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The “half-quantum” vortices ��� and quasiparticles ��� in a two-dimensional px+ ipy superconductor obey
the Ising-like fusion rules ���=1, ���=�, and ���=1+�. We explain how the physical fusion of
vortex-antivortex pairs allows us to use these rules to read out the information encoded in the topologically
protected space of degenerate ground states. We comment on the potential applicability of this fact to quantum
computation.
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I. INTRODUCTION

The magic of a quantum computer1–4 is that it makes a
virtue out of a vice. The numerical simulation of even simple
quantum systems requires exponentially large storage space
and exponentially long computation times. The quantum
state of a collection of N spin-1 /2 particles, or qubits, re-
quires 2N classical variables for its description, and solving
the Schrödinger equation to follow its time evolution re-
quires a conventional computer to perform up to 2N�2N

operations per time step. Conversely, a computer built out of
quantum components would be able to exploit the massive
parallelism inherent in quantum time evolution to provide
fast solutions for problems that would require exponential
time on conventional machines.

The difficulties to be overcome in building a quantum
computer are many. The quantum system at its core must be
strongly isolated from the environment so as to avoid deco-
herence; the unitary transformations that constitute the el-
ementary computational steps must be performed with suffi-
cient precision that error-correcting codes5 remain effective;
and, after all the quantum computation has been performed,
the system must be capable of being reconnected to the out-
side world in such a way that the output can be read off via
a measurement process that does not disturb the result.

A particularly appealing scheme for quantum computation
exploits topologically protected macroscopic quantum states
in many-body systems.6–9 The first examples of such topo-
logically ordered and protected many-body quantum states
were found by Xiao-Gang Wen and Qian Niu10 in the context
of the fractional quantum Hall effect. Wen and Niu observed
that if we place a filling-fraction �=1/n quantum Hall state
on a genus g Riemann surface �a thought experiment only!�
then there are ng degenerate, and essentially indistinguish-
able, ground states. They also observed that by creating a
vortex antivortex pair in the Hall fluid and then moving the
vortex around one of the homology generators of the surface
they could cause the system to roll over from one degenerate
state to the next. Since the degeneracy is lifted only by the
exponentially suppressed tunneling of vortices around the
generators, the coherence of a linear superposition of such
states is topologically protected. Furthermore, as described

above, such superpositions can in principle be manipulated
by controlling the motion of their vortex defects, and so in-
ducing on them representations of the braid group of vortex
world-lines.

For simple systems, such as the �=1/n Hall state on a
simply connected surface, these braid-group representations
are abelian, interchange and braiding giving rise only to a
phase factor. This is not sufficient for a universal quantum
computer.8,11 We need a non-abelian representation—i.e.,
particles with non-abelian statistics.12 There are a various
two-dimensional physical systems that should, in theory,
have excitations with non-abelian statistics. Those closest to
being realized in practice are all associated with many-body
wavefunctions that contain a Pfaffian factor. These candi-
dates are: �i� A quantum Hall effect state seen at filling-
fraction �=5/2,13 �ii� an anticipated, but as yet unobserved,
phase of a rapidly rotating atomic Bose gas, �iii� a two-
dimensional px+ ipy superconducting state—an example of
which has possibly been observed in the layered Sr2RuO4
superconductor.14,15 While the non-abelian statistics of these
Pfaffian states is still not quite adequate for the construction
of a universal computer, it is still worthy of study.

The mathematical origin of the non-abelian braiding in
the first two candidate systems is quite technical, involving
complicated linear dependences among various Pfaffian
wave functions.16 The non-abelian braid statistics of the px
+ ipy superconductor is much easier to understand physically.
The mechanism has been beautifully explained by Ivanov17

and further clarified by Stern et al.18

The essential ingredient is that the core of an Abrikosov
vortex in any superconductor contains localized low-energy
bound states whose existence is guaranteed by an index theo-
rem that relates the phase winding number n of the vortex to
the number of branches of low energy excitations.19 The px
+ ipy superconductor is unusual in that it can host a “half-
quantum” vortex,20 where the phase winding is seen by only
one of the two components of the electron spin. The quasi-
particles bound in the core of a two-dimensional version of
such a vortex are Majorana, i.e., they are identical to their
antiparticles. Further, for odd phase winding numbers, each
vortex binds a zero energy mode whose field-expansion co-
efficient is Hermitian. In the presence of 2N such vortices,
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the many-body Hilbert space of zero-energy states is 2N−1

dimensional. This number is in contrast with the naïve count
of 22N dimensions that would come from �wrongly� suppos-
ing that each single-particle zero-energy mode must be either
occupied or unoccupied. Because these 2N−1 independent
states cannot be associated with any individual vortex, the
many-body state encodes highly nonlocal information.
Ivanov17 demonstrated that the operation of braiding or in-
terchanging the vortices acts on this zero-energy space in the
same way that braiding acts on the 2N−1 dimensional space of
N-point conformal blocks in the level k=2, SU�2� Wess-
Zumino-Witten �WZW� model.

It is not surprising that this particular WZW model plays
some role. It is known that it describes the low energy phys-
ics of the Pfaffian quantum Hall state.21 It also describes the
low energy physics of the Bose gas pfaffian state,22,23 and is
a component of the low energy effective action of the two-
dimensional px+ ipy superconductor.24

Because the zero-energy states consist of an equal super-
position of particle and hole, they are electrically neutral.
They are also nonlocal. As a consequence they should be
little affected by local impurities and external fields, and so
be topologically protected. The vortices binding them, how-
ever, carry magnetic flux and so might manipulable by ex-
ternal probes such as STM tips. These vortices are thus po-
tential candidates for the basic building blocks of a quantum
computer. The problem is that the internal state in the
2N−1-dimensional protected zero-energy space is so decou-
pled from the outside world that it is hard to see how it can
be measured.

This read-out problem is not unique to non-abelian braid
statistics. There is as yet no completely convincing experi-
mental demonstration of even the abelian “anyonic” statistics
in the �=1/n Hall state—although no theorist doubts that it
is present. An experiment that can detect non-abelian statis-
tics is even harder to perform. We need some method of
accessing the non-abelian state by reading out the informa-
tion in the protected space.

One approach, at least in principle, is to use the “fusion
rules” of the vortices to re-connect the protected states to
something measurable. The vortex fusion algebra contains,
in addition to the obvious rule that phase-winding number
adds, a Z2 factor that is essentially that of the Ising model
primary-field operators I, �, and �,25 or of the analogous
affine primary fields �of spin zero, one-half, and one, respec-
tively� in the SU�2�2 WZW model:

� � � = I, � � � = I + �, � � � = � . �1�

In the superconductor it is natural to identify I with the
ground state and � with the Bogoliubov quasiparticle. The
latter is conserved only mod 2 because two quasiparticles
can combine to form a Cooper pair and vanish into the con-
densate. Hence ���→ I. Slightly less obvious is the iden-
tification of � with the odd-winding-number vortex. This
comes about because a pair of vortices is associated with a
single zero-energy state that can be occupied ��� or unoccu-
pied �I�. Hence ���= I+�. The third product, ���=�, is
then determined by the associativity of the fusion-product
algebra. The principal claim of this paper is that it is possible

to use this algebra to determine some of the information in
the topologically protected space by physically fusing a vor-
tex with an antivortex and seeing if they leave behind a real
quasiparticle �.

In subsequent sections, we will fill in the details of this
process. In Sec. II we discuss the form of the zero energy
solutions to the single-particle Bogoliubov-de-Gennes equa-
tion, focusing on the sign ambiguities which are the ultimate
source of the particle-creation legerdemain. In Sec. III we
show how tunneling between nearby vortices can be used to
resolve the sign ambiguity, and how braiding followed by
fusing reveals details of the protected state. Section IV is a
conclusion and discussion. An Appendix describes some nec-
essary, but technical, aspects of Berry transport in a super-
conducting state.

II. VORTEX CORE STATES

The topological objects that have the properties we seek
to exploit are the “half-quantum” vortices of a thin film of
px+ ipy spin-triplet superfluid, such as 3He-A, or possibly the
superconductor Sr2RuO4. The order parameter in such a su-
perfluid contains an angular-moment vector l, a vector d
characterizing the Cooper-pair spin state, and an overall
phase-factor exp�i��. In a half-quantum vortex the vector l
lies along the vortex axis and the vector d lies in plane
which, for convenience, we imagine to be perpendicular to l.
As we encircle the vortex the phase � increases by � while
the d vector rotates through 180°. Although exp�i�� and d
separately change sign, it is their product that appears in the
order parameter, and this is single-valued. The effect of the
combined rotation is that the spin-up fermions see the order
parameter phase wind through 2�, while the spin-down fer-
mions see no phase change at all. Andreev reflection off the
winding phase will bind low energy spin-up quasiparticles
modes in the vortex core, but there will be no spin-down
quasiparticle states with energy significantly less that the gap
�	�. Because only one component of spin is involved in the
low energy physics, we will from now on regard the fermi-
ons as being spinless. It is this spinlessness that allows the
px+ ipy superconductor to have topological properties analo-
gous to those of the spin polarized Pfaffian quantum Hall
state.13

Consider a two-dimensional film of superfluid with its l
vector perpendicular to the film, and with a winding-number
n vortex at the origin. We are principally interested in the
case n= ±1, but we will keep n general for the moment, so as
to bring out a distinction between vortices with n even and n
odd. The Bogoliubov-de-Gennes �BdG� equation29 has
bound-state solutions of the form

�u

v
� = eil
�ul

vl
� �2�

where

�ul

vl
� = � ei
�n+1�/2�a�r�Hl+1/2�kfr� + c.c.�

e−i
�n+1�/2�b�r�Hl−1/2�kfr� + c.c.�
� . �3�
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Here Hl�kfr� is a Hankel function of the radial co-ordinate r,
the angle 
 is the polar co-ordinate, and kf is the Fermi
momentum. The coefficient functions a�r�, b�r� are slowly
varying on the length scale of kf

−1 and are most conveniently
written in terms of a pair of auxiliary variables x and 
�x�.
These are defined in terms of the impact parameter r0
� l /kf by

x = 	r2 − r0
2, �4�


�x� = tan−1� x

r0
� . �5�

If we write

�a�r�
b�r�

� = �e−in
�x�/2ã�x�

ein
�x�/2b̃�x�
� �6�

then, in the Andreev approximation, the coefficients ã�x� and

b̃�x� obey

� − iv f�x 	�r�ein
�x�

	�r�e−in
�x� + iv f�x
��ã�x�

b̃�x�
� = El�ã�x�

b̃�x�
� . �7�

The one-dimensional eigenvalue equation �7� has a physi-
cally appealing interpretation as describing the propagation
of a quasiparticle along a rectilinear trajectory with r0 its
distance of closest approach to the vortex centre. The vari-
able x is the distance along the trajectory with x=0 being the
point of closest approach. As the quasiparticle moves it sees
the local value of the order parameter 	�r�x��exp�in
�x��.
The Hankel function is evanescent for r�r0, and ã and b̃ can
be taken as being constant in this region. In order for the
Hankel functions to combine to give the Bessel functions
Jl±1/2�kr� that remain finite at r=0, we need to impose the

condition that a and b �and hence ã and b̃� be real at x=0.
This condition allows us to extend the definition of ã�x� and

b̃�x� to continuous functions on the entire real line by setting

ã�−x�= �ã�x��* and b̃�−x�= �b̃�x��*. It may be verified that

�ã�x� , b̃�x��T continues to satisfy �7� in the extended domain.
The one-dimensional equation is able to capture the physics
of the bound states because the Andreev scattering that con-
fines the particle/hole in the vortex core is almost exactly
retro-reflective.26

Solving the one-dimensional problem shows that, for
small l, the energy eigenvalue is given by E�l�=−l�0 where
�0 is a frequency determined by the order parameter profile
	�r�. This frequency is positive if n0 and negative if n
�0. A glance at �2� and �3� shows that single-valuedness of
the BdG wave function requires l to take integer values when
n is odd, and half-integer values when n is even. The spec-
trum may therefore be labeled by an integer m and is given
by

Em = 
− �0m , n odd

− �0�m + 1/2� , n even.
� �8�

Both cases are consistent with the E↔−E symmetry of the
BdG eigenvalues. For odd winding numbers the spectrum
contains an E=0 mode. If we create N vortices there will be
one of these zero modes localized in each vortex core. There
will, however, always be an even number of zero modes. For
an odd number of vortices, an additional zero-mode will be
found on the boundary of the superfluid.24

Although the zero modes for the n= +1 and n=−1 vorti-
ces both have l=0, their actual angular dependence differs.
For the n= +1 vortex, whose circulation is in the same sense
as the px+ ipy Cooper-pair angular momentum, we have

�u0�r,
�
v0�r,
�

� = � ei
f�r�
e−i
f�r�

� �9�

For the n=−1 vortex we have,

�u0�r,
�
v0�r,
�

� = � f�r�
f�r�

� . �10�

In both cases the radial function f�r� is real and decays as
exp�−	r /v f� away from the vortex core.

We have been tacitly assuming that 	 is real. A global
phase rotation 	→ei�	 alters each of the eigenmodes and
we can choose an overall phase for the modes so that

�ul�r,
�
vl�r,
�

� → � ei�/2ul�r,
�
e−i�/2vl�r,
�

� . �11�

An inspection of the detailed form of the solutions shows
that, with this phase choice, we retain the property that the
upper component of eigenmode l is the complex conjugate of
the lower component for eigenmode −l. This property does
not uniquely specify the �u ,v�T vectors, however. Even after
normalization, so that ���ul�2+ �vl�2�d2x=1, a choice of over-
all sign remains to be made.

In the vicinity of the vortex core we can use the bound
states to make a mode expansion of the low energy part of
the fermion field

� �̂�r,
�

�̂†�r,
�
� = 

l

bl�ul

vl
�eil
 + higher-energy modes.

�12�

The fact that the lower field component �̂† is the Hermitian

conjugate of the upper component �̂ coupled with the phase
choice made in �11�, enforces the hermiticity condition bl
=b−l

† on the annihilation and creation operator coefficients.
This property is characteristic of a Majorana fermion. The
bound-state quasiparticles are therefore their own antipar-
ticles. For n odd, the zero-energy, mode coefficient obeys
b0=b0

† and cannot be thought of as being either a creation or

annihilation operator. Instead, the conditions ��̂�x� , �̂�y��=0

and ��̂†�x� , �̂�y��=�2�x−y� together with the completeness
of the eigenmodes tell us that
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b0
2 = 1/2, �b0,bl� = �b0,bl

†� = 0, l � 0. �13�

We have taken the trouble in this section to display the
bound-state wave functions in some detail. We did this to
make clear the origin of the bl

†=b−l Majorana condition, to
make explicit our phase choices, and to point out the remain-
ing sign ambiguity. This last point is important. For conven-
tional fermion annihilation and creation operators, the rela-
tive sign of ai and ai

† is fixed by the condition �a ,a†�=1, but
the relative sign of the various ai with respect to one another
is unimportant as it can always be absorbed into the defini-
tion of the free-field modes whose coefficients they are. The
relative sign of the b0’s associated with different vortices has
a physical significance that will be appreciated after we con-
sider tunneling between nearby vortex pairs.

III. BRAIDING AND FUSION

Suppose we start from a homogeneous �	=const.� state
and adiabatically create N vortex-antivortex pairs. For ease
of discussion imagine the the pairs arranged so that each
antivortex lies on the x axis, and the corresponding vortex
lies vertically above. We label the pairs from left to right by
the index i=1, . . . ,N. In the core of each vortex and antivor-
tex there will be a zero-mode with its corresponding b0 mode
operator. Up to a factor, these hermitian operators obey
gamma-matrix anti-commutation relations, so it is natural to
rename these b0’s as �i /	2 �vortex� and �i+N /	2 �antivortex�.
These 2N operators can be assembled to make N each of
annihilation and creation operators

bi = 1
2 ��i + i�i+N� ,

bi
† = 1

2 ��i − i�i+N� . �14�

These bi and bi
†’s act on a 2N-dimensional space of degener-

ate ground states. This space is split into two physically
equivalent 2N−1-dimensional spaces by a superselection rule:
Although fermion number conservation is broken by the
presence of the condensate, no physical process internal to
the system can change an odd total fermion number into an
even fermion number. Which of the two spaces we are in
depends on whether the total number of particles in the sys-
tem is odd or even.

The odd-even decomposition is reflected in the fusion al-
gebra. By using the rules �1� to repeatedly fuse a � with �
��= I+�, we find

� � � � � = � + � ,

� � � � � � � = I + � + I + � ,

etc. In general, for 2N vortices,

�15�

The 2N−1-dimensional multiplicity spaces of the I and the �
are separately invariant under the action of the braid group.

When each vortex “i” is brought close to its sibling anti-
vortex “N+ i,” the 2N-fold ground state degeneracy is lifted.

Because two nearby odd-winding number vortices are effec-
tively a vortex with an even winding number, tunneling be-
tween their two zero-energy BdG modes will cause them to
realign and become two eigenmodes with some small non-
zero energy ±Ei. In the second quantized Bogoliubov Hamil-
tonian these two single-particle modes make one state that
can either be occupied and contribute Ei to the total energy
or be unoccupied and contribute energy −Ei. If we were to
slowly merge each vortex with its sibling antivortex, the ±Ei
eigenmodes will split further and eventually merge with the
continuum of unbound states. If the Ei state is empty, nothing
remains after the vortices annihilate. If it is occupied, an
unbound quasiparticle with energy of �	� is left behind.

It is not easy to compute the matrix elements for the tun-
nel splitting, but we do not need to know them in detail.
When the splitting is small we can restrict ourselves to the 2N

dimensional space of nearly degenerate states, and in this
space the many-body Hamiltonian must be of the form

Ĥ0 = 
i=1

N

Ei
1

4i
��N+i,�i� +

1

2
i=1

N

Ei

=
1

2
i=1

N

E��bi
†bi − bibi

†� +
1

2
i=1

N

Ei = 
i=1

N

Eibi
†bi. �16�

This is because �1/4i���N+i ,�i� is the only hermitian operator
that can be made solely out of �i and �i+N, and so the only
possible operator that tunneling between vortex “i” and “N
+ i” can contribute to the Hamiltonian. Hermiticity demands
that that the Ei be real. We can also assume that the Ei are
positive by using this requirement to fix the relative sign
ambiguity between �i+N and �i.

The lowest energy state �0� for an even number of par-
ticles is that which is annihilated by all the bi. In this ground
state all fermions are paired, and all of the not-quite-zero-
energy states are empty. If the system contains an odd num-
ber of particles, however, one will be left unpaired, and will
occupy the lowest of the not-quite-zero-energy states.

Now we consider how we can manipulate the occupation
numbers of the not-quite-zero modes. Following Ivanov,17

we adiabatically transport vortex i around vortex j and bring
it back to its original position. In this process the local phase
� seen by each vortex will increment by ±2�, and so cause
the phase factors ei�/2 �see �11�� in the zero modes of vortex

i and j to change sign. The field operators �̂�x�, �̂†�x� are
indifferent to the choice of modes in which we expand them,
and must be unchanged by the braiding process. The sign
change of the mode vector �u0 ,v0� must therefore be com-
pensated by a change in the sign of the mode coefficients �i
and � j. Consequently

Ĥ0 = ¯ + Ei
1

4i
��N+i,�i� + ¯ + Ej

1

4i
��N+j,� j� + ¯

+
1

2
Ei + ¯ +

1

2
Ej + ¯

is changed to
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Ĥ0
new = ¯ − Ei

1

4i
��N+i,�i� + ¯ − Ej

1

4i
��N+j,� j� + ¯

+
1

2
Ei + ¯ +

1

2
Ej + ¯

In addition to this explicit monodromy in Ĥ0, the state �0�
might acquire a non-abelian, holonomy from Berry transport.
It was argued by Stern et al.,18 that, for the choice of phases
in �u0 ,v0�, the state �0� is at most multiplied by an overall
Berry phase, and so essentially returns to itself after the
braiding process. We agree with this conclusion, although we
find the discussion in Ref. 18 unnecessarily involved. We,
therefore, provide our own derivation of this key fact in the
Appendix.

After the braiding the state �0� remains an eigenvector of
all the �1/4i���N+k ,�k� with eigenvalue −1/2. Because of the

sign changes in Ĥ0, however, it is no longer the lowest en-

ergy state of Ĥ0
new. It is instead an excited state with energy

Ei+Ej, corresponding to the two not-quite-zero modes of the
i and jth pairs being occupied. If we now adiabatically fuse
the ith vortex with its sibling antivortex we recover the uni-
form state together with a quasiparticle �. The same is true
for for the jth pair.

We now suppose we make an anti-clockwise interchange
Ti of the i and i+1th vortices. In order to follow what hap-
pens, we must first fix the sign ambiguity between the �i. We
therefore draw “branch cuts” to the right of each vortex and
parallel to the x axis and set the �i produced by the vortex
equal to zero immediately above the cut. The local phase ��i�
seen by vortex i is then the sum of the  j�i� j’s of the other
vortices and anti-vortices. Under the interchange, and keep-
ing track of the explicit monodromy of the local �i’s, we find
that the zero mode of the i+1th vortex replaces that of the ith
while the ith zero mode replaces minus that of the i+1th.
Thus �see Fig. 1 and Ref. 17�

Ti:
 �i → �i+1

�i+1 → − �i.
� �17�

Since the geometric arrangement of the vortices is un-
changed, the Hamiltonian becomes

Ĥ0
new = ¯ + Ei

1

4i
��N+i,�i+1� + ¯ − Ei+1

1

4i
��N+i+1,�i�

+ ¯ +
1

2
Ei + ¯ +

1

2
Ei+1 + ¯ .

The crucial effect is not so much the sign change but that the
Berry transport of �0� preserves its property that it is the state
killed by the bk of the original �1/4i���N+k ,�k�. Conse-
quently �0� is no longer an eigenstate of the new Hamil-
tonian, but is instead a linear superposition of eigenstates.
The outcome of fusing vortex i with its antivortex is no
longer certain. Same is true for the outcome of fusing vortex
i+1 with its antivortex. In fact, it will be shown later that we
have constructed an entangled state.

The sign change in �i→−� j does have significance, how-
ever, as it ensures that the result of braiding is to take �i
→�i� with

�i� = � jOji = U�iU
−1,

where Oij is an element of SO�2N�, as opposed to O�2N�.
Here U is a spin-representation matrix that would act on the
2N dimensional space of degenerate ground states were we to
make the braid group act by holonomy on the states, instead
of by explicit monodromy on the Hamiltonian. The O�2N�
spin representation is irreducible, but under restriction to
SO�2N� it decomposes into two irreducible components,
these being the spaces of odd or even fermion number. For
the elementary braiding operation Ti, Ivanov showed17 that
the relevant unitary operator U�Ti� can be taken to be

�i =
1
	2

�1 + �i+1�i� , �18�

as this is unitary and obeys

�i�i�i
−1 = �i+1,

�i�i+1�i
−1 = − �i.

The operation of taking vortex i completely around vortex
i+1 and back to its starting point is, therefore

�i
2�i�i

−2 = − �i,

�i
2�i+1�i

−2 = − �i+1.

For the rest of this section we will take the holonomy point

of view—i.e., the Hamiltonian will be kept fixed as Ĥ0
=iEibi

†bi, and a braiding T will act on the state by U�T�.
We now consider the effect of various braid group gen-

erators on the occupation number basis states

�n1, . . . ,nN� � �b†
1�n1

¯ �b†
N�nN�0� . �19�

When we expand out the generator �i in terms of the annihi-
lation and creation operators, we find that

�i =
1
	2

�1 + bi+1bi + bi+1
† bi + bi+1bi

† + bi+1
† bi

†� , �20�

and so

FIG. 1. �Color online� Phase changes due to the braid operation
T1: Before the braiding the phase �2�1� seen by vortex 1 due to
vortex 2 is just more than 180°, and the phase �1�2� seen by vortex
2 due to vortex 1 is just more than 0°. After the braiding the phase
�1�2� at vortex 2 due to vortex 1 is just more than 180°, but because
vortex 1 remains below below the displaced vortex-2 branch cut,
the phase �2�1� is now just more than 360°. Consequently �1 is
replaced by �2, but �2 is replaced by −�1.
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�i�n1, . . . ,ni,ni+1, . . . ,nN� =
1
	2

��n1, . . . ,ni,ni+1, . . . ,nN� + �n1, . . . ,�ni − 1�,�ni+1 − 1�, . . . ,nN� + �n1, . . . ,�ni − 1�,�ni+1 + 1�, . . . nN�

− �n1, . . . ,�ni + 1�,�ni+1 − 1�, . . . ,nN� − �n1, . . . ,�ni + 1�,�ni+1 + 1�, . . . ,nN�� . �21�

Here we understand that when the ±1 takes the occupation number nj out of the set �0,1� the illegal state is to be replaced by
zero.

We next define Ti
�0� to be the operation of interchanging vortex i with its sibling antivortex. �A vortex and an antivortex

being distinguishable, this operation does not return the system to its original configuration and hence cannot be considered as
a braiding operation.� The corresponding unitary operator is

�i
�0� =

1
	2

�1 + �i+N�i� =
1
	2

�1 + i�bi
†bi − bibi

†�� . �22�

From this, we find

�i
�0��n1, . . . ,ni, . . . ,nN� = ei�ni/4�n1, . . . ,ni, . . . ,nN� . �23�

One can also consider an operation involving interchanging vortex i with the antivortex of its partner, i+1, to the right. We will
call this operation Ti

�1�. The corresponding operator is

�i
�1� =

1
	2

�1 − ibi+1bi + ibi+1
† bi − ibi+1bi

† + ibi+1
† bi

†� , �24�

and this acts as

�i
�1��n1, . . . ,ni,ni+1, . . . ,nN� =

1
	2

��n1, . . . ,ni,ni+1, . . . ,nN� − i�n1, . . . ,�ni − 1�,�ni+1 − 1�, . . . ,nN� + i�n1, . . . ,�ni − 1�,�ni+1

+ 1�, . . . nN� + i�n1, . . . ,�ni + 1�,�ni+1 − 1�, . . . ,nN� − i�n1, . . . ,�ni + 1�,�ni+1 + 1�, . . . ,nN�� . �25�

A strategy for accessing the protected information is now
apparent. The wave function of the protected state ��� be-
longing to the even �or odd� fermion number sector is speci-
fied by the 2N−1 complex numbers forming the its compo-
nents in the occupation-number basis �n1 , . . . ,nN�. Provided
that we can have access to multiple copies of ���, we can
repeatedly fuse the vortex-antivortex pairs and so estimate
the probability of a particular pattern �n1 , . . .nN� of relict par-
ticles. In this way we obtain the numbers ��� �n1 , . . . ,nN��2.
We lose all relative phase information in this process, how-
ever. This loss occurs not only because we are finding prob-
abilities, but also because the different occupation-number
states have unpredictably different tunneling energies, and so
time evolution will scramble their relative phases during the
fusion process.

Not all is lost, however, �21� and �25� seem to suggest that
we can use direct fusion combined with controlled braiding
�i and interchange �i

�1� to find all three of the numbers

�A01�2 � ����n1, . . . ,0,1, . . . ,nN��2,

�A10�2 � ����n1, . . . ,1,0, . . . ,nN��2,

�A10 + A10�2 � ����n1, . . . ,0,1, . . . ,nN�

+ ���n1, . . . ,1,0, . . . ,nN��2,

�A01 + iA10�2 � ����n1, . . . ,0,1, . . . ,nN�

+ i���n1, . . . ,1,0, . . . ,nN��2.

If this is possible, we would be able to obtain all relative
phases of �� �n1 , . . . ,nN�’s, for given �z1�2, �z2�2, �z1+z2�2, and
�z1+ iz2�2, it is possible to recover the complex numbers z1
and z2 up to a common phase factor.

This is not quite the case, however. A vortex-antivortex
interchange would leave one vortex-vortex pair and one
antivortex-antivortex pair. These pairs are problematic, be-
cause the excited state of this pair would not lead to an
unbound Bogoliubov quasiparticle excitation, but rather a
bound excited state of a “double half-quantum” vortex �or
antivortex�. This means that fusing such pairs would not give
us a result that we can read out. In short, �z1+ iz2�2 is not
available to us.

Nevertheless, there is still much we can figure out about
relative phases of �� �n1 , . . . ,nN�’s. For N complex numbers,
zi, if one knows all their absolute values and distance be-
tween each other, �zi−zj�, for all i , j �or equivalently �zi+zj��,
the geometric configuration of zi’s are determined rigidly. By
this we mean that we have determined zi’s up to overall
rotation around the origin and reflection with respect to the
real axis �that is, complex conjugation�. It needs to be noted
that knowing �zi±zj� for all i , j actually overdetermines zi’s.
So it turns out that even though direct fusion combined with
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controlled braiding �i only gives us a subset of ��zi±zj��, it is
still sufficient for us to determine �� �n1 , . . . ,nN�’s up to
complex conjugation and overall phase. The exact procedure
will be given in the Appendix. �One needs to be note that if
there is a superposition of even total occupation number
states and odd total occupation number states, there is no
way to obtain phase relation between them, which reflects
the fact that, as Ivanov pointed out,17 the superconducting
Hamiltonian creates or destroys electrons only in pairs.�

IV. CONCLUSIONS AND OPEN QUESTIONS

Half-quantum vortices in the px+ ipy superconductors pro-
vide, at least in principle, a way to generate and manipulate
entangled states in a topologically protected Hilbert space.
We have shown that by physically fusing vortices with ap-
propriate antivortices it is possible to reconnect the protected
space to the rest of the Hilbert space and so read out the
information encoded there.

A number of questions remain, however: �i� We have as-
sumed that the fusion process is slow enough that the Ei
bound state merges adiabatically with the continuum. What
happens if the process is too fast? Can we find a tractable
model for the annihilation process that would allow us to
determine how adiabatic it has to be in order not to lose
information? �ii� Our picture of generating and moving vor-
tices is at present only a thought experiment. The necessary
half-quantum vortices have not even been detected in any
real system. If they can be found, can we come up with some
practical device �a configuration of STM probes, current
sources, drains, gates, etc.� that can create, guide, and moni-
tor the vortices? Since no experiment is likely to be able to
detect a single quasi-particle, we would have arrange for a
continuous operation and measure currents; �iii� Perhaps the
most interesting question is whether we take the insights
developed from the relatively simple picture of braiding and
fusion in the superconductor and extend them to the other
candidate systems with non-abelian statistics.
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APPENDIX A: BERRY PHASES AND BOGOLIUBOV
TRANSFORMATIONS

In this Appendix we review the formal algebraic aspects
of Bogoliubov transformations, and their implications for the
computation of Berry phases for BCS states.

1. BCS ground state

Suppose that Hij is an N-by-N matrix representing a one-
particle Hamiltonian. When we include the effect of a super-
conducting condensate, the second-quantized Bogoliubov
Hamiltonian becomes

ĤBogoliubov = ai
†Hijaj +

1

2
	ijai

†aj
† +

1

2
	ij

† aiaj

=
1

2
�ai

† ai��Hij 	ij

	ij
† − Hij

T ��aj

aj
† � +

1

2
tr H .

�A1�

Here ai
† and ai are fermion creation and annihilation opera-

tors, the gap function 	ij is a skew symmetric matrix, and HT

denotes the transpose of the Hermitian matrix H. For a con-
tinuum superconductor, the index “i” should be understood
to incorporate both the space co-ordinate x, and the spin
index. A sum over i, therefore, implies both an integral over
real space and a sum over spin components.

The many-body Hamiltonian is diagonalized by means of
a Bogoliubov transformation. To construct this transforma-
tion we begin by solving the single-particle Bogoliubov-de-
Gennes �BdG� eigenvalue problem

�H 	

	† − HT ��u�

v�
� = E��u�

v�
� . �A2�

Here u� and v� are N-dimensional column vectors, which we
take to be normalized so that �u��2+ �v��2=1. If we explicitly
display the column-vector index i they become matrices ui�
and vi�. Taking the complex conjugate of �A2� tells us that

�H 	

	† − HT ��v�
*

u�
* � = − E��v�

*

u�
* � , �A3�

and so the BdG eigenvalues come in � pairs. We will always
take E� to be the positive eigenvalue.

We now set

ai = ui�b� + vi�
* b�

†

ai
† = vi�b� + ui�

* b�
† . �A4�

The mutual orthonormality and completeness of the eigen-
vectors �u� ,v��T ensures that the b�, b�

† have the same anti-
commutation relations as the aiai

†. In terms of the b�b�
† , the

second-quantized Hamiltonian becomes

ĤBogoliubov = 
�=1

N

E�b�
†b� −

1

2 
�=1

N

E� +
1

2
i=1

N

Ei
�0�. �A5�

Here the Ei
�0� are the eigenvalues of H. These can be of either

sign.
If all the E� are strictly positive, the new ground state is

nondegenerate and is the unique state �0�b annihilated by all
the b�. If we could find a unitary operator U such that

b� = aiui�
* + ai

†vi�
* = Ua�U−1

b�
† = ai

†ui� + aivi� = Ua�
†U−1 �A6�

then we would have �0�b=U�0�a, where �0�a is the no-particle
vacuum state. It is not easy to find a closed-form expression
for U, however. An alternative strategy for obtaining �0�b
begins by noting that if that the matrix ui� is invertible then
the condition bi�0�b=0 is equivalent to
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�ai + ak
†vk�

* �u*−1��i��0�b = 0,i = 1, . . . N . �A7�

We, therefore, introduce the skew-symmetric matrix

Sij = vi�
* �u*��j

−1 �A8�

and observe that

exp
1

2
ai

†aj
†Sij�ak exp
−

1

2
ai

†aj
†Sij� = ak + ai

†Sik. �A9�

From this we conclude that

�0�b = N exp
1

2
ai

†aj
†Sij��0�a �A10�

where �0�a is the original-no particle state. Equation �A10�
explicitly displays the superconducting ground state as a co-
herent superposition of Cooper-pair states, and allows us to
identity Sij with the �unnormalized� pair wave function.

The normalization factor N is found from

�S1�S2� = det1/2�I + S1
†S2� , �A11�

where

�S� = exp
1

2
ai

†aj
†Sij��0�a, �A12�

to be

N = det−1/4�I + S†S� . �A13�

Because the group of Bogoliubov transformations on ai,
ai

†, i=1, . . . ,N is SO�2N�, and because the subgroup U�N�
�Sp�2N ,R��SO�2N� of transformations that mix the a’s
only with themselves �i.e., not with the a†’s�, preserves the
no-particle vacuum �0�a, the set of physically distinct ground
states is parameterized by the symmetric space
SO�2N� /U�N�. As a check of this assertion, observe that

dim SO�2N� − dim U�N� = N�2N − 1� − N2 = N�N − 1� ,

�A14�

which is the number of independent real parameters in the
complex skew-symmetric matrix Sij. These Sij for i� j serve
as complex co-ordinates on all but a set of measure zero in
the manifold of possible ground states.

2. Clifford algebra and Lie †SO„2N…‡

We can make the SO�2N� character of the Bogoliubov
transformations manifest by introducing a set of 2N Dirac
gamma operators. These are related to the fermion annihila-
tion and creation operators by

�i = �ai + ai
†�

�i+N = i�ai
† − ai� . �A15�

The �i are Hermitian, and obey the Clifford algebra

��i,� j� � �i� j + � j�i = 2�ij . �A16�

The Hamiltonian can be rewritten in terms of the �i as

ĤBogoliubov = 1
2 

i,j=1

2N

hij�ij + 1
2 tr H �A17�

where

�ij =
1

4i
��i,� j� �A18�

are the spinor generators of the Lie algebra of SO�2N�, and
the matrix hij has entries

hij = �− IH − I	 − RH + R	

RH + R	 − IH + I	
�

ij

. �A19�

Here RZ�X and IZ�Y denote the real and imaginary parts
of Z=X+ iY, and the vector space has been partitioned so that
i=1, . . . ,N is the first block and i=N+1, . . .2N is the second.
This rewriting reveals that a general Bogoliubov Hamil-
tonian is, up to an additive constant, an element of the Lie
algebra of SO�2N�. The Bogoliubov transformation that di-
agonalizes H is, therefore, the operation of conjugating the

Lie algebra element Ĥ into the Cartan sub-algebra. This we
can take to be spanned by the commuting set of operators

1

4i
��N+i,�i� =

1

2
�ai

†ai − aiai
†�, i = 1, . . . ,N . �A20�

After conjugation,

ĤBogoliubov → UĤBogoliubovU
−1, �A21�

with

U = exp
 i

2
i,j


ij�ij� �A22�

for some parameters 
ij, the Hamiltonian becomes

ĤBogoliubov → 
i=1

N

E�

1

4i
��N+�,��� +

1

2
i=1

N

Ei
�0�

=
1

2
I=1

N

E��a�
†a� − a�a�

†� +
1

2
i=1

N

Ei
�0�

= 
�=1

N

E�a�
†a� −

1

2
�

E� +
1

2
i

Ei
�0�, �A23�

which is the same as �A5�. Again it is convenient to regard
the energies E� as being positive, even though the Ei

0, the
eigenvalues of H, can have either sign. The additive constant
is then the ground-state energy of superconducting system.

3. Zero modes

The gamma-operator language is particularly useful when
there are zero modes. Because of the ±E symmetry, any zero
energy eigenvectors of the BdG Hamiltonian must come in
pairs. Suppose that �u0 ,v0�T becomes degenerate with its
negative energy sibling �v0

* ,u0
*�T. Then we can write this pair

of eigenvectors’ contribution to the mode expansion as
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�ai

ai
† � = �ui0

vi0
�b0 + �vi0

*

ui0
* �b0

† + ¯

= �Ui0

Vi0
� �0

	2
+ �UiN

ViN
��N

	2
+ ¯ , �A24�

where

�Ui0

Vi0
� =

1
	2
��ui0

vi0
� + �vi0

*

ui0
* �� ,

�A25�

�UiN

ViN
� =

i
	2
��ui0

vi0
� − �vi0

*

ui0
* �� ,

and

�0 = �b0 + b0
†�, �N = i�b0

† − b0� . �A26�

The column vectors �U0 ,V0�T and �UN ,VN�T both have the
feature that U*=V. This anti-linear up-down symmetry is
characteristic of the localized zero modes in the vortex cores.

4. Berry connection

We need to compute the Berry connection iA= �S̃�d�S̃�,
where �S̃�=N�S� is the normalized ground state. To do this
we exploit the fact that the un-normalized states �S�, being
functions only of the Sij, and not of the Sij

* , defines a holo-
morphic line-bundle over the Kähler manifold
SO�2N� /U�N�. We can therefore read off the one-form con-
nection iA from derivatives of the Kähler potential

ln N = − 1
4 ln det�I + S†S� �A27�

as iA= �̄ ln N−� ln N.27 If we express the parameters Sij in
terms of the normalized Bogoliubov eigenvectors �u ,v�T, we
find that

iA = 
i�j

� � ln N
�Sij

* dSij
* −

� ln N
�Sij

dSij� =
1

2 
�=1

N

�v� u��d�v�
*

u�
* �

+
i

2
d�Arg�det u�� . �A28�

The expression �A28� has a simple interpretation. From �A3�
we see that the column vectors �v�

* ,u�
*�T are the negative-

energy eigenstates of the one-particle Bogoliubov-de-Gennes
Hamiltonian

HBdG = �H 	

	† − HT � . �A29�

If this were a Dirac fermion problem, we would fill the Dirac
sea consisting of these negative energy states. The Berry
phase of the vacuum would then be the sum of the Berry
phases of the occupied states. The first term in �A28� is pre-
cisely one-half of this sum. The factor of one-half compen-
sates for the artificial doubling of the degrees of freedom in
passing from H to HBdG. The second term in �A28� is a total
derivative, and reflects a choice of gauge.

We next compute the Berry connection for an excited
state

��1, . . . ,�n� = b�1

†
¯ b�n

† �S̃� , �A30�

by using

db�
† = �ui�b� + vi�

* b�
†�dvi� + �vi�b� + ui�

* b�
†�dui�

= �vi�
* dvi� + ui�

* dui��b�
† + �ui�dvi� + vi�dui��b�.

�A31�

When the state ��1 , . . . ,�n� is nondegenerate, we are inter-
ested only in the diagonal �=� term

d�b�
† �diag = �vi�

* dvi� + ui�
* dui��b�

† , �no sum on �� ,

�A32�

and we find

iA = ��1, . . . ,�n�d��1, . . . ,�n�

= �S̃�b�n
¯ b�1

d�b�1

†
¯ b�n

† �S̃��

= �S̃�d�S̃� + �S̃�b�n
¯ b�1

d�b�1

†
¯ b�n

† ��S̃�

= �S̃�d�S̃� + 
m=1

n

�u�m

* v�m

* �d�u�m

v�m

� , �A33�

which is the sum of the many-body ground-state Berry con-
nection and the Berry connections of the individual one-
particle excited states. Observe that there is no factor of
“1/2” in the contribution of these occupied excited states.

The non-abelian Berry connection of a set of degenerate
many -body states is computed in the same manner. It will

include a diagonal term from the reference state �S̃� and a
sum of nondiagonal terms terms of the form

iA�� = �u�
* v�

*�d�u�

v�
� . �A34�

In the case of the vortices, the states of interest are the ex-
ponentially localized core states. Because of this localization
only the overlap of each core state with itself has any chance
of providing a nonzero term in the connection, but it is
readily verified that with the phase choices made in the text,
all these contributions are zero. The only “Berry phase” pro-
duced by the vortex braiding is the overall diagonal Berry
phase associated with the Magnus force28

APPENDIX B: DETERMINING PHASE RELATION
AMONG COEFFICIENTS OF OCCUPATION NUMBER

BASIS

Let us consider how many vortex interchange steps would
be needed in order to rigidly—this rigidity being defined in
the last page of the Sec. III—determine geometric configu-
ration on the complex plane of all �� �n1 , . . . ,nN�’s, with ���
having a definite parity in total occupation number.

In the case N=2 one can easily see from

�1�A00�00� + A11�11�� =
1
	2

��A00 + A11��00� − �A00 − A11��11�� ,
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�1�A01�01� + A10�10�� =
1
	2

��A01 + A10��01� − �A01 − A10��10��

�B1�

that the fusion following the vortex interchange process
gives us, up to the sign, phase difference between A00 and
A11 �and likewise between A01 and A10�. Given that we al-
ready know �A00� and �A11�, this is sufficient to rigidly deter-
mine on the complex plane the configuration of A00 and A11.
Same can be said for A01 and A10.

It is instructive to work out the next simplest case N=3,
where ���=A000�000�+A110�110�+A011�011�+A101�101�.
From N=2 case, one can see that �1 rigidly determines the
configuration of A000 and A110 on the complex plane. It also
rigidly determines the configuration of A011 and A101 on the
complex plane. However any phase relation between the
former and latter remains completely unknown at this point.
But then from

�2��� =
1
	2

��A000 + A011��000� − �A101 − A110��110�

− �A000 − A011��011� + �A101 + A110��101�� , �B2�

one can see that after fusion following the implementation of
�2, the configuration of both the A000, A011 pair and the A101,
A110 pair would be determined rigidly with respect to the
origin. We now have a rigid configuration of all four
coefficients—A000, A011, A101, and A110—on the complex
plane; they have been determined up to complex conjugation
and overall phase.

The N=3 case gives us ideas about how to make use of a
recursion argument for the general case in figuring out the
phase relation. One can assume that for N=m there is some
process consisting of fusion of vortex-antivortex pairs and
applications of �k’s �where k�m−1� which give us the rigid
configuration on the complex plane of the coefficient of
states with even total occupation number. The same process
would also give us the rigid configuration on the complex
plane of the coefficient of states with odd total occupation
number as well. �We have seen that this holds true for m
=2.� Now note that the even �or odd� total occupation num-
ber sector of the Hilbert space in N=m+1 case can be di-
vided into the following two classes:

�n1, . . . ,nm,0� , �B3�

�n1�, . . . ,nm� ,1� . �B4�

The operations that were used in the procedure we have ap-
plied for obtaining all phase relation in the N=m case does
not affect nm+1, and so by applying these operations we
would obtain the rigid configuration for the coefficients of
states belonging to �B3�. Same can be said for the coeffi-
cients of the states of belonging to �B4� �though �n1 , . . . ,nm�
and �n1� , . . . ,nm� � have opposite parity in total occupation
number�. Now all we need to do is to figure out the rigid
configuration of two pairs of coefficients, each of which con-
sists of one coefficient for one of the states belonging to �B3�
and one coefficient for one of the states belonging to �B4�.
So for ���=An1,. . .,nm,nm+1

�n1 , . . . ,nm ,nm+1�, �note that sum-
mation is restricted to even, or odd, total occupation number�

�m��� = �m� An1,. . .,nm,0�n1, . . . ,nm,0� +  An1�,. . .,nm� ,1�n1�, . . . ,nm� ,1�� =
1
	2

� �An1,. . .,nm−1,0,0 + An1,. . .,nm−1,1,1��n1, . . . ,nm−1,0,0�

− �An1,. . .,nm−1,0,0 − An1,. . .,nm−1,1,1��n1, . . . ,nm−1,1,1�� +
1
	2

� �An1�,. . .,nm−1� ,0,1 + An1�,. . .,nm−1� ,1,0��n1�, . . . ,nm−1� ,0,1�

− �An1�,. . .,nm−1� ,0,1 − An1�,. . .,nm−1� ,1,0��n1�, . . . ,nm−1� ,1,0�� . �B5�

One can easily see that all pairs belonging to �An1,. . .,nm−1,0,0 ,An1,. . .,nm−1
,1 ,1� or �An�1,. . .,n�m−1,0,1 ,An�1,. . .,n�m−1,1,0� now have rigid

configuration. It is clear that we now have rigid configuration for �An1,. . .,nm−1,nm,nm+1
�. Also we can see that in this scheme of

figuring out the rigid configuration of 2N−1 coefficients of even �or odd� fermion sector in the occupation-number basis,
N−1 vortex interchange steps are needed

.
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