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We report on the simulations of the pinning properties and vortex dynamics in thin superconducting film
with three different periodic arrays of magnetic dots: �1� all magnetic dots have the same magnetization
orientation �ferromagnetic pinning array�; �2� magnetic dots with up and down magnetization orientation are
arranged alternatively, to form an antiferromagnetic two-dimensional array; and �3� the same as the previous
array, but each dot is replaced by a 2�2 magnetic dot subarray. All dots in the subarray have the same
magnetization orientation. We calculated the critical depinning force and magnetization as a function of the
applied magnetic field for these three arrays. Due to the field polarity-dependent flux pinning effect of the
magnetic dots, asymmetric pinning behavior in the first array can be switched to the symmetric one in the latter
two arrays while keeping the pronounced matching effects. We also calculated the current-voltage character-
istics at both commensurate and incommensurate fields. We found that at the first matching field, the transition
from the pinned phase to a vortex motion phase is continuous for the ferromagnetic configuration but discon-
tinuous for the two antiferromagnetic configurations. This can be explained by different vortex dynamical
trajectories. Our results indicate that pinning properties and vortex dynamics in thin superconducting films can
be manipulated by tuning the configuration of the magnetic dot array.
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I. INTRODUCTION

Pinning properties and vortex dynamics of thin supercon-
ducting �SC� films with artificial periodic pinning arrays
have drawn great attention in the past decades.1–17 Such ar-
rays are usually composed of nanoscale antidots or magnetic
dots with a diameter significantly smaller than the spacing
between them. The antidots and magnetic dots act as pinning
sites to trap the vortices and are able to change the vortex
lattice symmetry. Magnetization and transport measurements
have clearly demonstrated the presence of commensurability
or matching effects between the vortex lattice and the pin-
ning array when the density of the vortices equals an integer
or fractional multiple of the density of the pinning
sites.1–3,6–10 These effects were also reproduced in numerical
simulations.12–17

However, the distinction between the flux pinning proper-
ties of the antidot and magnetic dot arrays was clearly re-
vealed in the magnetization measurements.1,8–10 SC films
with magnetic dot arrays produce magnetization loops which
are asymmetrical with respect to the field polarity, in contrast
to the usual symmetric shape of the magnetization loops of
films with the antidot arrays. This has been attributed to the
field polarity-dependent flux pinning effect of the magnetic
dots, i.e., their pinning properties are dependent on the mu-
tual orientation between the out-of-plane magnetization of
the magnetic dots and the magnetic field �H� applied perpen-
dicular to the film.8–10 The magnetic dot can produce an at-
tractive pinning potential when H is parallel to the magnetic
moment of the dot and repulsive when H is antiparallel to it.
This asymmetry between positive and negative field polarity
has been successfully reproduced in numerical simulations,
which explicitly take into account the field polarity-

dependent flux pinning effect.17 This effect has been used in
the simulation to tune the pinning properties of thin SC films.
A square magnetic dot array with random distribution of the
antiparallel magnetic dot moments, which is different from
the one used in experiments with a unique magnetized ori-
entation of all dots, was also attempted in Ref. 17. Unfortu-
nately, the obtained results showed quite weak matching ef-
fects, far away from the expectation for improving the
pinning properties. Therefore, more simulation work is nec-
essary to find a new configuration for better pinning proper-
ties.

In the present work we simulated the pinning properties
and vortex dynamics of thin SC films with three kinds of
periodic magnetic dot arrays. These three arrays have regular
distributions of the magnetic moments �both ferromagnetic
and antiferromagnetic distribution�, which are different from
the random distribution used in the previous simulation.17 In
addition, in our simulations we used more realistic magnetic-
field profiles of the magnetic dot, instead of the dipole ap-
proximation. The simulated pinning property results have
clearly demonstrated that among the different arrays, due to
the field polarity-dependent flux pinning effect of the mag-
netic dot, the asymmetric pinning behavior can be switched
to the symmetric one while keeping pronounced matching
effects. The vortex patterns at certain matching and sub-
matching fields are also analyzed in this work in order to
understand the microscopic origin of the observed switching.
We also calculated the current-voltage �I-V� characteristics
for these three configurations of the magnetic dots. Most of
the I-V curves are similar to those reported in previous
publications.15,16 But, we found, at the matching field, a con-
tinuous transition from the pinned phase to a moving phase
for the ferromagnetic dot array, while discontinuous for the
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two antiferromagnetic configurations. This difference has
been attributed to the presence of specific trajectories of the
depinned vortices. Our results demonstrate that the pinning
properties and vortex dynamics can be tuned by using proper
arrangements of the magnetic dot arrays.

II. FERROMAGNETIC AND ANTIFERROMAGNETIC
ARRAYS OF MAGNETIC DOTS

We used in our simulations three different periodic mag-
netic dot arrays shown in Fig. 1. The magnetic dots with
out-of-plane magnetization have two kinds of orientation,
“up” and “down.” The unit cell for each periodic array is
indicated by the dotted lines. Figure 1�a� shows the ferro-
magnetically ordered array of the dots. The unit cell is a
square, containing one up-magnetized dot. In the second
configuration, as shown in Fig. 1�b�, the dots are ordered to
form an antiferromagnetic two-dimensional �2D� array. The
unit cell is a square rotated by 45°. The third configuration is
similar to the second one, but each dot is replaced by a 2
�2 cell with four dots of the same orientation, as seen in
Fig. 1�c�. The unit cell includes four up- and four down-
magnetized dots. The latter two configurations have an anti-
ferromagnetic order, which is quite different from a random
distribution of magnetic moments used in the previous
simulation.17 In the following these three configurations are
called FM �ferromagnetic�, AFM �antiferromagnetic�, and
AFM2�2, respectively.

III. SIMULATION

We consider a two-dimensional vortex system and model
the vortex motion with overdamped Langevin dynamics.12–17

The total force acting on vortex i is given by

F� i = F� L + F� i
vv + F� i

vp + F� T − �v� i = 0, �1�

where F� L is the Lorentz force acting equally on all vortices,

F� i
vv is the vortex-vortex interaction force from all other vor-

tices, F� i
vp is the vortex-pinning interaction force from all pin-

ning sites, and F� T is a stochastic noise term to model the
temperature effect; � is the viscosity coefficient, taken to be

unity, and v� i is the velocity of vortex i. In our simulation F� i
vv

is modeled by the interaction force between the Pearl
vortices17–20

F� i
vv = − �

j�i

Nv

� �� d2k�

4�2E0
2�t

k2 + k�−1eik�·r�ij� , �2�

where Nv is the number of the vortices, r�ij is the displace-
ment vector between vortex i and vortex j , t is the thickness
of the SC film, � is the effective penetration depth which is
equal to 2�2 / t, and E0=�0

2 / �2��0�2� is the energy constant
�energy per length�. Here � is the London penetration depth,
�0 is the flux quantum, and �0 is the vacuum permeability.
The repulsive forces from all other vortices are included be-
cause of their long-range character. A smoothed method21,22

is introduced here to deal with such interaction, which is of a
look-up-table up to distance 100 � by 0.04 � step and an
interpolation item for distance longer than 100 �. In the case

of magnetic dots with out-of-plane magnetization, F� i
vp is

modeled as23

F� i
vp = − �

k

Nm MR�0
2

�2 �
0

�

dq
1

Q
J1�qR�J1�q	ik�E�q,l,D� , �3�

where Nm is the number of the magnetic dots, Q= p�p
+q coth�pt /2�� with p=	1+q2 , E�q , l ,D�=e−ql�e−qD−1� ,
J1�x� is the Bessel function, and l is the distance between the
bottom of the SC film and the upper surface of the dot �in
experiments, SC film is usually deposited on top of the mag-
netic dots with an insulating layer in between to avoid prox-
imity effects8–10�. R and D are the radius and thickness of the
dots, respectively, 	ik is the distance between the vortex i and
the mapping center of the magnetic dot on SC films, and M
is the magnetization with M =m / ��R2D� �in units of M0

=�0 /�2�, where m is the total magnetic moment of a dot.
When the magnetic moment and the flux of the vortex have
the same polarity �parallel configuration�, the interaction
force is attractive; however, if they have the opposite polarity
�antiparallel configuration�, the interaction force is repulsive.

The pinning center-vortex force F� i
vp is a short-range interac-

tion. It decreases as 	ik
−4 at distances larger than the magnetic

dot lattice constant a, and we use the cutoff assuming that
the force is negligible for distances greater than a. The forces
in Eqs. �1�–�3� are all in units of f0=�0

2 /�3, where f0 is force
per unit length. Unlike previous calculations,17 we consider
here the finite size effect of the magnetic dots, which is more
realistic and closer to the practical situation.

The parameters used in our simulations are set to �
=200 nm, t=75 nm, l=40 nm, R=200 nm, and d=20 nm.
We also chose the magnetization M as 50M0 in this work.
So, the largest pinning strength fp, which is realized at the
edge of a dot,23 is taken to be equal to 0.279 22f0. The lattice
constant a of the pinning arrays is 1.5 �, yielding the pin-
ning site density of 4 / �9 �2�. We supposed that only one flux
quantum can be pinned at each pinning site and no multi-
quanta vortices can be formed at the magnetic dots during
the simulations. We imposed periodic boundary conditions
on our virtual samples. The sample sizes are 18�18 �2 in
calculating critical depinning force and current-voltage char-
acteristics. The vortices are first introduced randomly at each

FIG. 1. Three configurations of the magnetic dot arrays used in
our simulation: �a� FM, �b� AFM, and �c� AFM2�2. The black
open and gray filled circles are the up- and down-magnetized dots.
The dotted lines indicate the unit cells for each configuration.
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starting field. Then we anneal the sample from an initial
temperature, for instance, 1 K, to zero. The temperature is
dropped to zero in 1000 steps and remains at each step for
2000 molecular dynamic �MD� steps. After the vortex con-
figurations are obtained, we applied a slowly increasing, spa-
tially uniform driving force FL, which simulates a Lorentz
force produced by an applied current in the real experiments.
We typically increase the driving force by 0.000 5f0 for ev-
ery 2000 MD steps for a range of FL ranging from 0 to 0.6f0
in the x direction along a symmetry axis of the periodic
pinning array, and measure the average of the velocity as a
function of the driving force, writing out the average velocity
in the x direction �
vx�� every 20 MD steps. This quantity is
related to a macroscopic measured voltage-current V�I�
curve. The depinning force is defined to be the value at
which vx reaches a threshold value. The principle of measur-
ing the magnetization curve is quite similar to the previous
simulation17 except for the parameters. The sample size used
in calculating the magnetization is 36�96 �2 and the central
region is 36�72 �2.

IV. CRITICAL DEPINNING FORCE

The critical depinning forces fp
c with respect to H /H1 �up

to H /H1=1.25� for three configurations are shown in Fig. 2.
We have defined it by the onset of the vortex motion. Here,
H1 is the magnetic field, at which the density of the vortex is
equal to the density of magnetic dots. This is actually the first
matching field for the FM configuration.8–11

A pronounced feature is that fp
c is asymmetrical with re-

spect to H /H1 for the FM configuration and essentially sym-
metrical for the AFM and AFM2�2 configurations. The
asymmetric pinning for the FM configuration is similar to
that observed in the magnetization measurement.8–10 In the
positive branch H
0, several pronounced peaks, as shown
in Fig. 2, are seen at the integer and some fractional fields for

all three configurations. However, similar peaks are only
found in the negative branch for the AFM and AFM2�2
configurations. The different fp

c behaviors show that different
pinning properties can be achieved by changing the configu-
ration of the magnetic dot arrays.

The pronounced asymmetry of pinning properties of the
FM array can be qualitatively explained by the field polarity-
dependent pinning of the magnetic dots. For the FM configu-
ration �Fig. 2�a��, the vortices are strongly pinned at the pin-
ning sites at H
0. But, at H�0, the antivortices are
repelled by the dots, and are caged at the interstitial posi-
tions. However, for the AFM and AFM2�2 configurations,
the vortices are pinned at the up-magnetized dots at H
0,
while at H�0 the antivortices are pinned at the down-
magnetized dots. This means that independent of the polarity
of the field, the field-induced vortices and/or antivortices can
always be pinned by the dots with the same orientation of
their magnetization. Furthermore, due to the equal density of
the up- and down-magnetized dots in our sample, the critical
depinning force at a positive field must be equal to that of the
corresponding negative field. Hence, the observed symmetri-
cal behavior �Figs. 2�b� and 2�c�� has a rather straightforward
origin.

To get a better insight into microscopic origins of the
asymmetric and symmetric pinning, vortex patterns at some
matching fields are presented in Figs. 3–6 for FM, AFM, and
AFM2�2 configurations, respectively. The solid dots are
vortices/antivortices, and the black open and gray filled
circles are the up- and down-magnetized dots, respectively.
Figure 3�a� shows the vortex state for the FM configuration
at H /H1=1/4, where the first pronounced peak in Fig. 2�a� is
observed. In this case the vortices occupy every other site in
every other column. They form an incomplete triangular or-
der. Domain walls �dashed dotted lines� are present in the
sample. This can be explained by a small difference in en-

FIG. 2. �Color online� Critical depinning force fp
c as a function

of the applied magnetic field H for the three configurations: �a� FM,
�b� AFM, and �c� AFM2�2. The field polarity-dependent asym-
metric pinning is clearly seen for the FM configuration, and sym-
metric pinning for the AFM and AFM2�2 configurations. �d� is a
comparison of the peaks at positive field between the FM and AFM
configurations.

FIG. 3. �Color online� Vortex patterns for the FM configuration
at �a� H /H1=1/4, �b� 1/2, �c� 1, �d� −1/4, �e� −1/2, and �f� −1. The
solid dots in upper and lower panels are the vortices and antivorti-
ces, respectively. The dashed dotted lines indicate the domain walls,
which are due to the small difference in energy between a square
unit and a parallelogram unit.
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ergy between a square unit along the domain walls and a
parallelogram unit when the density of the vortices is small.
In Fig. 3�b� we show the vortices at H /H1=1/2 which form
a checkerboard ordered state. It is completely ordered with a
square vortex lattice rotated by 45°. At H /H1=1 �Fig. 3�c��,
every pinning site is occupied by a vortex to form a very
stable pattern. The common feature of these vortex patterns
is that partial or complete matching can be found between
the vortex lattice and the magnetic dot array. Figures
3�d�–3�f� show vortex patterns at H /H1=−1/4, H /H1
=−1/2, and H /H1=−1, respectively. The antivortices are
caged at the interstitial positions because of repulsive inter-
actions between vortices and pinning sites. The obvious dif-
ference in vortex states at H
0 and H�0 yields the asym-
metric pinning.

The vortex patterns are known to be dependent on the
strength of the pinning sites.24 The regular triangular vortex
lattice has the lowest energy in the absence of any pinning
effect. However, in the opposite limit �strong pinning�, the

vortex lattice will prefer to follow the lattice imposed by the
pinning site array. Therefore, a vortex lattice can exist in the
form of at least two stable phases: pinned regular phase and
triangular phase. In the case of the first matching field, an
intermediate phase can also be found in the corresponding
pinning strength. In our simulations, we can also find these
three phases. The pinned phase has been shown in Fig. 3�c�.
When the pinning strength is considerably decreased, e.g.,
fp=0.013f0, an intermediate phase can be obtained as shown
in Fig. 4�a�. Almost half of the vortices are pinned at the
sites, and the others sit in the interstitial positions. They form
a regular triangular lattice �dotted lines�. When the pinned
strength is further decreased, e.g., fp=0.0028f0, the de-
formed triangular lattice can be seen in Fig. 4�b�. Our simu-
lation results are in a good agreement with the data reported
in Ref. 24 except for the domain walls �dashed dotted lines�
in the intermediate phase �Fig. 4�a��.

For the sample with the AFM configuration, Fig. 5�a�
shows the vortex pattern at H /H1=1/8, which is an incom-
pletely ordered lattice with vortices occupying every other
pinning site along every other diagonal stripe of the up-
magnetized dots. Domain walls �dashed dotted lines� can
also be observed in this case as that in the FM configuration.
The vortices at H /H1=1/4, as shown in Fig. 5�b�, form a
square lattice, which is completely ordered. Figure 5�c�
shows the vortex lattice at H /H1=1/2. The vortices just oc-
cupy completely every up-magnetized dot and the whole vor-
tex pattern is an ordered checkerboard state. We also show in
Fig. 5�d� the vortex state at H /H1=−1/2. The antivortex
pattern is the same as that at H /H1=1/2, except that the
roles of the up-and down-magnetized dots are interchanged.
Hence, the symmetrical pinning effect is observed in this
case.

Figures 6�a� and 6�b� present the vortex patterns for the
AFM2�2 configuration at H /H1=1/8 and 2/8, respec-
tively. At H /H1=1/8 the first pronounced peak in fp

c is found
�Fig. 2�c��. As shown in Fig. 6�a�, the vortices are located
alternatively in the bottom-left and top-right corners of every
2�2 up-magnetized subarray in different diagonal strips.
Domain walls �dashed dotted lines� are also observed here as
in the case of the FM and AFM configurations. In Fig. 6�b� at
H /H1=2/8, the vortices arrange themselves in a vortex
dimer �solid lines� lattice, where each dimer is stabilized
along alternate diagonal directions in every 2�2 up-
magnetized subarray. These two figures illustrate that the

FIG. 5. �Color online� Vortex patterns for the AFM configura-
tion at �a� H /H1=1/8, �b� 1/4, �c� 1/2, and �d� −1/2. The dashed
dotted lines indicate the domain walls.

FIG. 6. Vortex patterns for the AFM2�2 configuration at �a�
H /H1=1/8 and �b� 2/8. The domain walls and the vortex dimers
are indicated by the dashed dotted and solid lines, respectively.

FIG. 4. �Color online� Vortex patterns for the FM configuration
at H /H1=1 in �a� intermediate phase, and �b� deformed triangular
phase. The black dot lines indicate the triangular vortex lattice and
the dashed dotted lines are the domain walls.
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vortex patterns completely or partly match the available pin-
ning sites. Consequently, the peaks in fp

c occur due to these
matching effects. The vortex pattern at negative values
H /H1=−1/8 and H /H1=−2/8 �not shown here� is the same
as that at the corresponding positive field values, except that
the antivortices are pinned by the down-magnetized dots.
Therefore, the symmetrical pinning effect can be obtained,
similar to the AFM configuration.

There are two weak features clearly seen in Fig. 2�c� for
the AFM2�2 array. The first one is a local fp

c minimum at
H /H1= ±4/8. We show the vortex array with the field
H /H1=4/8 in Fig. 7�a�. One can find that half of the vortices
occupy two pinning sites along the diagonal in every 2�2
plaquette with up-magnetized dots. Along the same direction,
the other half of the vortices is occupying the interstitial
positions. There are two positions for the interstitial vortices.
The first one is the position located in the center of every
2�2 magnetic dot subarray with down magnetization �the
lower square marked by dotted lines�. The vortex is well
caged by the dots in the subarray. The second position is in
the center of a square �the upper one marked by dotted lines�,
which is composed of two up-magnetized and two down-
magnetized dots. The vortex state in this case is not stable if
we only consider the forces from the nearest vortices. For
instance, if the vortex deviates from the equilibrium position
along the direction connecting two up-magnetized dots, it
favors to move farther due to the larger attraction from the
nearest up-magnetized dots. Hence, the forces from other
dots are necessary to stabilize this vortex. We also notice that
the vortex deviating along the direction connecting two
down-magnetized dots, will be pushed back due to the larger
repulsive force from the nearest down-magnetized dot, and
therefore will favor to stay at the equilibrium position. So,
this position is actually a saddle point.1 This means that such
interstitial vortices are relatively easily depinned, and there-
fore the critical depinning force at this field is expected to be
relatively small. Meanwhile, no more vortices can occupy
the interstitial positions around this field; therefore, a local-
ized minimum is formed at this field.

The second weak feature is a set of several consecutive
peaks appearing in the region of 4/8�H /H1�8/8, which
leads to the increased level of the average fp

c over this region,
in contrast to the corresponding region for the AFM configu-
ration. This can be explained by the formation of several
ordered states at H /H1=5/8, 6 /8, 7 /8, and 8/8. Figure 7�b�,

as an example, shows the vortex distribution at H /H1=5/8.
The vortex density at this field is higher than the density of
up-magnetized dots. Hence, all the ferromagnetic dots are
occupied by the vortices. The remaining vortices are well
caged by down-magnetized dots in the interstitial positions.
All vortex-vortex and vortex-pinning center interaction
forces acting on a vortex sitting there will cancel each other
to form a stable position. This stable position can be consid-
ered as a virtual attractive pinning center. Consequently, fp

c is
increased.

One of the motivations of studying the fp
c behavior is to

find a way to increase the critical current density of a super-
conductor, Jc, which corresponds to fp

c in the simulation, i.e.,
the larger fp

c the higher Jc. Figure 2�d� shows that at the
matching fields the maximum fp

c value for the AFM configu-
ration is 0.283f0, which is a bit higher than the largest pin-
ning strength fp=0.279 22f0 provided by a single �isolated�
magnetic dot. But for the FM configuration it decreases to
0.276f0, which is a bit lower than fp. This difference can be
qualitatively explained as follows. First, we will neglect the
long-range interaction between the vortices because these
forces, due to the symmetry, cancel each other at the match-
ing field. Second, due to the size effect of the magnetic dots,
we cannot cancel out the interactions from the neighboring
dots. Since the cut off length for the vortex-pinning site in-
teraction in our simulations is equal to the lattice parameter
a, we only consider the nearest-neighbor site in the direction
of the vortex motion. For the FM configuration, the nearest-
neighbor site attracts the pinned vortex and causes the vortex
to be depinned more easily than a vortex pinned at an iso-
lated site. Hence, the maximum of the critical depinning
force for the FM configuration is a bit lower than that for an
isolated vortex fp. However, for the AFM configuration, the
nearest-neighbor site of every pinned vortex at the matching
fields is a down-magnetized dot. Due to the repulsive inter-
action between this dot and the pinned vortex, the nearest
neighbor will push the pinned vortex back to the pinning site,
thus causing the vortex to be depinned less easily than a
vortex pinned at an isolated site. Therefore, the maximum of
the critical depinning force for the AFM configuration is
somewhat higher than fp. This indicates that the critical cur-
rent Jc can be increased when the down-magnetized dots are
introduced and the dot size effect is considered. Although the
increment is small, we believe that a higher Jc value could be
achieved by optimizing the physical parameters in the AFM
dot array.

V. MAGNETIZATION

In Fig. 8 we show the magnetization curves �magnetiza-
tion M versus H /H1� up to H /H1=2.5 for three configura-
tions of the magnetic dot array. For the FM configuration, an
asymmetric magnetization curve is clearly seen in Fig. 8�a�.
At positive field H
0, peaks and cusps are distinctly visible
not only at integer fields H /H1=2 and 1 but also at the frac-
tional fields 1/2 and 2/3. But at negative fields, where the
pinning potential is repulsive, no matching features are
present. Figure 8�b� shows the comparison of our simulation
with the experiment,25 which measured the M�H� of a super-

FIG. 7. �Color online� Vortex patterns for the AFM2�2 con-
figuration at �a� H /H1=4/8 and �b� 5/8. The center of the lower
�upper� square indicated by dotted lines is the cage �saddle� point.

PINNING PROPERTIES AND VORTEX DYNAMICS IN … PHYSICAL REVIEW B 73, 014506 �2006�

014506-5



conducting Pb film on top of a magnetic dot Co/Pt array at
temperature T=7.18 K. The experimental and theoretical
data are in good agreement with each other. They are both
asymmetrical: low magnetization with no matching effects at
negative fields and high magnetization with strong or weak
matching effects at positive fields. It should be noted that the
upper �lower� branch of the simulation curve is slightly
shifted to lower �higher� field values. This is caused by the
high field sweep rate during the simulations.

However, for the AFM configuration in Fig. 8�c�, due to
the equal density of the up- and down-magnetized dots, the
M�H� curves are almost symmetrical. The matching effects
are seen at H /H1= ±1/2, ±1, and ±2. We can also find the
symmetric feature for the AFM2�2 configuration, as shown
in Fig. 8�d�, together with weak peaks at both H /H1= ±5/8
and ±1. The inset in Fig. 8�d� shows a weak enhancement at
4 /8�H /H1�8/8 which is in agreement with the relatively
high fp

c values discussed in Sec. IV.

VI. CURRENT-VOLTAGE CHARACTERISTICS

In this section, we will discuss the average velocity of
vortices in the x direction, 
vx�, versus the driving �Lorentz�
force FL, which corresponds to the current-voltage �I-V�
characteristics of the thin SC film. Before analyzing the re-
sults of our calculations we should briefly comment on the
definition of the first matching field. Obviously, the H1 defi-
nition for the FM configuration mentioned above is not ap-
plicable to the AFM and AFM2�2 configurations because a
vortex cannot occupy the down-magnetized dots when H

0 and an antivortex cannot occupy the up-magnetized pin-

ning sites when H�0. In our calculations for the AFM array,
we define the first matching field as the one at which the
density of the vortices is equal to the density of the unit cells.
For this new definition, the first matching field for the FM
configuration can be kept unchanged, while for the AFM and
AFM2�2 configurations, denoted by H1AFM and H1AFM2�2,
respectively, the values are equal to 1/2H1 and 1/8H1. In the
following, H1FM is also used to denote the first matching
field for the FM configuration.

Figure 9 shows a series of the I-V curves for all three
configurations at fields 0.944, 1.0, and 1.056 �in units of the
corresponding first matching field�. At the matching fields,
only a single voltage jump is observed for each configura-
tion. This indicates that all vortices are depinned simulta-
neously. An obvious distinction in the transition from the
pinned phase to the finite moving phase between FM and
AFM as well as AFM2�2 can be found in the figure. It
means that a continuous transition occurs for the FM con-
figuration, but a discontinuous one for the AFM and AFM2
�2 configurations. This difference is caused by the different
trajectories of the depinned vortices. Figures 10�a� and 10�b�
show the trajectory lines of the moving vortices at FL

=0.284f0 for the FM and AFM configurations, respectively.
In Fig. 10�a�, all the vortex motion is restricted to the 1D
channels along the pinning site rows, which is similar to the
previous simulations.15,16 In this case, the vortex-pinning site
interaction force will balance FL, yielding a gradual increase
in the 
vx� with respect to FL. However, for the AFM con-
figuration at the same FL, two kinds of the trajectories appear
in the sample: spindle lines along the pinning site rows and
sinusoidal lines along the channels between two adjacent
pinning site rows, as seen in Fig. 10�b�. When vortices move
along any of these two kinds of the trajectories, the vortex-

FIG. 8. �Color online� �a� Magnetization curve for the FM con-
figuration with H /H1�2.5. The curve is clearly asymmetrical. The
slight shift of the upper branch to lower field values and the lower
branch to higher field values is caused by the high field sweep rate
during the simulations. �b� A comparison between the simulation
and experiment for the FM configuration. �c� and �d� are the mag-
netization curves for the AFM and AFM2�2 configurations, re-
spectively. They are obviously symmetrical. Some strong and weak
peaks indicating the matching and submatching field are labeled.
The inset in �d� shows the weak enhancement of the fp

c values at
4 /8�H /H1�8/8.

FIG. 9. �Color online� The average velocity of vortices in the x
direction versus the driving force FL at both commensurate and
incommensurate fields for the �a� FM, �b� AFM, and �c� AFM2
�2 configurations.
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pinning site interaction forces in the x direction will decrease
greatly. These forces are so weak that they cannot balance
the FL. Thus, the average velocity of the vortices in the x
direction can reach higher values in a very narrow range of
FL just beyond fp

c, and then almost linearly increase with FL.
At incommensurate fields, different I-V curves are dis-

played for the three configurations. For the FM configuration
at H /H1FM =0.944 and 1.056, respectively, a two-stage de-
pinning process takes place as shown in Fig. 9�a�. The initial
response is due to the depinning of the interstitial vortices,
and the second larger jump occurs when all the vortices be-
gin to move.15,16 It should be noted that the interstitial vorti-
ces at H /H1FM =0.944 are induced by some of the vacancies
due to the presence of the pinning which is not strong
enough. Figure 11�a� shows the stable vortex state just after
annealing. The nearest pinned vortices from an interstitial
position form a hexagon �dotted lines�. Hence, the center of
the hexagon should be an equilibrium position, in which in-
terstitial vortices are favored. The long-range vortex-vortex
repulsive interaction forces the vortices to stay in these po-
sitions when the perturbation is applied. We also give the
I-V curves for the AFM configuration in Fig. 9�b�. A two-
stage depinning process is observed again at H /H1AFM
=1.056 as that found for the FM configuration. However,
only the single jump is found at H /H1AFM =0.944. This is
because the vacancies in this case cannot induce the intersti-
tial vortices. The repulsive interactions from the neighboring
sites do not allow vortices to occupy the interstitial positions,
as shown in Fig. 11�b�. For the AFM2�2 configuration, the
I-V curves are similar to those for the AFM configuration
except for a considerable velocity oscillations in the region
FL=0.227f0–0.228f0 and a velocity plateau in the curve for
H /H1AFM2�2=1.056 in Fig. 9�c�. In the velocity oscillation
region we find that most of the vortices are depinned and are
moving in a random manner, which leads to a sharp increase
in 
vx�. However, in the range 0.228f0−0.250f0, some of the

moving vortices are repinned by the up-magnetized dots and
the others are just moving along or between the pinning site
rows, thus yielding a velocity plateau with increasing FL.
The above two regions are similar to the regions III and IV,
respectively, discussed in Ref. 15 for a system with an anti-
dot array.

VII. CONCLUSIONS

We have simulated the pinning properties and the vortex
dynamics in thin SC film with different regular arrays of
magnetic dots. Three kinds of magnetic dot arrays, FM,
AFM, and AFM2�2 were investigated. By taking advantage
of the field polarity-dependent pinning effect, we success-
fully tuned pinning from asymmetric �FM� to symmetric
�AFM and AFM2�2� with pronounced matching effects.
Moreover, we have shown that the critical current of the SC
film can be enhanced by using the AFM configuration of
magnetic dots.

The vortex dynamics was also studied in this paper. We
presented a series of the I-V curves for three configurations
of magnetic dots at both commensurate and incommensurate
fields. At the first matching field, the I-V curves demonstrate
a continuous transition to the vortex moving region for the
FM configuration, while discontinuous transition for the
AFM and AFM2�2 configurations. This can be explained
by the difference in the vortex dynamical trajectories in these
pinning arrays.
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FIG. 11. �a� Vortex pattern for the FM configuration at
H /H1FM =0.944. With not very strong pinning strength, part of the
vacancies induce the interstitial vortices, which are stably caged at
the centers of hexagons �dotted lines�. �b� Vortex pattern for AFM
configuration at H /H1AFM =0.944. No interstitial vortices occur in
this configuration.

FIG. 10. Vortex trajectories at the first matching field with FL

=0.284f0 for the �a� FM configuration and �b� AFM configuration.
Spindle and sinusoidal trajectories are found. The vortex-pinning
site interaction forces decreased greatly.
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