSrxCuO4.
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I. INTRODUCTION

The undoped parent compounds of the high-Tc supercon-
ducting cuprates, such as La2CuO4, are antiferromagnetic
�AF� insulators. Upon introducing a small amount of holes,
e.g., by substituting La with Sr in La2CuO4, the commensu-
rate long-range order is rapidly suppressed and completely
destroyed at few percent of hole doping �xc�2% in
La2−xSrxCuO4�.1 For 2% �x�5.5%, La2−xSrxCuO4 enters a
spin-glass phase with incommensurate spin correlations, and
finally becomes superconducting for larger x, with only
short-range AF correlations in the superconducting state. It is
believed that a proper understanding of the magnetism is
crucial for a theoretical description of high-Tc cuprates.

On the theoretical side, the suppression of AF order upon
hole doping is reasonably well understood.2–7 Numerous ap-
proaches employ effective single-band models with strong
correlations to describe the copper oxide planes. The mag-
netic order, present in the half-filled Néel state, is scrambled
by the motion of holes; this leads to heavy hole quasiparti-
cles �so-called magnetic or spin polarons� and to a reduction
of the magnetic order parameter, accompanied by a softening
of the spin-wave spectrum.2–4 �A different approach describ-
ing the destruction of AF order, based on the idea that holes
introduce strongly ferromagnetic frustrating bonds, has been
proposed in Refs. 6 and 7.�

Localized impurities provide an interesting tool to inves-
tigate bulk properties of strongly correlated systems in gen-
eral, and high-Tc cuprates in particular. Doping of nonmag-
netic impurities �i.e., vacancies� into the parent
antiferromagnet,8–10 e.g., in La2Cu1−zZnzO4,11 leads to a
gradual suppression of magnetism, with long-range order
surviving up to the percolation threshold, zp�40.5%. One
expects that combining hole doping and nonmagnetic impu-
rities would lead to a destruction of the AF order even faster
than with hole doping alone. Surprisingly, magnetization
measurements on La2−xSrxCu1−zZnzO4 by Hücker et al.12

have shown that this is not the case. They found that intro-
ducing nonmagnetic Zn impurities in lightly doped
La2−xSrxCuO4 �x�4% � causes an initial increase of the Néel
temperature, TN, while only an addition of Zn beyond
z�10% leads to a decrease of TN. Concomitantly, the
decrease of TN with increasing hole doping x is much weaker
in Zn-doped compounds. Recently, it has been found that
such an impurity-induced reappearance of the AF ordering is
even more pronounced in samples with magnetic Ni
impurities.13

The purpose of the present paper is a theoretical descrip-
tion of the combined effect of mobile holes and static vacan-
cies in lightly doped Mott insulators. We argue below that
vacancies primarily prevent the holes from destroying the
long-range ordered magnetism; other �purely magnetic� ef-
fects are subdominant. Starting from a magnetically ordered
state, we consider the influence of mobile holes on the host
magnetism in a situation where hole quasiparticles scatter off
the static impurities. Technically, we employ a t-J model and
the self-consistent Born approximation �SCBA� to account
for the interaction between holes and spin waves;2,3 the effect
of the impurities is treated via a self-consistent T-matrix
approach. We show that the destructive effect of holes on
the background magnetism is reduced �i� when holes are
less mobile or less dispersive and �ii� when holes are
less coherent, both changes caused by the addition of
nonmagnetic impurities. This results in commensurate anti-
ferromagnetism being more robust against hole doping for
impurity-doped host systems compared to clean ones. We
obtain detailed magnetization curves as functions of hole
and impurity doping, being in good agreement with the
available data on La2−xSrxCu1−zZnzO4. �Incommensurate
magnetism, as occurs for hole doping x�4%, with much
smaller ordering temperature, is not the subject of this
paper.�

Before describing our theoretical approach, we briefly
summarize impurity effects in insulating quantum magnets
and in cuprate materials.
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A. Impurities in quantum magnets

In a quantum spin system �i.e., a Mott insulator�, which
can be tuned between an antiferromagnetic and a paramag-
netic ground state, the effect of static nonmagnetic impurities
�i.e., vacancies� is markedly different in both phases, the ori-
gin being the random Berry phases introduced by the doping.
As mentioned above, introducing vacancies into the long-
range ordered magnet weakens the magnetic order. At small
impurity concentrations, this effect can be well captured us-
ing linear spin-wave theory.9 For a square lattice geometry,
long-range magnetism persists up to the percolation
threshold14 zp; this has been nicely verified for
La2Cu1−zZnzO4 using neutron scattering.11 The quantum
phase transition at zp displays an interesting interplay of clas-
sical percolation physics and quantum effects.10,15

In contrast, removing spins in the quantum paramagnet
�which is a valence bond crystal� has been shown to create
effective magnetic moments in the vicinity of the
dopants.16–21 Microscopically, the formation of the moments
can be understood as breaking of host valence bonds. The
impurity-induced moments are magnetically coupled via the
�gapped� host spin excitations and—in the absence of geo-
metric frustration—eventually order at very low
temperatures.19,20 Thus, at zero temperature the paramagnetic
phase of the clean host is replaced by a phase with weak
magnetic order through doping with nonmagnetic impurities.

Besides vacancies, magnetic impurities may also be intro-
duced into quantum magnets, either by replacing host ions
by ions of different spin �e.g., Cu by Ni�, or inserting addi-
tional �e.g., out-of-plane� magnetic ions. At small doping, the
physics is similar to the one in the case of vacancies, i.e., it is
dominated by the low-energy behavior of the impurity mo-
ments �random Berry phases�, but percolation physics at
larger doping is absent.

B. Impurities in cuprates

Impurity effects in cuprate superconductors are diverse,
the most prominent being the rapid suppression of supercon-
ductivity by in-plane impurities like Zn or Ni substituting for
Cu. For hole concentrations in the superconducting regime, it
has also been shown that nominally nonmagnetic impurities
like Zn or Li induce magnetic moments, which have a stag-
gered spatial structure around the actual impurity site.
NMR22 shows that the impurity moments form at tempera-
tures above 400 K, and the formation mechanism is believed
to be similar to that in an insulating paramagnet, i.e., break-
ing of singlet bonds described above. However, impurity-
induced magnetic order has not been detected, the reason
likely being strong quantum effects �e.g., Kondo screening of
the moments� due to the presence of mobile charge carriers.
�One exception is magnetic order in Co-doped YBa2Cu3O6+�

�Ref. 23� due to the large spin of Co quantum effects are
weaker.� Further effects of Zn and similar impurities in cu-
prates with larger hole doping include magnetic in-gap
states,24,25 the broadening of the gapped bulk-spin excita-
tions, possible pinning of charge-density modulations

�stripes�, the local modulation of the superconducting order
parameter, and large peaks in the density of states close to
the Fermi level �as seen, e.g., in scanning tunneling micros-
copy�.

For smaller hole doping �i.e., in the insulating regime�,
the impurity effects on magnetism and transport have also
been studied extensively.12,13,26,27 In La2−xSrxCu1−zZnzO4

with x�3%, codoping with Zn leads to a reappearance of
ordered magnetism. The relatively high ordering tempera-
tures suggest that this is not just the magnetism of impurity
moments as described above for insulating magnets �which
would be weak, as in Mg-doped TlCuCl3

28�. The continuous
evolution of the ordering temperature with x and z also hints
that the magnetism in the Zn and hole-doped material is
smoothly connected to the commensurate antiferromag-
netism of the parent compound, i.e., it is neither stripelike
nor strongly glassy. �Note that the freezing temperature in the
spin-glass state of La2−xSrxCuO4 is much below the ordering
temperature observed in Refs. 12 and 26. The suppression of
glassy behavior upon Zn doping is also consistent with very
recent �SR and susceptibility data.29� A natural conclusion is
that the Zn impurities primarily “undo” the effect caused by
the mobile holes on the commensurate antiferromagnetism.
Resistivity measurements in La2−xSrxCu1−zZnzO4 indicate a
decreasing hole mobility with increasing Zn doping. Taken
together, we conclude that Zn impurities tend to hinder the
coherent motion of holes and thus prevent the magnetic order
from being scrambled; this will be the central idea of our
approach below. Other effects, namely the generation of ef-
fective staggered moments around Zn and vacancy dilution
of the magnetism �leading to percolation physics for z close
to zp�, are clearly present, but are assumed to be subleading
�at least for small impurity concentration�.

We note that an interesting dopant in La2CuO4 is Li �sub-
stituting for Cu�; this provides both an extra hole and a va-
cancy in the CuO plane. Studies30,31 of La2Cu1−yLiyO4 have
shown that commensurate magnetism survives up to y=3%.
Transport data indicate that the holes introduced by Li dop-
ing remain localized also for larger y �in contrast to Sr dop-
ing�. Recent experimental studies show that charge and spin
dynamics in La2Cu1−yLiyO4 appear to be glassy over a large
range of doping.31 Thus, the behavior of La2Cu1−yLiyO4 is
different from the one of La2−xSrxCu1−zZnzO4 with x=z=y,
the reason clearly being on the quantum chemistry side �e.g.,
the pinning potentials for holes being different for Li and Zn
sites�. Reference 32 proposed an antiferromagnetic cluster
state arising from Coulomb trapping of holes to explain some
of the properties of La2Cu1−yLiyO4, but more theoretical
studies are clearly required.

C. Outline

The remainder of the paper is organized as follows. In
Sec. II we will introduce the effective model describing the
interaction between holes and spin waves. In Sec. III the hole
and spin-wave Green’s functions will be derived in the
framework of the SCBA for the impurity-free system. Effects

M. KIRĆAN AND M. VOJTA PHYSICAL REVIEW B 73, 014516 �2006�

014516-2



of the Zn impurities are discussed in Sec. IV, and Sec. V
gives the expressions for magnetic properties within our ap-
proach. Finally, numerical results together with a comparison
to experimental data are presented in Sec. VI. A discussion
concludes the paper.

We note that Korenblit et al.33 have put forward a some-
what different explanation for the experiments of Hücker
et al.,12 based on the frustration model.6,7 They argued that
Zn impurities remove some of the frustrating bonds gener-
ated by mobile holes. However, their calculations do not take
into account the issue of reduced hole mobility due to impu-
rity doping; we will further comment on their results towards
the end of the paper. Impurity effects in cuprates have also
been studied within the spin-fermion model.34 The authors
do find a recovery of commensurate magnetism in a hole-
doped situation upon adding impurities; however, the simpli-
fications within the spin-fermion model �e.g., the absence of
quantum spin waves� preclude a comparison with experi-
ments.

II. THE EFFECTIVE HAMILTONIAN

In the following two sections we establish notation
and—to keep the paper self-contained—summarize the mag-
netic polaron model together with its SCBA treatment in the
impurity-free situation, following Refs. 2, 3, and 35.

We start from the standard t-J model on a square lattice,
H=Ht+HJ, and employ a representation using slave-fermion
operators f i for spinless holes and Holstein-Primakoff bosons
bi for spin flips away from the Néel-ordered reference. This
gives2,36,37

Ht = − t�
�i,j�

f if j
†�bj + bi

†� − t� �
��i,j��

f if j
† + h.c., �1�

HJ =
J

2 �
�i,j�

�bi
†bi + bj

†bj + bibj + bi
†bj

†� �2�

in standard notation. The first kinetic term in �1� describes
processes in which holes hop from one to the neighboring
site creating or annihilating spin waves; the next-neighbor
hopping term t� is allows for direct hole motion within one
sublattice �an additional term of the form f if j

†bjbi
† is ne-

glected�. Values of t /J=3–5, t� / t=−0.1 to −0.2 are relevant
for cuprate materials. In general, the Heisenberg term �2�
contains an additional factor f if i

†f j f j
† which accounts for the

loss of magnetic energy due to the hole doping. On the
mean-field level we have f if i

†=1− f i
†f i=1−�, where � is the

hole concentration. Consequently, the AF exchange coupling
is renormalized according to J→ �1−��2J, but for small hole
doping we can neglect this effect.

Fourier transforms of the b�f� are defined in the reduced
�magnetic� Brillouin zone, leading to bq

A, bq
B �fk

A , fk
B� for the

two sublattices A and B. The spin-wave part is diagonalized
using a Bogoliubov transformation, introducing new bosonic
operators for spin waves, �q and �q, with bq

A=uq�q+vq�−q
†

and bq
B†=vq�q+uq�−q

† . The usual Bogoliubov parameters are
given by

uq = �1 + �q

2�q
�1/2

, vq = − sgn�	q��1 − �q

2�q
�1/2

, �3�

with 	q= �cos qx+cos qy� /2 and �q= �1−	q
2�1/2. Substituting

the new operators �q, �q into the Hamiltonian we arrive at
the following so-called spin-polaron model:

Ht =
zt
	N

�
q,k


V�q,k�fk
A†fk−q

B �q + V�− q,k − q�fk
A†fk−q

B �−q
†

+ h.c.� + t��
k

�fk
A†fk

A + fk
B†fk

B� ,

HJ = �
q


q
0��q

†�q + �q
†�q� . �4�

Here, N is the number of sites in each sublattice, and the
coordination number is z=4. All sums run over the magnetic
Brillouin zone. The bare spin-wave energy is 
q

0 = �zJ /2��q.
The interaction vertex between holes and spin waves is
given by V�q ,k�=uq	k−q+vq	k and vanishes for q=0 or
q= �� ,��. As a consequence, not only the coupling between
holes and long-wavelength spin fluctuations is important but
also the coupling to short-wavelength spin fluctuations.

III. GREEN’S FUNCTIONS AND BORN
APPROXIMATION

The hole Green’s function in the absence of impurities is
defined by G��� ,k�=−�Tfk

���fk
�†�0��, � ,�=A ,B, with the

Fourier transform G���i�n ,k�=�0
�dG��� ,k�ei�n, where

�n= �2n+1��T represents fermionic Matsubara frequencies.
The spin-wave Green’s function acquires the matrix form

D� �,q� = � − �T�q���q
†�0�� − �T�q���−q�0��

− �T�−q
† ���q

†�0�� − �T�−q
† ���−q�0��

� .

The unperturbed spin-wave propagator is

D� 0
−1�i
n,q� = �i
n − 
q

0 0

0 − i
n − 
q
0 � , �5�

where 
n=2�nT. Introducing a self-energy matrix �� �i
n ,q�,
the solution of the Dyson equation reads

D� �i
n,q� =
1

d�i
n,q��i
n + 
q
0 + �22�i
n,q� − �12�i
n,q�

− �21�i
n,q� − i
n + 
q
0 + �11�i
n,q�

� , �6�
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where

d�i
n,q� = 
i
n + 
q
0 + �22�i
n,q��
i
n − 
q

0 − �11�i
n,q��

+ �12�i
n,q��21�i
n,q� . �7�

The definition of the spin-wave propagators dictates that
�22�i
n ,q�=�11�−i
n ,−q� and �12�i
n ,q�=�21�i
n ,q�.

A. Spin-wave self-energies

The spin-wave self-energies, �11�i
n ,q� and �12�i
n ,q�,
are calculated in the spirit of SCBA,37 i.e., using the leading
�bubble� diagram describing the decay of the spin fluctua-
tions into a particle-hole pair with the full hole propagators,
see, e.g., Fig. 1 of Ref. 2. This approximation amounts to a
summation of an infinite class of noncrossing diagrams; ver-
tex corrections can be shown to be small for small doping38

and will be neglected. Explicitly, the self-energies are given
by

�11�i
n,q� = �zt�2 1

�
�
i�n

1

N�
k


V�q,k��2GAA�i
n + i�n,k�

�GBB�i�n,k − q� , �8�

�12�i
n,q� = �zt�2 1

�
�
i�n

1

N�
k

V�q,k�V�− q,k − q�

�GAA�i
n + i�n,k�GBB�i�n,k − q� . �9�

For simplicity and as in Ref. 3, in our numerics we will not
perform a fully self-consistent calculation for the hole propa-
gators, but instead use a trial form for the hole spectral den-
sity �derived from the SCBA solution of the single-hole
problem� together with a rigid-band approximation. �A fully
self-consistent SCBA calculation at finite hole concentration
has been performed in Ref. 38; it shows that at small hole
concentrations the hole spectrum changes little with doping,
i.e., the rigid-band picture is reliable.�

B. Hole spectrum

The single-hole problem in the t-J model has been studied
extensively using various techniques, including the SCBA
within the spin-polaron model sketched above.36,39,40 It has
been established that the spectral function for a single hole
consists of a well-defined peak a low energies, �coh�
 ,k�,
which corresponds to the coherent motion of the dressed hole
quasiparticle, and a broad incoherent part at higher energies,

��
,k� = �coh�
,k� + �incoh�
,k� . �10�

The coherent hole motion arises mainly from a combina-
tion of hopping and spin-flip processes and results in a nar-
row quasiparticle dispersion, �k, with a bandwidth of
order 2J and a dispersion minimum at momenta kmin
= �±� /2 , ±� /2�. The quasiparticle weight, Z0, is reduced
from unity due to the dressing of the hole with spin fluctua-
tion and scales with J / t in the physically relevant parameter
regime. Therefore, for the coherent part we use2,3

�coh�
,k� = Z0��
 − �k���2J − �k� , �11�

with the dispersion �k=J�cos2 kx+cos2 ky�. We have assumed
that near the minima the dispersion is isotropic and can be

approximated with �k� k̄2 / �2meff�, where k̄ measures the
distance from the kmin. Consequently, the effective mass of
the hole scales as meff

−1 =2J. Here a remark is in order: In the
t-J model without next-neighbor hopping, t�=0, the disper-
sion near kmin is known to be anisotropic, i.e., rather flat
along the �0,��– �� ,0� direction.41 However, photoemission
results of Sr2CuO2Cl2 indicate an almost isotropic
dispersion;42 on the level of the t-J model a t� term is needed
to capture this physics.43 Later on, it has been shown that a
t-t�-J model reproduces salient photoemission features of
different cuprate families.44 Therefore, we employ an isotro-
pic dispersion in the following; we have also performed a
few calculations with an anisotropic dispersion appropriate
for t�=0, leading to qualitatively similar results �the �c in
Fig. 1 below changes by less than 10%�.

The incoherent part of the spectrum arises from hole hop-
ping inside the spin-polaron �or spin-bag� quasiparticle, with
the characteristic energy scale t. A reasonable approximation
is a momentum-independent constant,

�incoh�
� =
1 − Z0

W
��
 − 2J���W + 2J − 
� , �12�

where W=2zt is the incoherent bandwidth.
Within a rigid-band approximation, the hole chemical po-

tential ���� is fixed by the hole density � through

� =
1

N
�
k


−�

+�

d
��
 + �,k�nF�
� , �13�

where ��
 ,k� is the doping-independent hole spectral func-
tion �10�, and nF�
� the Fermi function. For small hole dop-
ing ���Z0� the chemical potential lies in the coherent band
and at zero temperature has a value �=��J /Z0.

Eqs. �6�, �8�, �9�, and �13� completely describe the inter-
action between hole quasiparticles and spin waves in the
impurity-free host and have been used in Ref. 3 to investi-
gate the destruction of magnetism in weakly doped cuprates.

IV. THE EFFECT OF IMPURITIES

In this section we extend the theory to account for a finite
density of nonmagnetic impurities in the system. As dis-
cussed in Sec. I B, we assume that the vacancies primarily
act as pointlike potential scatterers for the mobile holes. Ne-
glecting interference effects between spin-wave and impurity
scattering processes for holes, we can capture the scattering
off the impurities using a self-consistent T-matrix approach
for the dressed hole quasiparticles, Eq. �10�.

A. Scattering potential

Before proceeding a brief discussion of the quantum
chemistry aspects is in order. Remarkably, there is no con-
sensus on the description of Zn impurities within a one-band
model for the CuO planes. Zn has a closed 3d10 configura-
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tion, suggesting that holes are expelled.45 This seems to be in
agreement with cluster calculations in Ref. 46, which find the
environment of a Zn atom to be similar to an undoped parent
material. However, recent LDA calculations47 have predicted
a potential on the Zn site being repulsive for electrons �i.e.,
attractive for holes�. In any case, the impurity potential is
likely strong compared to the electron hopping. In what fol-
lows we will model Zn as repulsive pointlike scatterer for
holes. For some parameter values we have also performed
calculations with an attractive potential; the results will be
mentioned below. �We note that Ref. 32 assumed a strongly
attractive potential for holes associated to Li impurities in
La2Cu1−yLiyO4; if this is correct, and the potential of Zn is
repulsive for holes, this would provide a reasonable explana-
tion for the different properties of La2Cu1−yLiyO4 and
La2−xSrxCu1−zZnzO4.�

In our calculations, we will neglect the effect of the im-
purities on the spin waves. This piece of physics is well
studied:9,10 the magnetism is suppressed rather slowly with
vacancy doping �compared to hole doping�. In principle,
spin-wave scattering off the impurities could be taken into
account along the lines of Ref. 9. In Sec. VI B we will ac-
count for this dilution/percolation effect by simply multiply-
ing our results with a magnetization reduction factor taken
from the studies of the diluted quantum Heisenberg antifer-
romagnet.

Further, we will also neglect the physics of impurity-
induced moments.16–20 We believe that magnetism arising
from these moments alone is too weak to explain the large
observed Néel temperatures, i.e., true bulk magnetism is re-
quired. In a bulk-ordered phase, the effective impurity mo-
ments will order below TN due to the mean field arising from
the bulk order parameter; this has been nicely seen48 in
La2−xSrxCu1−zZnzO4. However, the contribution of the impu-
rity moments to the total order parameter is small.

B. Self-consistent T-matrix approach

For small impurity concentration, nimp�1, interference
effects between different impurities are negligible, and the
self-consistent T-matrix approximation49 �SCTMA� is suit-
able to account for multiple scattering on a single impurity.
Here we employ the SCTMA for spin-polaron quasiparticles,
i.e., for holes which are already dressed by the interaction
with spin waves. Within SCTMA the full-hole Green’s func-

tion G̃�i�n ,k� is given by

G̃−1�i�n,k� = G−1�i�n,k� − �̃�i�n,k� , �14�

where G�i�n ,k� is the hole Green’s function corresponding to
the spectral density �10�, and the hole self-energy from im-
purity scattering is

�̃�i�n,k� = nimpTk,k�i�n� . �15�

For pointlike scatterers of strength V0, the T-matrix depends
only on frequency as follows:

Tk,k��i�n� � T�i�n� =
V0

1 − V0G̃�i�n�
, �16�

and G̃�i�n�=N−1�kG̃�i�n ,k� is the local hole Green’s func-
tion.

With the replacements G→G̃ �14� in Eqs. �8� and �9� and

�→ �̃=−Im G̃ /� in �13� we can now calculate how the im-
purities affect the spin-wave spectrum and consequently the
magnetic properties of the AF host. In contrast to Ref. 2 we
will not employ any further approximations.

V. MAGNETIC PROPERTIES

The spin-wave Green’s functions defined in Sec. III allow
for a direct calculation of static magnetic properties.

A. Staggered magnetization

The staggered magnetization in the Néel state decreases
with hole doping,

m��� = m0 − �m��� , �17�

where the first term denotes the staggered moment in 2D AF
reduced by ground-state spin-wave fluctuations only,

m0 =
1

2
−

1

2N
�
q
� 1

�q
− 1� , �18�

with �q= �1−	q
2�1/2. For a square lattice and spin-1

2 we have
the well-known spin-wave result m0�0.303 �which is in ex-
cellent agreement with m0=0.3070�3� from quantum Monte
Carlo simulations50�. The effect of doped holes on the AF
order is included through the second term in �17�, given by35

�m��� =
1

N
�
q

��q
†�q� − 	q��q�−q�

�q
. �19�

The bosonic occupation numbers in �19�, being zero in
the undoped case at T=0, can be calculated from the
spin-wave Green’s functions as ��q

†�q�=−D11�=0−,q�,
��q�−q�=−D21�=0−,q�. The phase boundary of the antifer-
romagnetic phase is given by m��c�=0.

Notice that m��� �17� refers to the magnetization per spin
�within the spin-wave approximation�. To obtain the magne-
tization per site, as measured by bulk probes, m��� has to be
multiplied with the factor �1−�−nimp�; this does not change
the location of the phase boundary, �c. Of course, this mean-
field factor only crudely accounts for the dilution of the mag-
netic lattice; in particular, percolation physics cannot be cap-
tured. We will comment on this in Sec. VI B 2 below.

B. Néel temperature

The above calculations, performed at finite temperature,
allow to determine the Néel temperature, TN, from
m�� ,T=TN�=0. This requires a weak AF coupling, J�,
along the direction perpendicular to the CuO plane. In
high-Tc cuprates this interlayer AF coupling is typically
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J���10−5−10−4�J. As a consequence, the spin-wave disper-
sion has a quasi-2D form which is given by


̃q
0 =

zJ

2
		̃0

2 − 	̃q
2 , �20�

where

	̃q = 	q + �	q
�. �21�

Here 	q
�=cos qz, and the ratio between inter- and intralayer

coupling is denoted by �=J� / �2J�.
A drawback of the spin-wave approach is that no sensible

critical behavior is obtained, i.e., the magnetization vanishes
linearly as T→TN �the order parameter critical exponent is
�=1�.

VI. NUMERICAL RESULTS

In this section we will present our numerical results for
the doping dependence of the AF order parameter with and
without impurities. Note that all energies are given in units
of t. Most calculations are done for a two-dimensional sys-
tem at zero temperature;51 the finite-temperature results are
obtained using a finite interlayer coupling.

A. Hole-doped antiferromagnet without impurities

First we will discuss the case of the doped AF host with-
out impurities and compare our results with published
ones.2,3 Extending these calculations, we will consider differ-
ent forms of the hole spectrum to study the influence of both
hole dispersion and hole coherence on the host magnetism.

1. “Mobile” holes

The situation of “mobile” holes refers to a hole spectrum
function as obtained from solving the single-hole problem in
the t-J model, i.e., the hole spectral function consists of both
a coherent, dispersive �11� and an incoherent, localized �12�

part. In Fig. 1 the zero-temperature doping dependence of the
staggered magnetization is shown for different values of the
coupling J and fixed quasiparticle weight Z0 �taken from a
single-impurity calculation36,39,40�.

For J=0.2 we obtain the similar critical hole concentra-
tion as Belkasri and Richard,3 �c�2.7%. Our result for
J=0.25 is a bit smaller than one derived by Khaliullin and
Horsch,2 �c�4%, due to the fact that �as a further approxi-
mation� they have taken into account only the spin-wave
self-energies with small momenta. The disappearance of the
AF order at hole concentrations �c of a few percent is in
good agreement with experiments on both La2−xSrxCuO4 and
YBa2Cu3O6+�.

2. “Localized” (incoherent) holes

Now we turn to a limiting case where the holes are local-
ized in a certain extended region and only move incoherently
�e.g., around a pinning center�. With the above form of the
spectral function �10� this corresponds to the quasiparticle
weight being zero, Z0=0. Thus, we use ��
 ,k�=�incoh�
�
�12�. We study this toy situation to illustrate the strong influ-
ence of hole localization on the magnetic properties.

One expects the incoherent motion of holes is less de-
structive for the AF host in comparison with the case of
“mobile” holes. In Fig. 2 we show the doping dependence of
the staggered magnetization for “localized” holes and differ-
ent values of AF coupling J. �t /J is still a relevant parameter
here because the bandwidth of the incoherent motion is con-
trolled by t. Also note that results are shown for finite tem-
peratures and finite coupling J� implying, e.g., that the value
of the staggered magnetization m�0� differs from the T=0
value m0. However, this difference is rather small since the
effects of T�0 and J��0 tend to compensate.� The critical
hole concentrations �c here are significantly larger than for
dispersive holes, but still much smaller than for strictly static
vacancies �where �c equals the percolation threshold
zp=40.5%�. The reason is of course that even our spatially
localized holes scramble the magnetic background in their

FIG. 1. �Color online� Doping dependence of the staggered
magnetization for “mobile” �i.e., dispersive� holes �in the absence
of impurities� for different values of J at T=0. �Typical parameters
for cuprates obey t /J=3–5.� The weight of the dispersive quasipar-
ticle peak in the hole spectrum is Z0=0.5J / t; the lines are guides to
the eye only. The data are very similar to the ones of Ref. 3.

FIG. 2. �Color online� Doping dependence of the staggered
magnetization now for “localized” holes, i.e., in the absence of a
coherent quasiparticle peak in the hole spectrum �Z0=0�. The cal-
culations have been done at temperature T=0.005, for fixed
J�=0.01J.

M. KIRĆAN AND M. VOJTA PHYSICAL REVIEW B 73, 014516 �2006�

014516-6



vicinity. We call the reader’s attention to the analysis of hole
mobilities in Ref. 12, which concluded that “completely lo-
calized” holes �i.e., with zero mobility� still destroy the host
magnetism three times faster than static vacancies; this gives
�c�13% in reasonable agreement with our data in Fig. 2.

In Fig. 3 the doping dependence of the Néel temperature,
TN, for the “localized” holes is depicted for the same set of
parameters as in Fig. 2. As also known for the case of doping
with mobile holes,3,4 the initial suppression of the Néel tem-
perature with doping is larger than the one of the staggered
magnetization.

Comparing the results for “mobile” and “localized” holes,
Figs. , one can easily conclude that incoherent motion of
holes is less destructive than coherent motion. Therefore, any
mechanism which modifies the hole spectral function in such
a way that suppresses coherent and enhances incoherent mo-
tion will lead to a reiFnforcement of commensurate antifer-
romagnetism. �Note that the limit t→0, corresponding to
immobile holes and percolative destruction of magnetism, is
not described within the current approximation, but can be
captured as in Sec. VI B 2 below.�

B. Hole-doped antiferromagnet with nonmagnetic impurities

Let us finally turn to our main results, namely the mag-
netic properties of the system with simultaneous hole and
impurity doping. Here, the spin-wave properties are calcu-
lated using a hole spectrum function corresponding to “mo-
bile” holes, i.e., consisting of a quasiparticle peak and an
incoherent background, but subjected to impurity scattering
�which redistributes weight in the hole spectrum�.

Typical results for the AF order parameter as function of
the hole doping are shown in Fig. 4. Clearly, Zn doping
increases the critical hole concentration �c. The difference
between the �c in a case with and without impurities is of
order of 1% which is in reasonable agreement with
experiments;12 this indicates that we indeed capture the main
effect of Zn doping in La2−xSrxCuO4. Notice that �c increases
only weakly as function of the scattering potential V0 for

V0�4. We have performed calculations for different values
of J, with qualitatively similar results �all �c values increase
for larger J, see Fig. 1�. In addition, we found that small to
moderate negative V0 has qualitatively the same effect as
positive V0 �strong negative V0 leads to hole-bound states,
where holes get trapped, and consequently a larger increase
of �c through impurity doping�.

1. Less coherent holes

Within our calculations we can clearly identify the reason
for the antiferromagnetism being more robust in the presence
of impurities. In the self-consistent T-matrix approach of
Sec. IV the main effect of the impurity scattering is to trans-
fer spectral weight, i.e., to reduce the weight of the coherent
dispersive quasiparticle peak. We can quantify that: for
nimp=15% and V0=2 the quasiparticle weight Z0 is reduced
by roughly 10%. A toy calculation with this reduced weight
�but in the absence of impurities� shows that this loss of
quasiparticle weight accounts for 3

4 of the change in m be-
tween the clean and impurity-doped cases. �The remaining 1

4
arises from a change in the quasiparticle dispersion and from
reshuffling spectral weight at higher energies.�

Thus, the loss of coherence of the hole quasiparticle due
to impurity scattering is the main source of the reinforcement
of magnetism. We can interpret this in real space: The coher-
ent motion of the hole quasiparticle in the antiferromagnetic
background corresponds to the emission of a spin wave in
each hopping step, with a strong suppression of the order
parameter. In contrast, during the incoherent motion within
the quasiparticle the hole also absorbs spin waves �due to
self-retracing paths�, and the suppression of antiferromag-
netism is less severe.

2. Spin-wave scattering and percolation

Our approach has so far neglected the dilution effect of
the vacancies on the magnetic, i.e., spin-wave, part of the
model. On the mean-field level, dilution results in a multipli-

FIG. 3. �Color online� Doping dependence of the Néel tempera-
ture for “localized” holes �Z0=0�, with fixed J�=0.01J. �Typical TN

values for undoped cuprates are a few hundred kelvins, e.g.,
La2CuO4 has TN�300 K. The hopping integral t in the t-J model
for cuprates is 300–400 meV�3000–4000 K.�

FIG. 4. �Color online� Doping dependence of the staggered
magnetization for simultaneous hole and impurity doping. The dif-
ferent curves correspond to different impurity strengths V0, the im-
purity concentration is nimp=15%, the V0=0 curve is the impurity-
free case. The other parameters are J=0.2 and Z0=0.5J / t, T=0.
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cative factor of �1−�−nimp� for m to obtain the staggered
magnetization per site. However, impurity scattering of spin
waves is still not included, and our approach falls short of
capturing percolation physics. While the impurity effect on
spin waves could be treated in principle,9 we choose a dif-
ferent route here: As dilution of a well-ordered antiferromag-
net has been studied extensively,10 we can simply multiply
our magnetization results with a renormalization factor
P�nimp� which represents the �normalized� magnetization of a
2D square lattice quantum Heisenberg magnet diluted with
nimp vacancies; this quantity can be taken from quantum
Monte Carlo simulations, Fig. 18 of Ref. 10. With this we
reproduce a vanishing magnetization at the percolation
threshold.14

3. Reappearance of magnetism

To emphasize the fact that impurities help the AF order to
recover we show in Fig. 5 the staggered magnetization m at
zero temperature as a function of hole doping with and with-
out impurities; here m is not normalized to its value at �=0.
Another way to show the recovery of long-range order in the
presence of impurities is presented in Fig. 6, where order
parameter is plotted as a function of impurity concentration
for two different hole dopings. For �=2.7% the AF order sets
in at finite impurity concentration, nimp�2.5%. The presence
of impurities causes the reappearance of the AF order for
hole concentrations greater than ��2.6%, and the order pa-
rameter depends nonmonotonically on the hole doping; both
results are in good agreement with the experiments done on
La2−xSrxCu1−zZnzO4 by Hücker et al.12

For a detailed comparison with experiments a few re-
marks are in order: �i� The present calculation is strictly valid
only for small impurity concentration, nimp�1, when the in-
teraction between impurities is negligible. �ii� Our simplified
treatment of magnetic dilution, utilizing numerical results for
the diluted insulating Heisenberg antiferromagnet, only par-
tially captures the interplay of dilution and quantum fluctua-
tions. In particular, in the presence of vacancies and a small

amount of holes magnetic order does not need to persist up
to the percolation threshold.14 Thus, our data at finite hole
doping become unreliable for nimp�25%. �iii� Corrections
beyond spin-wave theory are required for the description of
critical behavior in the vicinity of �c; we expect m to vanish
with an infinite slope �i.e., the order parameter exponent �
being smaller than unity�. �iv� Experiments usually measure
the ordering temperature TN, not the zero-temperature order
parameter m. Although the two behave in a qualitatively
similar fashion, TN decreases initially faster with doping than
m. Also, for a complete picture it may be necessary to in-
clude the interlayer coupling beyond mean field.52 The de-
tailed behavior of TN with both hole and impurity doping,
taking into account percolation-type physics, is beyond the
scope of this paper.

In Fig. 7 we show the evolution of the critical hole doping
level �c with the impurity concentration. Interestingly �and in
agreement with experiment�, the variation of �c is rather
small, i.e., vacancies cannot be used to shift �c to arbitrarily
large values.

FIG. 5. �Color online� Reappearance of the AF ordering through
impurities: The staggered magnetization, corrected by the percola-
tion factor P�nimp� �see text�, as function of hole doping for zero
and 15% impurity concentration. The parameters are J=0.2, quasi-
particle weight Z0=0.5J / t, impurity potential V0=2, T=0.

FIG. 6. �Color online� Same as Fig. 5, but now showing m as
function of the impurity concentration for different fixed hole dop-
ings. m vanishes at the percolation threshold, nimp=40.5%.

FIG. 7. �Color online� Critical hole doping level, �c, as function
of the impurity concentration nimp for different values of the scat-
tering potential. The parameters are J=0.2, quasiparticle weight
Z0=0.5J / t, T=0.

M. KIRĆAN AND M. VOJTA PHYSICAL REVIEW B 73, 014516 �2006�

014516-8



Last but not least, we briefly comment on the calculation
by Korenblit et al.,33 which provides a different explanation
for the experiments of Ref. 12. They present scaling argu-
ments based on the frustration model, with the key idea that
Zn removes ferromagnetic bonds created by hole doping.
This simple theory predicts that �c can be increased to
large values by introducing Zn impurities; this is in contra-
diction to the experiment. Thus, their simple scaling form
�→��1−nimp�2 cannot apply to larger � and nimp. Also, the
paper makes no reference to the motion and the mobility of
holes, and we think that this aspect is crucial for the descrip-
tion of hole-doped cuprates.

VII. CONCLUSIONS

Motivated by experiments on Zn-doped La2−xSrxCuO4,
we have discussed the interplay of mobile holes and static
nonmagnetic impurities in lightly doped antiferromagnetic
Mott insulators. Based on a self-consistent spin-wave and
T-matrix calculations we have shown that commensurate
long-range order is more robust against hole doping in the
presence of nonmagnetic impurities as compared to the clean
case.

We believe that the most naive picture, namely that Zn
impurities trap holes, is not appropriate. This can already be
seen from the experimental data: at a hole doping of 2.3%
the Néel temperature depends strongly and nonmonotoni-
cally on the impurity concentration for 4% �nimp�15%. In-
stead, we propose that impurities mainly reduce the hole mo-
bility and suppress the coherent part of the hole motion �in
favor of an incoherent background�. In turn, this suppresses
the spin-wave softening caused by coherent hole motion. In
the case of Ni doping13 this effect is corroborated by the
ordering tendencies of the spin-1 impurity moments.
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