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We study the motion of domain wall defects in a fully frustrated Josephson-junction ladder system, driven by
small applied currents. For small system sizes, the energy barrier EB to the defect motion is computed ana-
lytically via symmetry and topological considerations. More generally, we perform numerical simulations
directly on the equations of motion, based on the resistively-shunted junction model, to study the dynamics of
defects, varying the system size. Coherent motion of domain walls is observed for large system sizes. In the
thermodynamical limit, we find EB=0.1827 in units of the Josephson coupling energy.
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I. INTRODUCTION

Two-dimensional �2D� arrays of Josephson junctions are
of interest in various fields of fundamental classical and
quantum physics. In the simplest case, they provide an ex-
perimental realization of the XY model; in particular, apply-
ing a magnetic field introduces frustration, measured by the
flux per plaquette in units of the flux quantum.1 The corre-
sponding vortices induced by the field tend to form a regular
flux lattice, thus lowering the free energy, and result in inter-
play with the underlying lattice periodicity. This gives rise to
commensurate-incommensurate effects and leads to a rich
variety of physics, including first-order and double transi-
tions, reentrance, glassy behavior, quantum transitions, topo-
logical quantization, dynamic transitions, and resonance,
etc.2,3 In these phenomena vortex configurations and dynam-
ics play crucial roles, driving transitions and governing trans-
port properties. Here, one interesting question arises when an
extra vortex is added into the system. While the vortex in
general sits on a plaquette with minimum energy, which is
separated by the potential barrier set by the underlying lattice
structure, it may be driven into motion by applying currents,
as it is exerted by the “Lorentz force” in the transverse di-
rection, and accordingly generates nonvanishing voltage. In-
deed, the voltage measurement in recent dynamic
simulations,4 performed in the presence of external currents,
has given the pinning energy barriers as well as the critical
currents, which agree fully with experimental results,5 thus
resolving the longstanding discrepancy in the frustrated case.

This paper focuses on the vortex dynamics in ladders of
Josephson junctions, which provides the simplest system for
probing the frustration effects: Those studied in existing lit-
erature include the vortex configuration and the critical cur-
rent, depending on the frustration,6,7 the vortex-vortex inter-
action decaying exponentially,8 quantum effects,9 and
resonance.10 Note the vast difference from the 2D system,
especially in the vortex interaction, which is expected to af-
fect significantly the dynamics of a vortex in a background
of other vortices, i.e., in a frustrated system. In particular,
domain walls in a ladder system assume the simple form of
point defects, the dynamics of which is convenient to probe.
We thus consider the domain wall defects created by adding

an extra vortex in a fully frustrated ladder and examine their
motion driven by external currents. In small systems, the
symmetry argument and topological constraints allow one to
compute analytically the energy barrier. More generally, the
defect motion, driven by uniform currents, is investigated by
means of dynamical simulations performed directly on the
equations of motion. The resulting value of the energy bar-
rier is found consistent with the analytical one obtained for
small systems. Also observed is the defect motion, either
sequential or simultaneous, depending on the size and the
initial configuration. Such characteristics are attributed to the
distance-dependent interaction between defects and the un-
derlying lattice geometry.

There are five sections in this paper: Sec. II introduces the
model system, whereas Sec. III is devoted to the analytical
calculations of the energy barrier to the defect motion in
small systems. In Sec. IV, we describe the numerical simu-
lations performed on the equations of motion in the presence
of uniform driving currents, and present the results. The
current-voltage �IV� characteristics and the energy function
are computed, which in turn give the critical current and the
pinning energy barrier for various system sizes. Finally, a
brief summary is given in Sec. V.

II. MODEL SYSTEM

We consider a ladder of Josephson junctions made of 2L
superconducting grains weakly coupled to their nearest
neighbors, the schematic diagram of which is shown in Fig.
1. The grains are located at sites i��x ,y�, where x runs from
1 to L �in the leg direction� and the label y�=1,2� describes,
respectively, the lower and upper legs of the ladder. Each
grain is characterized by the local condensed wave function
or the order parameter

�i = ��i�ei�i, �1�

where the local superconducting fluid density ��i� is assumed
to be constant at low temperatures. Accordingly, relevant
fluctuations come from the phases �i and the Hamiltonian of
the system in the presence of the external field is simply
given by the sum of the nearest neighboring pair energies
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H = − EJ�
�i,j�

cos ��i − � j − Aij� , �2�

where EJ is the coupling constant between the grains, �i , j�
represents nearest neighboring pairs, and the bond angle Aij
is given by the line integral of the vector potential

Aij =
2�

�0
�

i

j

A · dl �3�

with the flux quantum �0���c /e. In the Landau gauge, the
components of the vector potential A�x ,y� are given by

Ax�x,y� = 0 and Ay�x,y� = �x , �4�

where � is the magnetic flux per plaquette and x is the po-
sition along the leg direction.

For the ladder in Fig. 1, the Hamiltonian reduces to

H = − EJ�
x,y

cos ��x,y − �x+1,y�

− EJ�
x

cos ��x,1 − �x,2 − 2�fx� , �5�

where f �� /�0 measures the frustration of the system. In
the fully frustrated case �f =1/2�, which is our main concern
in this work, every other site is occupied by a single vortex.

We now add or remove one vortex; this creates topologi-
cal defects �domain walls� that affect the ground state. A
typical vortex configuration in this case is displayed in Fig.
2. The extra vortex can move through the periodic potential
produced by the lattice structure when it is subject to a per-
pendicular current. An estimation of the corresponding lat-
tice pinning barrier is then made each time this extra vortex
crosses the barrier. Note that the periodic potential is, in gen-
eral, modulated significantly by other �underlying� vortices
present in the system with f =1/2, resulting in a barrier strik-
ingly different from that in the unfrustrated system �f =0�.

III. ANALYTIC CALCULATIONS

For convenience, we choose new gauge invariant phases
that simplify the Hamiltonian and the current distribution in
the system. Let �x and �x denote the following phase differ-
ences between the grains:

�x = �x+1,1 − �x,1

�x� = �x+1,2 − �x,2

�x = �x,1 − �x,2 − 2�fx . �6�

It is easy to see, by symmetry and energy considerations, that
the phase differences �x and �x� are opposite to each other.6

Indeed, the sum of these phases around each plaquette is
constrained topologically by the flux or frustration f and the
�integer� vortex number nx

�x − �x� − �x+1 + �x = 2��nx − f� � 2�qx, �7�

where qx is the �fractional� vortex charge, and the Hamil-
tonian simply reads

H = − EJ�
x

	cos �x + cos �x� + cos �x


= − EJ�
x
�2 cos��x+1 − �x

2
+ ��nx − f�

	cos��x + �x�

2
� + cos �x� . �8�

Then the condition �x�=−�x decouples the phases between the
transverse directions and leads to a solution that minimizes
this Hamiltonian. Using the current conservation laws, we
can write a set of L equations for �x and �x at every node of
the lattice

sin �x = sin �x+1 − sin �x+1, �9�

with the boundary conditions

�x+L = �x and �x+L = �x. �10�

The barrier energy EB for a vortex moving along a ladder
can be computed exactly on one simple example. In Fig. 3,
we consider two plaquettes under closed boundary condi-
tions and a single vortex in the system. In the notation of Fig.
3, the equations for the phases �� ,�� ,�� in case �a� are given
by

3� − � = �

3�� + � = − �

sin �� = sin � + sin � , �11�

which yields �=−��= ��+�� /3. As a function of �, the en-
ergy

E��� = − 6 cos�� + �

3
� − cos � �12�

has an absolute minimum for �=−� /2, which in turn leads
to �=� /6 and E=−3�3�−5.196, and a maximum for �=

FIG. 1. Schematic notation for a Josephson-junction ladder.
Each superconducting grain, denoted by a square, is characterized
by the phase �x,y of the superconducting order parameter. The sym-
bol � denotes the flux per plaquette from an external transverse
magnetic field. The extra plaquette on the right-hand side represents
the periodic boundary conditions.

FIG. 2. Vortex configuration in the presence of an extra vortex
in the fully frustrated ladder of size L=16. Filled circles represent
vortices.
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−� together with �=0 and E=−5. On the other hand, in case
�b�, we have

3� − � = − �

3�� + � = �

sin �� = sin � + sin � , �13�

the solutions of which are �=� /2 and �=−� /6 for the
ground state �with E=−3�3�, and �=� and �=0 for the ex-
cited state �with E=−5�. The excited states in both cases are
equivalent since �=−�=��mod 2��. This corresponds to
the situation that the system evolves from configuration �a�
to �b�, namely, the instant when the vortex is exactly on the
rung between the two plaquettes. Accordingly, the energy
barrier is simply given by

EB = 3�3 − 5 � 0.196. �14�

In the general case, the value �=� �or −�� in the excited
state does not depend on the frustration parameter f since it
is always a solution of the equation �E��� /��=0 with

E��� = − 3 cos�2�f + �

3
� − 3 cos�2��1 − f� + �

3
 − cos � .

�15�

In the following, we accept that �=� corresponds to the
solution of the excited state in which the vortex is on the
rung for any given L; this will be checked numerically �see
Fig. 6 below�.

In a more complicated case, we consider a system with
L=8 plaquettes. Figure 4 shows the phase configuration of
an eight-plaquette system at f =1/2 under periodic boundary
conditions, in the presence of an extra vortex. We consider

three possible configurations �I, G, M� shown in Fig. 5,
where filled circles and crosses represent vortices and defects
�domain walls�, respectively. Starting from the initial state I
and driven by the injected current along the y direction, the
system evolves eventually to configuration G via a number
of intermediate configurations. It subsequently evolves to M
and back to G. Configurations G and M correspond to the
lowest-energy state and the high-energy �excited� state, re-
spectively, and this evolution pattern repeats with time,
which has been verified by extensive numerical simulations.

In the initial configuration I, the stationary phase relations
are given by

2�1 − �2 + �1 = − �, 2�2 − �3 + �2 = �

2�3 − �4 + �3 = − �, 2�4 − �5 + �4 = �

2�5 − �6 + �5 = − �, 2�6 − �7 + �6 = �

FIG. 3. Configuration of a two-plaquette system, with the phase difference labeled along each link. Filled circles represent vortices.

FIG. 4. Phase configuration of a Josephson-junction ladder of
L=8 plaquettes. Periodic boundary conditions are employed.

FIG. 5. Three vortex configurations �I, G, M�, showing the pres-
ence of vortices �denoted by filled circles� and domain wall defects
�denoted by crosses�. Also shown is the estimated energy �in units
of EJ� of each configuration. Arrows represent the time evolution of
the configuration, which has been verified by extensive numerical
simulations.
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2�7 − �8 + �7 = �, 2�8 − �1 + �8 = � . �16�

In units of the Josephson coupling energy EJ, the energy is
estimated to be E�I�=−16.3083. For configuration G, the
phase relations read

2�1 − �2 + �1 = �, 2�2 − �3 + �2 = �

2�3 − �4 + �3 = − �, 2�4 − �5 + �4 = �

2�5 − �6 + �5 = − �, 2�6 − �7 + �6 = �

2�7 − �8 + �7 = �, 2�8 − �1 + �8 = − � , �17�

which yields the energy E�G�=−16.3229.
Configuration M describes an intermediate state via which

the system goes from the state with the occupation number
�n5=0 ,n6=1� to that with �n5=1 ,n6=0�, namely, the vortex
moves to the left by one plaquette, similarly to the evolution
from �b� to �a� in Fig. 3. In this case, the vortex numbers in
both cells are not well defined, but the vortex is said to be
“spread” between the two plaquettes. To apply Eq. �9�, we
further take the two plaquettes on both sides of the rung as
one unit cell. Since the net vortex charge enclosed in this cell
�consisting of the two plaquettes� is zero, the sum of phase
differences around it also vanishes. We thus have the condi-
tion 2�5+�5+2�6−�7=2��n5− f +n6− f�=0, with n5+n6=1.
The remaining relations are given by

2�1 − �2 + �1 = �, 2�2 − �3 + �2 = �

2�3 − �4 + �3 = − �, 2�4 − �5 + �4 = � ,

2�7 − �8 + �7 = � 2�8 − �1 + �8 = − � . �18�

As already addressed, the vortex sits on the rung in this
configuration and the phases take the radial direction around
the center of the rung, thus leading to the phase difference
�6=� along the rung. This is manifested by the time evolu-
tion of �6, as shown in the next section �see Fig. 6�. We thus

set �6=� and obtain the energy of the configuration: E�M�
=−16.1368.

Together with the result of E�G�, we estimate the pinning
barrier according to

EB � E�M� − E�G� = 0.1861. �19�

Note that this value, obtained for L=8, is lower than the
value 0.19615 in the two-plaquette case �L=2�. We thus ex-
pect that the energy barrier EB in the thermodynamic limit
�L→
� has a value still lower than 0.1861.

IV. NUMERICAL SIMULATIONS

To evaluate the precise value of the energy barrier for
various system sizes, we have performed extensive dynamic
simulations on the resistively shunted junction �RSJ� model.
The dynamics of the RSJ model, with single-junction critical
current ic, and shunt resistance R, is governed by the set of
equations of motion for the phase �i,

�
j

�� �

2eR

d�̃ij

dt
+ icsin �̃ij = Ii, �20�

where �̃ij ��i−� j −Aij is the gauge-invariant phase differ-
ence across the junction �ij�, and the primed summation runs
over the nearest neighbors of grain i. The system is driven by
the current Ii= Ix,y = I��y,2−�y,1� �applied to grain i�, namely,
uniform current I is injected to and extracted from each grain
on the upper �y=2� and lower �y=1� legs, respectively. Us-
ing a modified Euler method, we have integrated Eq. �20�
with the time step of size �t=0.05 �in units of � /2eicR� for
a variety of ladders up to the system size L=512. In addition
to the periodic boundary conditions imposed along the x di-
rection, we introduce a 2� phase slip across the whole sys-
tem:

�L+1,2 = �1,2 + �

�L+1,1 = �1,1 − � , �21�

which generates a single extra vortex.
We first examine how the rung phase difference �6 varies

in the vortex motion and plot in Fig. 6 its time evolution in
the system of eight plaquettes. Also plotted is the evolution
of the vortex charge q=n− f �with n being the vortex num-
ber� on the plaquette just right of the rung. It is observed that
q �or n� changes rather abruptly from 1/2 to −1/2 �or from 1
to 0�, describing the motion of a vortex to the left. In par-
ticular, at the moment of the change, i.e., when the vortex is
located on the rung, the phase difference �6 indeed has the
value �, as expected.

Figure 7 shows typical motion of defects under the driv-
ing currents. At first, two defects �i.e., two domain walls
separating the three neighboring vortices� are next to each
other, as shown in the first configuration �from top to bot-
tom�. The distance between the domain wall defects grows
with time until this distance eventually becomes half the sys-
tem size �see the second configuration�. Then, the defect on
the right moves first �changing the configuration to the third

FIG. 6. Time evolution of the phase difference �6 across the
rung �solid line, left vertical axis�, together with that of the vortex
charge q=n− f on the plaquette just right of the rung �dotted line,
right vertical axis�. Time t is given in units of � /2eicR.

KANG et al. PHYSICAL REVIEW B 73, 014504 �2006�

014504-4



one�, subsequently followed by the motion of the one on the
left �resulting in the fourth configuration�. In the case that
there are only a few plaquettes �L40�, this behavior is
always observed, regardless of the initial distance between
the two defects. On the other hand, in a system of larger size,
two types of behavior are observed, depending on initial con-
ditions. When the two defects are initially located at nearby
sites, they move simultaneously through transient states and
the distance between them does not grow beyond 20
plaquettes. In contrast, two defects distant by more than 20
plaquettes tend to move sequentially for appropriate initial
phase configurations. We presume that such size dependence
has its origin in the interaction between defects and the un-
derlying periodic lattice geometry. Namely, the interaction
between two domain wall defects becomes vanishingly small
as the distance is increased beyond 20 plaquettes, which may
reflect the exponentially decaying interaction between
vortices.8 In this manner, the characteristic interaction be-
tween domain walls in a background of vortices appears to
be exposed.

In order to estimate the pinning barrier, we compute the
IV characteristics and the critical current Ic, and probe their
behaviors with the system size L. The voltage across the
system is given by the ac Josephson relation11

�V� =
�

2eL��
x

d��x,2 − �x,1�
dt � �22�

and the resulting characteristics are displayed in Fig. 8 for
system size L=8, 16, and 24. Systems larger than L=24 turn
out to exhibit the same IV characteristics as the case L=24
and are thus not shown here. It is observed that nonzero
voltage develops as the driving current I is increased beyond
a certain value. The size dependence of the corresponding
critical current Ic is plotted in the inset of Fig. 8, which
demonstrates that Ic first reduces with the system size L and
saturates to a nearly constant value beyond L=24. In the
thermodynamic limit, Ic is shown to approach the value
0.089 �in units of the single-junction critical current ic�; this

is close to the value Ic�0.1 at f =1/2, extracted roughly
from Fig. 1�a� of Ref. 7.

In Fig. 9, we display the typical time dependence of the
energy E�t�. With the driving current I= Ic�L�+0.0001 just
above the critical value, the energy is calculated through the
use of Eq. �5�. Note in Fig. 9 that �a� and �b� correspond to
the sequential motion of defects for the system size L=8
�smaller than 40� and 64 �larger than 40�, respectively. As the
defect moves across one plaquette, E�t� goes through a maxi-
mum corresponding to the excited state discussed in Sec. III.
The lowest-energy state corresponds to configuration G and
the maximum one to M shown in Fig. 5. As pointed out, the
defects can move simultaneously for appropriate initial con-
ditions. Such simultaneous motion is indeed observed in Fig.
9�c�, which reveals the doubling of both the amplitude and
the period of E�t� �i.e., the energy barrier and the period of
the defect motion�. The two transient states seen in the inset
of Fig. 9�c� indicate that the system possessing two defects is
not completely coherent in the first stage of the dynamics.

The pinning energy barrier EB, defined to be the differ-
ence between the maximum energy E�M� and the minimum
one E�G�, is thus computed as the system size is varied. The
size dependence of EB is then examined and shown in Fig.
10 for sequential and simultaneous motion of defects. In the
former case, the energy barrier is observed to approach the
value

EB = 0.1827

in the thermodynamic limit. This value is slightly below the
one found analytically in the eight-plaquette system, as ex-
pected. In the case of simultaneous motion, Fig. 10�b� shows
that the energy barrier becomes double for the system size
L�40.

V. SUMMARY

We have studied the dynamics of domain wall defects
created by adding an extra vortex in a fully frustrated
Josephson-junction ladder. The defects are, in general,
pinned by the energy barrier generated by the underlying
lattice structure and other vortices induced by an external
magnetic field or frustration. Making use of the symmetry

FIG. 7. Pattern of defect motion in a fully frustrated ladder �f
=1/2�, with filled circles and crosses denoting vortices and domain
walls, respectively, as time goes by �in the direction of the arrows�.
Currents are applied uniformly along the rungs.

FIG. 8. IV characteristics for the system size L=8, 16, and 24,
respectively, from bottom to top. The inset shows the critical cur-
rent Ic as a function of L. Current I and voltage V are expressed in
units of ic and icR, respectively.
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and topological constraints, we have computed the energy
barrier EB in systems of size L�8. The defects may be put to
motion by applying currents larger than the critical current.
The corresponding motion in the system, driven by uniform
currents just above the critical value, has been investigated
by means of dynamical simulations performed directly on
the equations of motion. The resulting numerical estimation
of EB=0.1827 �in units of the Josephson coupling energy� is

fully consistent with the analytical value obtained from reso-
lution of the phases in the eight-plaquette �L=8� system. In
the dynamical study of the system, we have also observed
that the defects move sequentially in small systems �L
40�. On the other hand, in larger systems, the domain walls
may also display coherent motion, namely, they can move
simultaneously as well as sequentially, depending on the ini-
tial configurations. Such difference has been attributed to the
distance-dependent interaction between defects and the un-
derlying lattice geometry.
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FIG. 9. Time evolution of energy E�t� in systems of size L=8
�a� and 64 	�b� and �c�
. The uniform driving current I= Ic�L�
+0.0001 has been applied along each rung. �a� and �b� describe the
sequential motion while �c� corresponds to the simultaneous motion
�see the text�. For convenience, E�t�, given in units of EJ, has been
shifted such that E=0 corresponds to the minimum. The inset in �c�
shows a transient behavior: The two peaks eventually merge into
the one peak shown in the main plate.

FIG. 10. Pinning energy barrier EB �in units of EJ� as a function
of the system size L. Energy barriers corresponding to �a� sequential
and �b� simultaneous motion of defects are displayed.
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