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Recent theoretical analysis of spatially-nonuniform modes of the thermomagnetic instability in supercon-
ductors �Phys. Rev. B 70, 224502 �2004�� is generalized to the case of a thin film in a perpendicular applied
field. We solve the thermal diffusion and Maxwell equations taking into account nonlocal electrodynamics in
the film and its thermal coupling to the substrate. The instability is found to develop in a nonuniform, fingering
pattern if the background electric field, E, is high and the heat transfer coefficient to the substrate, h0, is small.
Otherwise, the instability develops in a uniform manner. We find the threshold magnetic field, Hfing�E ,h0�, the
characteristic finger width, and the instability buildup time. Thin films are found to be much more unstable than
bulk superconductors, and have a stronger tendency for formation of fingering �dendritic� pattern.
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I. INTRODUCTION

The thermomagnetic instability or flux jumping is com-
monly observed at low temperatures in type-II superconduct-
ors with strong pinning.1–4 The instability arises for two fun-
damental reasons: �i� motion of magnetic flux releases
energy, and hence increases the local temperature; �ii� the
temperature rise decreases flux pinning, and hence facilitates
the further flux motion. This positive feedback can result in
thermal runaways and global flux redistributions jeopardiz-
ing superconducting devices. The conventional theory of the
thermomagnetic instability1,2 considers only “uniform” flux
jumps, where the flux front is smooth and essentially
straight. This picture is true for many experimental condi-
tions, however, far from all. Numerous magneto-optical stud-
ies have recently revealed that the thermomagnetic instability
in superconductors can result in strongly branched dendritic
flux patterns.5–19

In a recent paper we examined the problem of flux pattern
formation in the slab geometry.20 Experimentally, however,
the dendritic flux patterns are mostly observed in thin film
superconductors placed in a perpendicular magnetic field. An
analysis of this perpendicular geometry was recently pub-
lished by Aranson et al.21 Here we present a more exact and
complete picture of the dendritic instability and analyze the
criteria of its realization.

In the following we restrict ourselves to a conventional
linear analysis1,2,22 of the instability and consider the space-
time development of small perturbations in the electric field,
E, and temperature, T. In contrast to the slab case,20 the heat
transfer from the superconductor to a substrate as well as the
nonlocal electrodynamics in thin films are taken into ac-
count. Consequently, the results depend significantly on the
heat transfer rate, h0, as well as on the film thickness, d. Our
main result is that the instability in the form of narrow fin-
gers perpendicular to the background field, E, occurs much
easier in thin films than in slabs and bulk samples, and the
corresponding threshold field, Ec, is found to be proportional
to the film thickness, d.

II. MODEL AND BASIC EQUATIONS

Consider the perpendicular geometry shown in Fig. 1,
with a thin superconducting strip placed in a transverse mag-
netic field, H. The strip is infinite along the y axis, and oc-
cupies the space from −d /2 to d /2 in the z direction and
from 0 to 2w in the x direction. It is assumed that d�w. In
the unperturbed state the screening current flows along the y
axis. The distributions of the current density, j, and magnetic
induction, B, in the flux penetrated region 0�x�� are de-
termined by the Maxwell equation

curl B = �0j , �1�

where the common approximation B=�0H is used. To find
the electric field and the temperature we use another Max-
well equation together with the equation for thermal diffu-
sion

curl E = − �B/�t , �2�

FIG. 1. �Color online� A superconductor strip on a substrate
�only the left half is shown�. The dark gray area is the flux-
penetrated region.

PHYSICAL REVIEW B 73, 014512 �2006�

1098-0121/2006/73�1�/014512�7�/$23.00 ©2006 The American Physical Society014512-1

http://dx.doi.org/10.1103/PhysRevB.73.014512


C��T/�t� = ��2T + jE . �3�

Here C and � are the specific heat and thermal conductivity,
respectively.

Equations �1�–�3� should be supplemented by a current-
voltage relation j= j�E ,B ,T�. For simplicity we assume a
current-voltage curve of the form

j = jc�T�g�E��E/E� . �4�

A strong nonlinearity of the function g�E� leads to formation
of a quasistatic critical state with j� jc�T�, where jc is the
critical current density.23 We neglect any B dependence of jc,
i.e., adopt the Bean model. The exact form of g�E� is not
crucially important, the only issue is that it represents a very
steep E�j� curve having a large logarithmic derivative

n�E� � � ln E/� ln j � jc/�E � 1. �5�

Here � is the differential electrical conductivity, ��E�
��j /�E. The parameter n generalizes the exponent in the
frequently used power-law relation E� jn with n independent
of E.

The key dimensionless parameter of the model is the ratio
of thermal and magnetic diffusion coefficients,1

� � �0��/C . �6�

The smaller � is, the slower heat diffuses from the perturba-
tion region into the surrounding areas. Hence, one can expect
that for smaller �: �i� the superconductor is more unstable,
and �ii� the formation of instability-induced nonuniform
structures is more favorable.

In the following we assume that the strip is thinner than
the London penetration depth, 	L, and at the same time much
wider than the effective penetration length, 	eff=	L

2 /d

d 
 	L � �dw .

The stationary current and field distributions in a thin strip
under such conditions were calculated by several auth-
ors,24–26 finding that the flux penetration depth, �, is related
to the applied field by the expression

�/w = �2H2/2d2jc
2. �7�

Here it is assumed that the penetration is shallow, or more
precisely that 	eff���w.

III. PERTURBATION ANALYSIS

A. Linearized dimensionless equations

We seek solutions of Eqs. �1�–�4� in the form

T + �T�x,y,z,t�, E + �E�x,y,z,t�, j + �j�x,y,z,t� ,

where T, E, and j are background values. The background
electric field may be created, e.g., by ramping the external
magnetic field, and for simplicity we assume it to be coordi-
nate independent. Allowing for such a dependence would
only lead to insignificant numerical corrections, as discussed
in Ref. 20. Similarly, we will assume a uniform background
temperature.

Whereas it follows from symmetry considerations that
Ex=0, both components of the perturbation, �E, will in gen-
eral not vanish. Linearizing the current-voltage relation, Eq.
�4� one obtains

�j = � �jc

�T
�T + ��Ey	E

E
+ jc

�Ex

E
. �8�

We shall seek perturbations in the form

�T = T* exp�	t/t0 + ikx� + iky�� ,

�Ex,y = E�x,y exp�	t/t0 + ikx� + iky�� ,

�jx,y = jcix,y exp�	t/t0 + ikx� + iky�� , �9�

where , �, and i are z-dependent dimensionless Fourier am-
plitudes. The coordinates are normalized to the adiabatic
length a=�CT* /�0jc

2 where T*=−�� ln jc /�T�−1 is the char-
acteristic scale of the temperature dependence of jc, so that
�=x /a, �=y /a, �=z /a. The time is normalized to t0
=�CT* / jc

2=�0�a2, which is the magnetic diffusion time for
the length a. Re 	 is the dimensionless instability increment,
which when positive indicates exponential growth of the per-
turbation.

We can now use the formulas �9� to rewrite the basic
equations in dimensionless variables. From Eq. �8� one finds
for the components of the current density perturbation i

ix = �x, iy = −  + n−1�y . �10�

Combining the Maxwell equations �1� and �2�, and the ther-
mal diffusion equation �3� yields

k � �k � �� = 	ni , �11�

	 = ��− ky
2 +

�2

��2	 + �iy + �y�/n . �12�

Magneto-optical imaging shows that flux patterns produced
by the dendritic instability5–19 are characterized by having
ky �kx. Therefore, we have neglected the heat flow along the
x direction compared to that along the y direction. Later we
will check the consistency of this assumption by showing
that indeed the fastest growing perturbation has ky �kx.

B. Boundary conditions

We assume that heat exchange between the superconduct-
ing film and its environment follows the Newton cooling law.
For simplicity we let the boundary condition, �� �T+�T�
=−h0�T+�T−T0�, apply to both film surfaces. Here T0 and
h0 are the effective environment temperature and heat trans-
fer coefficient, respectively. Equations �12� and �10� can now
be integrated over the film thickness to yield

 =
�1 + n−1��y

n	 + n��ky
2 + h� + 1

,

where
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h = 2h0a2/�d . �13�

In the remaining part of the paper we let , �, and i denote
perturbations averaged over the film thickness.

We seek a solution of the electrodynamic equations in the
flux penetrated region, 0
�
� /a. At the film edge, �=0,
one has �jx=0 and, consequently, �Ex=0. In the Meissner
state both the electric field and heat dissipation are absent, so
that �Ey =�T=�jy =0 at the flux front, �=� /a. Thus, the Fou-
rier expansions for the x and y components of electric field
perturbation will contain only sin�kx�� and cos�kx��, respec-
tively. Then the boundary conditions are satisfied for

kx = ��a/2���2s + 1�, s = 0,1,2, . . . .

Since � depends on the magnetic field, the values of kx are
also magnetic field dependent.

Now we can integrate Eq. �11� over the film thickness and
employ the symmetry of the electrodynamic problem with
respect to the plane z=0. It yields

− iky�kx�y + iky�x� −
2a

d
�x� = − 	n�x,

− kx�kx�y + iky�x� +
2a

d
�y� = − 	nf�	,ky��y . �14�

We have here introduced the function

f�	,ky� �
iy

�y

1

n
−

1 + n−1

n	 + n��ky
2 + h� + 1

.

Note that the equation for the z component of the field is
satisfied automatically. The derivatives �x,y� with respect to �
are taken at the film surface, �=d /2a. To calculate them, one
needs the electric field distribution outside the supercon-
ductor, where the flux density is given by the Bio-Savart law

B�r� = �0H +
�0

4�

 d3r�

j � �r − r��
�r − r��3

.

The perturbation of flux density is then

�Bx,y = ± �0�d

0

�/a

d��

−�

�

d��G�� − ��,� − ����jy,x,

G��,�� =
1

4���2 + �2 + �d/2a�2�3/2 .

Here we have approximated the average over �� substituting
��=0. In this way we omit only terms of the order of
�d /a�2�1. The integration over �� should, in principle, cover
also the Meissner region, ��� l /a. Though the flux density
there remains zero during the development of perturbation,
the Meissner current will be perturbed due to the nonlocal
current-field relation. However the kernel G�� ,�� decays
very fast at distances larger than d /a and therefore the
Meissner current perturbation produces only insignificant nu-
merical corrections.

The perturbation of the magnetic field can be related to
that of the electrical field by Eq. �2�, which can be rewritten
as

�Ex,y� /E = � 	n�By,x/�0ajc. �15�

Due to continuity of the magnetic field tangential compo-
nents Eq. �15� is also valid at the film surface, �=d /2a. Thus
it can be substituted into Eqs. �14�. The Fourier components
of the kernel function G�� ,�� with respect to � can be cal-
culated directly yielding

G��,ky� =
kya

2��

K1�ky
��2 + �d/2a�2�

��2 + �d/2a�2
, �16�

where K1 is the modified Bessel function of the second kind.
The above Fourier expansions in cos�kx�� and sin�kx��

correspond to the finite interval −2� /a���2� /a. Therefore
we should continue �x,y from 0���� /a to this interval and
then introduce Gx and Gy as analytical continuations of
G��−�� ,ky� having the same symmetry as �x and �y, respec-
tively �see Ref. 27 for details�. All this allows us to rewrite
the set �14� as

− ikxky�y + �ky
2 + 	n��x = �d/2a�	n�

kx�

Gx�kx,kx�,ky��x�kx�� ,

�17�

�kx
2 + 	nf��y + ikxky�x = �d/2a�	nf�

kx�

Gy�kx,kx�,ky��y�kx�� ,

�18�

Gx�kx,kx�,ky�
Gy�kx,kx�,ky�

� = 4

0

�/a

d�

0

�/a

d��G�� − ��,ky�

� sin�kx��sin�kx����
cos�kx��cos�kx����

� . �19�

We are interested only in the specific case of a very thin strip

� = d/2� � 1. �20�

One can then find analytical expressions for the kernel, and it
turns out that only its diagonal part, kx=kx�, is important.

In this paper we present analytical expressions up to the
first order in �, while the plots are calculated up to the sec-
ond order. The second-order analytical expressions can be
found in Ref. 27. The kernel �19� can be written as

Gx,y�kx,kx,ky� =
a

�
�1 − ���,kx��

�
� , �21�

where ��� ,kx� is a dimensionless function. In what follows
we shall consider only the main instability mode, kx
=�a /2�, which turns out always to be the most unstable one.
For this mode, and in the limit �→0, the function ��� ,kx�
approaches a constant value �5.

Substituting the above expression for G into Eqs. �17� and
�18� one obtains the dispersion relation for 	�kx ,ky�

A1	2 + A2	 + A3 = 0. �22�

Here

A1 = n��, A2 = ky
2�1 + �A1� + nkx

2 + A1�h� − 1� ,
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A3 = ky
4� + nkx

2ky
2� + nkx

2�h� + 1/n� + ky
2�h� − 1� .

IV. RESULTS

Let us first consider the simple case of a uniform pertur-
bation, ky =0. One finds from Eq. �22� that the perturbation
will grow �Re 	�0� if

h� � 1 − kx
2/�� . �23�

When the flux penetration region, �, is small, i.e., kx is large,
the system is stable. As the flux advances, kx decreases, and
the system can eventually become unstable. The instability
will take place, however, only if h��1. Otherwise the super-
conducting strip of any width will remain stable no matter
how large a magnetic field is applied. This size-independent
stability means that at h��1 the heat dissipation due to flux
motion is slower than heat removal into the substrate.

Equation �23� further simplifies in the adiabatic limit, �
→0, when the heat production is much faster than heat dif-
fusion within the film or into the substrate. The instability
then develops at kx

2 / �����1, which in dimensional variables
reads as �0jc

2ld�CT*��2 /2��. Assuming small penetration
depth, l�w, and using Eq. �7� this criterion can be rewritten

as H�Hadiab, with the adiabatic instability field

Hadiab =� d

w

CT*

��0
�� d

w
Hadiab

slab . �24�

Here Hadiab
slab is the adiabatic instability field for the slab

geometry.1–4,22 This result coincides up to a numerical factor
with the adiabatic instability field for a thin strip found re-
cently in Ref. 28.

Solutions of Eq. �22� for perturbations with arbitrary ky
are presented in Fig. 2. The upper panel shows Re 	�ky�
curves for �=0.01 and different values of kx. For large kx,
i.e., small magnetic field, Re 	 is negative for all ky. It means
that the superconductor is stable. However, at small kx, the
increment Re 	 becomes positive in some finite range of ky.
Hence, some perturbations with a spatial structure will start
growing. They will have the form of fingers of elevated T
and E directed perpendicularly to the flux front. We will call
this situation the fingering (or dendritic) instability.

For large � an instability also develops at small kx, how-
ever in a different manner, see Fig. 2 �lower panel�. Here the
maximal Re 	 always corresponds to ky =0. Hence, the uni-
form perturbation will be dominant. The uniform growth of
perturbations for large � has been recently predicted in Refs.
20 and 21 and explained by the prevailing role of heat dif-
fusion.

Let us now find the critical ky
* and kx

* for the fingering
instability, see Fig. 2 �upper panel�. The kx

* determines the
applied magnetic field when the instability first takes place,
while ky

* determines its spatial scale. These quantities can be
found from the requirement max�Re 	�ky��=0 for ky �0. In
the limit ��1 we can put A1=0 in Eq. �22� and then rewrite
it in the form

	 = − �ky
2 + h�� +

�ky
2 − kx

2�
ky

2 + nkx
2 .

From this expression we obtain

kx
* = ��n + 1 − �nh��/n�� ,

ky
* = ��nh� + 1��n + 1 − �nh� + 1��1/2/�n� . �25�

The dependences of kx
*, ky

* on the heat transfer coefficient
h are shown in Fig. 3. One can see that ky

* is always larger
than kx

* implying that fingers of elevated T and E are ex-
tended in the direction normal to the film edge. For h�1/�
and n�1 we find ky

*�n1/4kx
*�kx

*�1/�n�. Both kx
* and ky

*

tend to zero as h→1/�, while for larger h the system is
always stable due to fast heat removal to the substrate. It
follows from Fig. 2 that for large enough � the instability
will develop uniformly, while for small � it will acquire a
spatially-nonuniform structure. Let us find now the critical
value �c that separates these two regimes. It can be obtained
from the equality Re 	�kx=kx

* ,ky =0�=0. When it is fulfilled
Re 	=0 both for ky =0 and for ky =ky

*�0. We find using Eq.
�22� that the instability will evolve in a spatially nonuniform
way if

FIG. 2. �Color online� The solutions of dispersion equation �22�
for small and large �, for �=0.001 and n=20.
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� � �c = �1 − kx
*2/���/h . �26�

Substituting here � and kx
* we find a transcendental relation

between �c and h. For n�1 it reduces to

�n�c�1 + �h�c� = �a/�d . �27�

Using this result we can construct a stability diagram in the
E-h0 plane shown in Fig. 4. The curved line marks the criti-
cal electric field Ec�h0� that separates two types of instability:
fingering �E�Ec� and uniform �E�Ec�. This line is calcu-
lated from Eq. �27�, where the electric field is expressed via
� as E= jc�0� /nC� according to Eqs. �5� and �6�. The
straight line is given by the condition h�=1. Below this line
the superconductor is always stable, as follows from Eq. �23�
for the uniform perturbations, and from Eq. �25� for the non-
uniform case. At a certain value h0=hcrit, the two lines inter-
cept. We find

hcrit =
2�2�0

2jc
4d3�n

�2T*2C2 , �28�

and the critical electric field Ec for h0=0 is

Ec�0� =
�2�0

2�jc
3

�2C2T* d2, �29�

while Ec�hcrit�=4Ec�0�.
For any point �h0 ,E� belonging to the stable phase in the

stability diagram, Fig. 4, the flux distribution is stable for any
applied magnetic field. For the points belonging to unstable
phases, the instability develops above some threshold mag-
netic field, either Hfing�h0 ,E� or Huni�h0 ,E� for fingering or
uniform instability, respectively. Shown in Fig. 5 are three
sets of Hfing�E� and Huni�E� curves for different values of h0.
They represent boundaries between the three phases, stable
and unstable with respect to either fingering or uniform in-
stability, as shown in the inset. Using Eq. �7� one can rewrite
the expression �23� for Huni as

Huni = Hadiab�1 −
2T*h0

ndjcE
	−1/2

. �30�

In the absence of heat removal to the substrate, h0=0, we
obtain the adiabatic instability field, Eq. �24�, and the Huni�E�
curve becomes a horizontal line.29

The threshold magnetic field for the fingering instability,
Hfing, is calculated from Eq. �25�. A simplified expression
obtained for h�1/� and n�1

Hfing = � jcd
2

�w
��T*jc

E
	1/2

, �31�

shows that at large electric fields Hfing decays as E−1/4. At
h0
hcrit the curves Hfing�E� and Huni�E� intercept at the criti-
cal electric field Ec determined by Eq. �26�. At h0�hcrit we
have Hfing�E��Huni�E� for any E, so the lines do not inter-
cept and the instability will develop into a fingering pattern.

FIG. 3. Dependences of ky
* and kx

* on h for n=20, �=0.01, �
=0.001 according to Eq. �25�.

FIG. 4. �Color online� Stability diagram in the plane electric
field, heat transfer coefficient according to Eq. �27�, and condition
1−h��0 for n=30 and �=0.001.

FIG. 5. �Color online� Stability diagram in the H-E plane ac-
cording to Eqs. �23� and �25�.
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V. DISCUSSION

Let us compare the present results for a thin film in a
perpendicular magnetic field with results of Ref. 20 for a
bulk superconductor. In both cases the instability develops
into a fingering pattern if the background electric field in the
superconductor exceeds some critical value Ec. The values of
Ec are however different. Their ratio for a thin strip and a
slab

Ec�0�
Ec

slab =
�2

�2

d2jc
2�0

CT* , �32�

is expected to be much less than unity. For jc=1010 A/m2,
C=103 J /Km3, �=10−2 W/Km, T*=10 K, and d=0.3 �m,
we find from Eq. �29� that Ec�4�10−4 V/m, while accord-
ing to Ref. 20, Ec

slab=0.1 V/m. Consequently, the develop-
ment of thermomagnetic instability into a fingering pattern is
much more probable in thin films than in bulk superconduct-
ors.

The threshold magnetic field for the fingering instability,
Hfing, is also much smaller for thin films. Comparing Eq. �31�
with the results of Ref. 20 for a slab20 we find

Hfing

Hinst
slab =

�2

�

d
�wl*

. �33�

Here l*= �� /2���T* / jcE is the flux penetration depth at the
threshold of the fingering instability, H=Hfing. Experimen-
tally, the fingering instability always starts after the flux has
penetrated a noticeable distance from the edges, such that
l*�d.5–19 Hence, for a thin film the fingering instability
should start at much smaller applied fields than in bulk
samples �by a factor of �103 for films with d�10−4w�. The
difference between the threshold fields for the two geom-
etries here is even stronger than for the case of uniform in-
stability in the adiabatic limit, see Eq. �24�. Assuming the
above values of parameters and w=2 mm we find from Eq.
�31� that Hfing�Ec�0��=Hadiab�1 mT. This value becomes
larger if we take into account the heat transfer to the sub-
strate. It is therefore in excellent agreement with the
experiment,8–10,13,16,17,19,28 where the threshold field is typi-
cally of the order of a few mTesla.

The spatial structure of the instability predicted by our
linear analysis is a periodic array of fingers perpendicular to
the film edge. Its period can be estimated from Eq. �25�. For
E=Ec, h=0 and n�1 one finds

dy =
�2CT*

2�n1/4�0jc
2d

, �34�

which yields dy �100 �m for n=30. Numerical analysis of
the instability development shows20,21 that beyond the linear
regime the periodic structure is destroyed and only one
�strongest� finger invades the Meissner region. This scenario
is indeed reproduced experimentally, and the observed width
of individual fingers, 20–50 �m,6,8,11,13 is very close to our
estimate, dy /2.

The finger width and the threshold magnetic field also
depend on the dimensionless parameter h characterizing the
thermal coupling to the substrate, Eq. �13�. In turn, h, grows

rapidly with temperature because of a strong T dependence
of C and jc. One can therefore make several testable predic-
tions from the dependences kx

*�h� and ky
*�h� shown in Fig. 3:

�i� There must be a threshold temperature Tth above which
the instability is not observed. �ii� When approaching Tth, the
instability field diverges since kx

*→0. �iii� When approaching
Tth the characteristic width of individual fingers increases
since ky

*→0. The last prediction has also been obtained in
the boundary layer model allowing calculation of the exact
finger shape.31 The first and the second predictions have al-
ready been confirmed experimentally.9,11 As for the last one,
the T dependence of the finger width has not yet been stud-
ied. At the same time, there is a solid experimental
evidence8,9,11,19 for an enhanced degree of branching as T
→Tth that can be quantitatively described as a larger fractal
dimension of the flux pattern.19 This abundant branching
could be an indirect consequence of the increased finger
width since wider fingers are presumably more likely to un-
dergo splitting.

The present problem of fingering instability in a thin film
has two new features compared to a similar problem for a
bulk superconductor, �i� nonlocal electrodynamics and �ii�
thermal coupling to the substrate. The nonlocality results in
much smaller values of the threshold magnetic field Hfing and
the critical electric field Ec in films than in bulks. If a film is
made thinner, it becomes even more unstable since Hfing�d,
and has a stronger tendency to form a fingering pattern since
Ec�0��d2. The thermal coupling to the substrate has a some-
what opposite effect. It can lead to an ultimate stability if
h�1/�, a situation that is never realized in bulks. A moder-
ate coupling, h�1/�, slightly renormalizes Hfing and Ec, i.e.,
makes the film a little bit more stable and less inclined to
fingering.

Let us now compare the results presented in this work to
those obtained in a similar model by Aranson et al.21 Our
expressions for the “fingering” threshold field, Eq. �31�, and
for the finger width, Eq. �34�, agree with their results up to a
numerical factor. For ��1 our results for the “uniform”
threshold field �derived from Eq. �23�� are also similar to
results of Ref. 21. As a new result, we find that there exists a
critical value of the parameter �, Eq. �26�, which controls
whether the instability evolves either in the uniform, or in the
fingering way. Shown in Fig. 4 is the stability diagram where
the line Ec�h0� separates regimes of fingering and uniform
instability. Other results of this paper are �i� the existence of
a field-independent “critical point,” hcrit, such that for h0
�hcrit the instability always develops into a fingering pattern,
and �ii� the full stability diagram in the H-E plane, Fig. 5,
containing all three phases.

The background electric field needed to nucleate the fin-
gering instability can be induced by ramping the magnetic

field, E� Ḣl� ḢH2 for l�w, where Ḣ is the ramp rate. This
is the lowest estimate since the flux penetration in practice is
strongly nonuniform in space and in time,30 and there can be
additional sources of E due to random fluctuations of super-
conducting parameters. The occurrence of the fingering in-
stability even at rather low ramp rates5,8–10,13,16–19 is there-
fore not surprising.

The buildup time of the instability can be estimated as
t0�0.1 �s if the flux-flow conductivity �=109 �−1 m−1. Our
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linear analysis assumes that the perturbations of T and E
grow in amplitude, but remain localized within the initial
flux penetrated region. Numerical results show20,21 that at t
� t0 the perturbations also propagate into the Meissner re-
gion. This propagation can be described by recent
models32,33 that predict a characteristic propagation speed in
agreement with experimental values of 10–100 km/s.6,7

In conclusion, the linear analysis of thermal diffusion and
Maxwell equations shows that a thermomagnetic instability
in a superconducting film may result in either uniform or
finger-like distributions of T, E, and B. The fingering distri-
butions will be observed if the background electric field E
�Ec, where Ec grows with the film thickness, the critical
current density, the thermal conductivity and the thermal

coupling to the substrate. Due to nonlocal electrodynamics in
thin films they turn out to be more unstable than bulk super-
conductors and more susceptible to formation of a fingering
pattern.
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