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We study the effects of the electronic coupling to bosonic modes on scanning tunneling microscopy �STM�
into a d-wave superconductor. We propose to investigate these effects by means of a different technique: a
Fourier transformed inelastic electron tunneling spectroscopy �FT-IETS�. Specifically, in this technique, the
Fourier spectrum of the energy derivative local density of states is addressed, which is proportional to the
�d2I /dV2��q ,eV� characteristics measured in FT-IETS STM. We consider the role of the electron scattering due
to a boson with the specific examples of the B1g phonon, the breathing mode phonon, and spin resonance at
�� ,��. It is found that the B1g mode with a highly anisotropic momentum-dependent coupling matrix element
gives rise to well defined features in the Fourier spectrum, at the energy of mode plus gap, with a momentum
transfer along the Cu-O bond direction of cuprates. This result is in striking contrast to the cases of the
coupling to other modes and also to the case of no mode coupling. The origin of this difference is explored in
detail. A comparison with the recent STM experiments is briefly discussed.
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I. INTRODUCTION

Determining the nature of single-particle excitations is of
fundamental importance in our understanding of the super-
conductivity in high-Tc cuprates. To address this issue, a
number of spectroscopies have been extensively used, in-
cluding angle-resolved photoemission spectroscopy
�ARPES� and tunneling. The salient features observed in
ARPES include �i� near the �� ,0� �M� point in the Brillouin
zone, the spectral function in the superconducting state
shows an anomalous line shape, the so-called “peak-dip-
hump” structure;1–3 �ii� near the d-wave node of the super-
conducting gap, the dispersion shows a characteristic “kink”
near 50–70 meV.4–8 Recent ARPES experiments with im-
proved resolution9–12 have revealed another “kink” in disper-
sion of the antinodal electronic states, near the M point. Un-
usual spectral dip-hump features similar to the ARPES
spectrum have also been observed in the tunneling data.13–20

All these features were suggested to indicate that the electron
self-energy renormalization could be due to the electronic
coupling to a bosonic mode. Two main scenarios have been
presented to explain the experimental data. On one hand, the
antinodal renormalization is found to be strongly enhanced
below Tc.

9–11 Such a strong temperature dependence and the
dominance of the coupling strength near the M point can be
thought of as evidence for the coupling of electrons to the
41-meV spin resonance mode �of electronic origin�.21–29 As
seen by inelastic neutron-scattering experiments in most of

the cuprates,30–45 the spin mode intensity substantially turns
on below Tc �even though some intensity might be present in
a normal state� and has a well-defined momentum of �� ,��.
This scenario of the electronic coupling to the spin resonance
mode has also been used to explain the tunneling spectra in
planar tunnel junctions. On the other hand, it has been sug-
gested that a significant electronic coupling to the half
breathing in-plane Cu-O bond stretching phonon or to the
out-of-plane out-of-phase O buckling B1g phonon, with an
energy of approximately 70 and 35 meV, respectively, might
be responsible for the dispersion anomalies at the nodal6 and
antinodal directions,12 respectively. These two phonon
modes have shown strong line-shape renormalizations with
doping and temperature in Raman and neutron
measurements.46–53 The advantage of this scenario is that it
could naturally explain the band renormalization effect in
materials where no spin resonance mode has been detected,
in the normal state, and in the deeply overdoped region
where the spin mode is neither expected nor observed. To be
consistent with ARPES data, this scenario requires the
electron-phonon interaction to be highly anisotropic54,55 and
its impact on the electrons to be strongly enhanced in the
superconducting state.

The nature of the involved bosonic modes, being
phononic or electronic, and their role in the mechanism of
superconductivity therefore remains controversial. Detailed
momentum and energy spectroscopy of the relevant bosonic
modes might be very helpful in understanding the mecha-
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nism of superconductivity in high-Tc cuprates. �i� For the
former, the ARPES is one such spectroscopy. Fourier-
transformed scanning tunneling microscopy �FT-STM� is an-
other technique that would allow one to resolve the momen-
tum transfer between different electronic states. It has been
used recently56,57 to map out the Fermi surface and the mo-
mentum dependence of the d-wave energy gap. The results
are in good agreement with the ARPES data. While ARPES
provides the information about the energy dispersion of
single-particle electronic states, FT-STM probes the scatter-
ing processes between states with different in-plane mo-
menta; �ii� For the latter, since in high-Tc materials, the en-
ergies of a number of collective modes, like phonon �typical
energy of 36–40 meV� and spin modes �ranging between
35–40 meV depending on doping� are close, an energy spec-
troscopy with extremely high resolution is desirable. The in-
elastic electron tunneling spectroscopy �IETS� will allow an
energy determination with improved resolution.58–60 It is a
well-established and powerful tool that allows the measure-
ment of the characteristic energies of bosonic modes. When
electrons scatter off a collective mode, a contribution to the
electron self-energy occurs above a corresponding threshold
value of the frequency determined by the mode frequency.
Thus, in a tunneling experiment, for bias voltages exceeding
the threshold, electrons can excite the mode. This additional
scattering channel leads to a step in the density of states
�DOS� and in the tunneling conductance. Low temperatures
are required to avoid thermal smearing of the step in the
conductance. The crucial quantity that reveals inelastic peaks
is the derivative of tunneling conductance with respect to
bias voltage, i.e., �d2I /dV2��eV�.58 Peaks in this quantity are
shown to be connected to the energies of the modes. Ex-
amples of applications of this technique, among many, in-
clude measurements of molecular stretching and vibrational
modes in metal-insulator-metal tunnel junctions;58,61 obser-
vation of the collective magnetic resonance in tunneling in
the superconducting state of high-Tc materials,20,23 and ob-
servation of the tunneling features at energies that corre-
spond to the phonon peaks, as seen in planar tunneling into
superconductors.62

In this paper, we show how a different technique, which
integrates the FT-STM with the IETS �FT-IETS-STM�,
would allow simultaneous momentum and energy resolutions
of the tunneling electrons. As such, the technique might be
useful to address the role of different modes in cuprates.
Motivated by the progress of the elastic FT-STM technique,
earlier a few of us �J.X.Z., Q.S., A.V.B.� have studied, in Ref.
63, the Fourier transformed local density of states �LDOS� in
a d-wave superconductor with the electronic coupling to the
�� ,�� spin resonance mode. Going beyond the previous
analysis, we here will focus on the energy derivative
of the FT LDOS, ���q ,E�. This quantity corresponds to
�d2I /dV2��q ,eV� measured by FT-STM, where I is the local
tunneling current and V the voltage bias. In particular, we
will address the question of what consequences the electron
self-energy renormalization will have on the tunneling char-
acteristics for a number of collective modes broadly consid-
ered in the literature: the B1g and breathing phonon modes, as
well as the �� ,�� spin-resonance mode. Here we are not
concerned with the mechanism of the superconductivity in

the cuprates. Instead we assume from the outset a d-wave
channel effective pairing interaction and study the additional
effects due to the electronic coupling to various bosonic
modes, including the B1g and breathing phonon modes, and
the �� ,�� spin-resonance mode. A comparison of the calcu-
lated momentum transfer structure with the FT-STM mea-
surement may shed light on which type of bosonic mode the
electron excitations are coupled to strongly.

In our analysis we will use a mean-field d-wave supercon-
ducting state as a phenomenological model for a pairing state
in Bi2212 near optimal doping. In this doping range quasi-
particle picture is a reasonable starting point for a description
of this state at low temperatures.3,8,22,23 If the quasiparticle
weight is very small somehow due to strong correlation, this
treatment might not be less justified and a different approach
such as the gossamer superconductivity should be
considered,64 which is beyond the scope of this work.

The rest of the paper is outlined as follows: In Sec. II, we
develop a theoretical model in which the electrons are
coupled to bosonic modes. We consider three types of
modes: the B1g and breathing phonon modes with possible
coupling matrix elements, and the �� ,�� spin resonance
mode. Additional weak disorder is used as a marker so that
the momentum transfer can be investigated. In Sec. III, the
numerical results for the FT spectrum of the energy deriva-
tive LDOS are presented. Section IV contains some conclud-
ing remarks.

II. THEORETICAL MODEL

We start with a BCS-type model to describe two-
dimensional electrons with a d-wave pairing symmetry,
which is relevant to high-temperature cuprates:

HBCS = �
k,�

�kck�
† ck� + �

k
��kck↑

† c−k↓
† + �k

*c−k↓ck↑� , �1�

where ck�
† �ck�� creates �annihilates� a conduction electron of

spin � and wave vector k. The quantity �k is the normal-state
energy dispersion. We adopt a six-parameter fit to the band
structure used previously for optimally doped Bi-2212
systems,65 having the form

�k = − 2t1�cos kx + cos ky� − 4t2cos kxcos ky

− 2t3�cos 2kx + cos 2ky�

− 4t4�cos 2kxcos ky + cos kxcos 2ky�

− 4t5cos 2kxcos 2ky − � , �2�

where t1=1, t2=−0.2749, t3=0.0872, t4=0.0938,
t5=−0.0857, and �=−0.8772. Unless specified explicitly, the
energy is measured in units of t1 hereafter.

As in previous works,26,54,55,63 we assume that an effective
d-wave pairing interaction has pre-existed from certain
many-body effects. Therefore even before the electronic cou-
pling to the bosonic excitations, the d-wave superconducting
order has already been established and the corresponding or-
der parameter is given by
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�k =
�0

2
�cos kx − cos ky� . �3�

The additional renormalization comes from the additional
electron-bosonic mode interaction.

By introducing a two-component spinor operator, one de-
fines a matrix Green’s function in the Nambu space. The bare
Green’s function in the assumption of a real d-wave pair
potential reads

Ĝ0
−1�k;i	n� = �i	n − �k − �k

− �k i	n + �k
� . �4�

Here 	n= �2n+1��T is the fermionic Matsubara frequency.

A. Coupling to the collective modes

As mentioned before, there are many bosonic collective
modes existing in cuprates. Here we focus on the out-of-
plane out-of-phase buckling �B1g� and the in-plane half
breathing phonon modes associated with the motion of the O
ions, and the �� ,�� spin-resonance mode.

We model the electronic coupling to the phonon modes by

Hel-ph =
1

�NL
�
k,q
�

g
�k,q�ck+q,�
† ck�A
,q, �5�

where NL is the number of lattice sites, A
,q=b
q+b
,−q
† with

b
q
† �b
q� creating �annihilating� one phonon of type 
 �rep-

resenting B1g or breathing mode� and wave vector q. We
consider two types of the coupling matrix elements. The first
type is both q and k dependent, see, e.g.,66

gB1g
�k,q� =

g0

�M�q�
��x�k��x�k + q�cos�qy/2�

− �y�k��y�k + q�cos�qx/2�� , �6�

gbr�k,q� = g0 �
�=x,y

��b�k + q����k�cos	�k� + q��/2


− �b�k����k + q�cos�k�/2�� , �7�

where M�q�= 	cos2 �qx /2�+cos2 �qy /2�
 /2, and

�x =
i

Nk
	�ktx,k − txy,kty,k
 , �8�

�y =
i

Nk
	�kty,k − txy,ktx,k
 , �9�

�b =
1

Nk
	�k

2 − txy,k
2 
 , �10�

with

Nk = �	�k
2 − txy,k

2 
2 + 	�ktx,k − txy,kty,k
2 + 	�kty,k − txy,ktx,k
2�1/2,

t�,k = − 2t1sin�k�/2� ,

and

txy,k = − 4t2sin�kx/2�sin�ky/2� .

The k dependence has been argued to be crucial in the inter-
pretation of ARPES data.12,55 The second type has only q
dependence:21,54,67–70

�gB1g
�k,q��2 = �g0�2�cos2 �qx

2
� + cos2 �qy

2
� , �11�

�gbr�k,q��2 = �g0�2�sin2�qx

2
� + sin2�qy

2
� . �12�

This type of q has been the focus before in the context of a
dx2−y2-wave pairing mechanism. For convenience of notation,
we refer to the phonon modes with the first type of coupling
as B1g-I and br-I ones, and those with the second type of
coupling as B1g-II and br-II ones.

The electronic coupling to the �� ,�� spin resonance
mode is modelled as

Hel-sp =
g0

2NL
�
k,q

�,��

ck+q,�
† �Sq · �����ck,��, �13�

where S is the spin operator for the �� ,�� mode. To model a
sharp �� ,�� mode, we assumed for simplicity that this spin
operator contains the wave vectors at q= �±� , ±�� and the
summation over q in above equation is confined to the region
around q= �±� , ±�� only; � is the Pauli matrix vector.

We calculate the electronic self-energy due to the
electron-bosonic excitation coupling up to the second order
in the coupling matrix elements. For the electron-phonon
coupling, the self-energy is given as

̂�k;i	n� = −
T

NL
�
q,


�
�m

g
�k − q,q�g
�k,− q�

� D
�q;i�m��̂3Ĝ0�k − q;i	n − i�m��̂3,

�14�

where �m=2m�T is the bosonic Matsubara frequency, �̂3 is
the third component of the Pauli matrix in the Nambu space,
the quantity D
�q ; i�m� is the Fourier transform of the pho-
non Green’s function D
�q ;��=−�T�	A
,q���A
,−q�0�
� and is
taken as

D
�q;i�m� =
1

2
� 1

i�m − �


−
1

i�m + �

 , �15�

with �
 being the frequency of the phonon modes. The pho-
non mode is assumed to have a well defined energy here and
momentum dependence of FT IETS will originate from cou-
pling electron-phonon coupling constant and Fermi Surface
effects.

For the electron-�� ,��-resonance spin-fluctuation cou-
pling, the self-energy is given as63
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̂�k;i	n� = −
3g0

2T

4NL
�
q

�
�m

��q;i�m�Ĝ0�k − q;i	n − i�m� ,

�16�

where ��q ; i�m� is the Fourier transform of the spin-spin
correlation function, ��q ;��=−�T�	Sq

z ���S−q
z �0�
� dynamical

spin susceptibility. We treat the susceptibility in a phenom-
enological form:26

��q;i�m� = −
f�q�

2
� 1

i�m − �0
−

1

i�m + �0
 . �17�

Here the spin resonance mode energy is also denoted by �0.
The quantity f�q� describes the momentum dependence of
the mode and is assumed to be enhanced at the Q= �� ,��
point. Using the correlation length �sf �chosen to be 2 here�,
it can be written as

f�q� =
1

1 + 4�sf
2 �cos2 qx

2
+ cos2 qy

2
 . �18�

The form of the dynamic susceptibility as given by Eq. �17�
is especially suitable for the optimally doped YBa2Cu3O6+y
�YBCO� compounds in the superconducting phase, where
the observed neutron resonance peak is almost resolution-
limited in energy and fairly sharp in wave vector. The reso-
nance peak in Bi2Sr2CaCu2O8+� �BSCCO� is broadened in
both energy and wave vector. In addition, given that the peak
in BSCCO is still quite sharp in energy, we expect that the
energy broadening of the resonance mode is not important
for the present study. We have also neglected the incommen-
surate peaks seen in the inelastic neutron-scattering experi-
ments in YBCO �the part that disperses “downward” away
from the resonance peak�,43,71–74 since their spectral weight
is significantly smaller than that of the resonance mode.

The dressed electron Green’s function G, due to the renor-
malization effect of bosonic excitations, is given by

Ĝ−1�k;i	n� = Ĝ0
−1�k;i	n� − ̂�k;i	n� . �19�

To study the momentum transfer between the bosonic exci-
tation renormalized electronic states, additional impurities or
defects are required to scatter the electrons. Without the
standing Friedel-like oscillations produced by impurities, the
FT of any signal on a translationally invariant system would
produce the peaks at the center of the Brillouin zone �BZ�
and results would be trivial. One needs a standing wave pro-
duced by impurities to observe the effects we address here.
The scattering from impurities is described by

Himp = �
l�

Ulcl�
† cl�, �20�

where Ul is the strength of the zero-ranged impurity scatter-
ing potential at the lth site. For simplicity, we consider only
the case of nonmagnetic scattering and assume the scattering
potential from all these impurities are identical, i.e., Ul=U0.
The full Green’s function satisfies the following equation of
motion:

Ĝ�i, j ;i	n� = Ĝ�i, j ;i	n� + �
l

UlĜ�i,l;i	n��̂3Ĝ�l, j ;i	n� .

�21�

Since we are most interested in effects of the electron col-
lective mode coupling, it is desirable to keep as small as
possible the disturbance �i.e., quantum interference, forma-
tion of virtual resonance, etc.� arising from the quasiparticle
scattering off the impurities themselves. This suggests to
consider a dilute concentration of weak impurities. In this
limit, the Born approximation is applicable, and one arrives
at

Ĝ�i, j ;i	n� = Ĝ�i, j ;i	n� + U0�
l

Ĝ�i,l;i	n��̂3Ĝ�l, j ;i	n� .

�22�

Due to the impurity scattering, the correction to the local
density of states �LDOS� at the ith site, summed over two
spin components, is

���ri,E� = −
2U0

�
�

l

Im	Ĝ�i,l;E + i���̂3Ĝ�l,i;E + i��
11.

�23�

B. Fourier transform

The local density of states is proportional to the local
differential tunneling conductance �i.e., dI /dV�. To look into
the renormalization effect of collective bosonic excitations in
the STM, the energy derivative of the LDOS, corresponding
to the derivative of the local differential tunneling conduc-
tance �i.e., d2I /dV2�, is more favorable to enhance the signal.
For a fixed value of energy, one first gets a set of ����i ,E�
�the prime means the energy derivative� in real space, and
then performs the Fourier transform:

����q,E� = �
i

����ri,E�e−iq·ri, �24�

to obtain a map of the Fourier spectrum in q space,

P�q,E� = �����q,E�� . �25�

One can also prove that the relation between ���q ,E� and
that due to a single impurity ��single�q ,E�:

����q,E� = F�q���single� �q,E� , �26�

where F�q� is the form factor for the spatial distribution of
weak impurities 	F�q�=1 for the case of a single impurity
.

III. RESULTS AND DISCUSSIONS

For the numerical calculation, we take the superconduct-
ing energy gap �0=0.1, the frequency of all collective modes
�0=0.15. A quasiparticle lifetime broadening of �=0.005 is
used. A weak impurity scattering strength U0=0.1. We take a
large system size NL=1024�1024 to achieve the high-
momentum and energy resolution. The Fourier spectrum
P�q ,E� is then constructed from ����ri ;E� within a given

JIAN-XIN ZHU et al. PHYSICAL REVIEW B 73, 014511 �2006�

014511-4



window of size 61�61 centering the single impurity. We
choose the coupling strength for all three types of collective
modes in such a way that at the Fermi energy E=0, the
frequency renormalization factor Z appearing in the self-
energy,

̂�k;i	n� = i	n	1 − Z�k;i	n�
�̂0 + ��k;i	n��̂3 + ��k;i	n��̂1,

�27�

has the same real-part value for the B1g-I, B1g-II, br-II pho-
non modes, and �� ,��-resonance spin-fluctuation modes at
the M point, while for the br-I phonon mode at the wave

vector �� /2 ,� /2�. Here ̂�k , i	n� is a self-energy in Nambu
representation. It generally describes the Z factor renormal-
ization ��0 term�, renormalization of the chemical potential
�� term�, and the gap function renormalization �� term�. The
calibrated value of the coupling strength g0 for all these col-
lective modes is summarized in Table I.

We present in Fig. 1 the results of the DOS and its energy
derivative as a function of energy for a clean �i.e., U0=0�
d-wave superconductor with the electronic coupling to the
B1g-I, br-I, �� ,�� spin-resonance modes. For comparison,
the DOS for the case of no mode coupling is also shown.
When there is no electron-mode coupling, there is a van
Hove singularity peak appearing outside the superconducting
gap edge. When the electrons are coupled to the B1g and
�� ,��-spin-resonance modes, the van Hove singularity peak

is strongly suppressed. Instead, one sees a dip structure fol-
lowing the coherent peak at the gap edge. The distance be-
tween this dip and the coherent peak defines the resonance
energy �0. However, there is very little suppression when
the electrons are coupled to the br-I mode. The planar tun-
neling experiments indeed observed the peak-dip structure
rather than the peak-peak �van Hove singularity� structure.
For the band-structure parametrization we have adopted, this
implies that the electronic coupling to the collective modes
must exist, and the B1g and �� ,�� spin-resonance modes are
the most promising candidates. Unfortunately, as shown in
Fig. 1, the dip structure due to the coupling to the B1g and
�� ,�� spin-resonance mode is almost identical. It would be
very challenging to distinguish between these two modes in
the planar tunneling experiments, which is measuring the
momentum averaged DOS. Therefore we propose to look at
the momentum transfer structure between the band renormal-
ized states, which can be measured by the FT-STM. To
achieve this goal, we need to have a signal strong enough to
be detectable in STM experiments. The derivative of the
DOS, ���E�, would serve the purpose. As shown in the right
column of Fig. 1, when the electrons are coupled to the B1g
and spin-resonance modes, there is a strong peak structure at
E=−��0+�0� exhibiting in the ���E� spectrum, which has a
one-to-one correspondence to the dip structure in ��E� itself.

In Fig. 2, we present the results of the Fourier spectrum of
the derivative of the LDOS, ���q ,E�, at the energy
E=−��0+�0� for a d-wave superconductor with the elec-
tronic coupling to the collective modes. For comparison, the
same quantity is also shown �last panel� for the case of no
mode coupling. Note that the case without the mode cou-
pling, the energy �0 has no special meaning in the context of
the electronic properties, and the energy E=−��0+�0� is
chosen merely for comparison to the case of mode coupling.
The main results are as follows: For all cases, there are
strong intensity at the large momentum transfer near �� ,��.
For the cases of the br-I coupling and no mode coupling,75 a
similar feature at very small momentum transfer is obtained,
relating to the fact that the DOS spectrum in two cases �see
Fig. 1� is similar to each other. For the cases of the coupling
to the B1g-II and br-II modes, there are intensity peaks at a
finite momentum transfer along the diagonals. For the case
of the coupling to the spin-resonance mode, no strong feature
is obtained at the intermediate value of momentum transfer,
which is consistent with our previous calculation for this
specific case.63 For the case of the coupling to the B1g-I
phonon mode, there exists not only the intensity peaks with a
momentum transfer along the diagonal but also the ones with
a momentum transfer along the bond directions of a square
lattice.

The different Fourier spectrum patterns come from the
detailed renormalization of electronic structure by the cou-
pling to these modes. To better understand these patterns, we
turn to a detailed analytical form of the Fourier transform.
By putting aside the external form factor associated with a
specific configuration of weak disorder, the Fourier spectrum
is determined uniquely by the electronic single-particle
Green’s function and is found to be

TABLE I. The calibrated value of the coupling strength g0 for
different type of collective modes.

B1g-I mode br-I mode B1g-II mode br-II mode �� ,�� mode

1.05 1.48 0.75 0.75 2.30

FIG. 1. Density of states �left column� and its energy derivative
�right column� as a function of energy for a clean d-wave supercon-
ductor with the electronic coupling to B1g-I, br-I, and �� ,�� spin-
resonance modes. The case of no mode coupling is also shown for
comparison.
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���q;E� =
u0

NL
�
k

�	A�k;E�B�k + q;E� + B�k;E�A�k + q;E�


− 	J�k;E�K�k + q;E� + K�k;E�J�k + q;E�
� ,

�28�

The functions A, B, J, K, entering Eq. �28�, are defined as

A�k;E� = −
2

�
Im	G11�k;E + i��
 , �29�

B�k;E� = Re	G11�k;E + i��
 , �30�

J�k;E� = −
2

�
Im	G12�k;E + i��
 , �31�

K�k;E� = Re	G12�k;E + i��
 . �32�

Here as shown in Eqs. �28�–�32�, the Fourier spectrum is
determined by the convolution of the imaginary76 and the
real parts of the single-particle �G11� and anomalous �G12�
Green’s function in the superconducting state. The strongest

FIG. 2. �Color� The Fourier spectral weight of the energy de-
rivative of the LDOS at E=−��0+�0� for a d-wave superconductor
with the electronic coupling to the B1g, br-I, B1g-II, br-II spin-
resonance modes. For comparison, the quantity is also shown for
the case of no mode coupling.

FIG. 3. �Color� The imaginary
and real parts of the single-
particle and anomalous Green’s
function, A�k ;E�, B�k ;E�,
J�k ;E�, and K�k ;E� 	as defined
by Eqs. �29�–�32�
, at the energy
E=−��0+�0� for the electronic
coupling to the B1g phonon �first
row�, spin-resonance mode �sec-
ond row�, and the case of no mode
coupling.

FIG. 4. �Color� The Fourier spectrum of the derivative of the
LDOS is shown at the various values of the energy for the case of
the electronic coupling to the B1g phonon mode. Here the energy
has been measured by scaling �0=30 meV.
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contribution in intensity ���q ;E� 	also ����q ;E�
 will arise
from the wave vector q, which connects the largest intensity
in A�k ;E� and B�k ;E� maps, and in J�k ;E� and K�k ;E�
maps. To be illustrative, we present in Fig. 3 those maps for
the electronic coupling to the B1g-I and spin-resonance
modes, and also for the case without the mode coupling at
E=−��0+�0�. Notice that the joint intensity of
J�k ;E�K�k� ;E� are smaller by an overall factor of 10 than
that of A�k ;E�B�k� ;E� and the Fourier spectrum is mostly
determined by the latter product. For the case of no mode
coupling, the strongest weight in these quantities are located
at the M points of the first Brillouin zone, which leads to the
strongest intensity of the Fourier spectrum with the momen-
tum transfer q= �� ,�� and the zero momentum transfer
q=0. If the electrons are coupled to the B1g-I phonon mode,
besides the strongest intensity on the closed ridges in A�k ;E�
and B�k ;E� �red area�, there are also moderately strong in-
tensity on the two split beams around the M points in these
two maps �bright green in the former and dark blue in the
latter�. The intensity A�k ;E�B�k� ;E� connected by
q=k�−k with k and k� located at the ends of these beams
becomes stronger. These wave vectors are just those in the
B1g-I panel of Fig. 2 at which the Fourier spectrum exhibits
peaks �green spots�. However, if the electrons are coupled to
the spin-resonance mode, no such beams exist, which ex-
plains the lack of peaks in Fourier spectrum 	see the �� ,��
panel in Fig. 2
.

Experimentally, only the peaks in the Fourier spectrum
with the momentum transfer along the bond direction has
been observed so far.77 The scenario that the electrons are
coupled to the B1g phonon mode and the coupling matrix is
highly anisotropic �i.e., B1g-I mode� bears the closest resem-
blance to the experimental observation, though not in a full
agreement. In Fig. 4, we present the energy evolution of the
spectrum pattern for the electronic coupling to the B1g-I
mode. It shows that the characteristic momentum-transfer
wave vector decreases slightly with the increased energy.
However, the intensity at these wave vectors decreases rap-
idly when the energy moves away from the action point
−��0+�0�. This is also not inconsistent with the experiment.

IV. CONCLUDING REMARKS

There is considerable evidence that numerous ARPES and
tunneling data can be interpreted in terms of the electronic
coupling to bosonic modes with energy about 40 meV. Pos-
sible candidates for this mode are the �� ,�� spin-resonance
mode and various phonon modes. The planar junction tun-
neling has provided an accurate measurement of the energy
scale of this mode. However, since the structure in the tun-
neling spectra due to the electronic coupling to B1g phonon
mode or to the �� ,�� spin-resonance mode does not have
much difference, it is very difficult to determine the nature of
the mode.

In this paper, we have analyzed the Fourier spectra of the
energy derivative LDOS to investigate the momentum-
transfer structure arising from the electronic coupling to
these different modes. This quantity nicely complements

ARPES for the understanding of the electronic responses to
these modes. It can now be obtained from the measurement
of �d2I /dV2��q ,eV� in FT-STM experiments with elevated
spatial resolution. In general, we found that the detailed mo-
mentum dependence of the coupling matrix element strongly
influences the electronic properties. In particular, we have
shown that if the B1g or breathing modes are coupled to the
electrons with only a q dependence, the spectrum displays
the peak structure along the diagonals with a small momen-
tum transfer while the �� ,�� mode coupling does not pro-
duce much weight at the small momentum-transfer region.
On the other hand, if the electrons are coupled to the B1g
phonon mode with a matrix element that depends not only on
q but also on k, the peak structure with a small momentum
transfer can also appear along the Cu-O bond directions of
the CuO2 plane. Recent FT-STM experiments have indeed
found a peak at a bond-directed momentum transfer.77

Our calculations also show the structures at large momen-
tum transfer for all cases of the electron-collective mode
coupling. In other words, both types �electronic and
phononic� of mode couplings produce structures near �� ,��,
but only a coupling to the phonon modes yields additional
structures at the small momentum transfers. No peak struc-
tures near �� ,�� have been observed in the experiments. The
situation is somewhat similar to the elastic scattering case
�i.e., in the absence of the collective mode coupling�, where
similar structures near �� ,�� also appear in the theoretical
spectra78,79 but are not observed experimentally. It is likely
that the lack of structures at large momentum transfer in the
elastic and inelastic experiments has a common origin. One
possibility has to do with strong inhomogeneities, which may
give rise to a dominant forward scattering and make only the
structures at small momentum transfers observable. The FT
images, seen by the FT-STM experiment, can be greatly af-
fected by the filter that modifies the intensity seen in the
FT-STM versus the intensity calculated for Cu-O plane. To
model this effect we use an example of a phenomenological
filter that suppresses the large momenta contribution in FT:

F�q� =
1

1 + rc	sin2�qx/2� + sin2�qy/2�

, �33�

where the parameter rc controls the range of the forward
scattering in the q space. The overall modulation in the Fou-
rier spectrum of the derivative LDOS ����q ,	��F�q� will
be confined to small momenta.

Finally, several remarks are in order: �i� The electron-
collective mode coupling we have considered preserves the
translational symmetry. Fourier spectra were studied after in-
troducing elastic impurity scattering with weak scattering po-
tential. Alternatively, local vibrational mode scattering will
not only provide an inelastic-scattering channel but also will
break the translational symmetry at the beginning.80 To fully
understand the possible FT-STM experiments, it would be
instructive to consider the electronic coupling to the distrib-
uted local vibrational modes. We leave this problem for a
separate analysis.81 �ii� There has also been increased interest
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in the quasiparticle scattering from the �1 impurities.82 It
would be very helpful to study the FT spectrum through the
�1 scatterers. We delay this investigation to a future
publication.83
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