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Recent measurements of the Josephson critical current through LSCO/LCO/LSCO thin films showed an
unusually large proximity effect. Using the Bogoliubov–de Gennes equations for a tight-binding Hamiltonian
we describe the proximity effect in weak links between a superconductor with critical temperature Tc and one
with critical temperature Tc�, where Tc�Tc�. The weak link �N�� is therefore a superconductor above its own
critical temperature and the superconducting regions are considered to have either s-wave or d-wave symmetry.
We note that the proximity effect is enhanced due to the presence of superconducting correlations in the weak
link. The dc Josephson current is calculated, and we obtain a nonzero value for temperatures greater than Tc� for
sizes of the weak links that can be almost an order of magnitude greater than the conventional coherence
length. Considering pockets of superconductivity in the N� layer, we show that this can lead to an even larger
effect on the Josephson critical current by effectively shortening the weak link.
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I. INTRODUCTION

The proximity effect between a superconductor and a nor-
mal metal has been thoroughly investigated using various
techniques: Ginzburg-Landau theory,2,3 quasiclassical Green
function methods,4 Gorkov equation methods,5–8 and tight-
binding Bogoliubov–de Gennes �BdG� methods.9–11 From an
experimental point of view, one of the better suited experi-
ments is the measurement of the Josephson critical current in
weak links.12

In a recent experiment1 an unusually large proximity ef-
fect is reported, and the authors argue, that it cannot be ex-
plained by the conventional proximity effect. The system
used in the experiment is a c-axis oriented one. The c-axis
Josephson critical current is measured through a thin film
system made of doped LCO �La2CuO4−�� with Tc=25 K,
sandwiched between optimally doped LSCO �La2−xSrxCuO4�
with Tc=45 K. The thin film is considered to be in the clean
limit and because of the epitaxial growth of the films the
transmission at the interfaces is close to unity and interface
roughness is on the order of the lattice constant. In a particu-
lar setup, the LCO thin film used had a thickness of 100 Å.
Fitting the critical current around Tc� the authors extract a
coherence length in the LCO film which is two orders of
magnitude larger than expected. Because of this discrepancy
and the observation of nonzero critical current for T�30 K
the authors reported this effect to be a “giant proximity
effect.”

Although the Josephson junction has been thoroughly in-
vestigated in the past for both s-wave13 and d-wave
symmetries,14–19 we feel that the calculation of the Cooper
pair leaking distance in the case of clean limit and supercon-
ducting weak links needs further investigation. We are inter-
ested to observe if the leaking distance will be influenced by
the finite critical temperature of the weak superconductor.

We propose the use of the numerical solutions of the BdG
equations in a tight-binding formulation in order to obtain a
direct calculation of the coherence length and of the Joseph-
son critical current. In the clean limit the BdG equations are

particularly easy to solve because impurity averaging is not
required. This method is complementary to the quasiclassical
methods used in the dirty limit, namely, the Usadel
equations.20,21

For coherent transport in the c-axis direction, the proper-
ties of the Josephson current for d-wave superconductors
will be similar to the properties of the current for s-wave
superconductors. For planar interfaces, with ẑ the direction
perpendicular to the interfaces, the d-wave order parameter
will have no kz dependence, ��kx ,ky ,kz���0�cos�kxa�
−cos�kya�� and therefore will have properties similar to a
superconductor with s-wave symmetry. When Fourier trans-
forming the x̂ and ŷ directions, and considering an effective
one-dimensional �1D� problem in the ẑ direction, the d-wave
order parameter will be due to an effective on-site interaction
within each a-b plane. We will calculate the Josephson cur-
rent in the c-axis direction for a 3D d-wave superconductor.
We will also show calculations of the Josephson critical cur-
rent and the Cooper pair leaking distance for a 2D s-wave
superconductor and for the 100 interface of a 2D d-wave
superconductor.

The giant proximity effect is observed in underdoped cu-
prates, for temperatures T�Tc� for which the middle layer is
considered to be in the pseudogap state. Previous theoretical
investigations of the giant proximity effect22,23 considered
the N� layer to be comprised of pockets of superconductivity.
In a recent theoretical study,24 interstitial oxygen dopants are
considered to modify locally the pairing interactions. The
disordered dopants are enhancing the pairing interactions,
thus increasing the size of the local gap. This was observed
in recent scanning tunneling microscopy experiments25 in
Bi2Sr2CaCu2O8+� which showed that the regions of en-
hanced superconductivity are correlated with the positions of
the interstitial oxygen atoms. Because of the proximity ef-
fect, the superconducting pockets will be coupled and current
will flow through percolating paths. The presence of these
pockets will effectively shorten the length of the weak link
and the strong external superconductors will be coupled for
values of the effective length comparable with the leaking
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distance. The modification of the leaking distance due to the
finite value of Tc� will have an important influence on the
effective length. Considering equally spaced areas of strong
superconductivity with critical temperature Tc embedded in
the weak superconductor with Tc� we will calculate the criti-
cal Josephson current and find its dependence on the length
of the weak link and on the volume of the embedded super-
conducting pockets. If one considers disordered regions of
strong superconductivity in the a–b planes of a high-Tc su-
perconductor, then the distance between two pockets from
different Cu-O planes will be normally distributed. The
equally spaced pockets scenario should be the one that gives
maximal Josephson current and will give insight about the
influence of these pockets on the current.

This paper is organized as follows. In the next section we
will present our method. While the BdG procedure on a lat-
tice is now well known, we nonetheless include some details,
as some “standard” approximations are included for clarity.
The treatment of infinite surfaces will be outlined. In the
third section we apply the BdG equations to a trilayer system
and show results of the calculation of the order parameter,
the leaking distance, and the dc Josephson current. Both the
cases of s-wave and d-wave symmetries of the superconduct-
ing order parameters are considered. We find that the prox-
imity effect can be considerably enhanced at temperatures
close to �but above� the critical temperature of the weak su-
perconductor. The presence of randomly distributed pockets
of superconductivity in N� enhances dramatically the Joseph-
son critical current and leads to a “giant proximity effect.”

II. METHOD

In order to describe the superconducting state we use the
tight-binding extended Hubbard Hamiltonian:

H = − �
�ij��

tijci�
† cj� − ��

i�

ci�
† ci� + �

i

Uini↑ni↓

+
1

2 �
�ij��	

Vijni�nj	, �1�

where tij is the nearest-neighbor hopping amplitude that de-
scribes the kinetic energy, � is the chemical potential used to
fix the filling of the system, Ui is the on-site interaction, Vij is
the nearest neighbor interaction, and ni�=ci�

† ci� is the density
operator at site i corresponding to spin �.

The properties of this Hamiltonian have been studied
previously;26 it should be viewed as an effective Hamiltonian
with which one can describe s-wave and d-wave symmetries
of the superconducting order parameter. For an s-wave su-
perconductor we choose an attractive on-site interaction Ui
�0 and no nearest-neighbor interaction Vij =0, while for a
d-wave superconductor we set the nearest-neighbor interac-
tion to be attractive Vij �0 and the on-site interaction to van-
ish or be repulsive. The interaction parameters Ui and Vij are
dependent on position, breaking translational invariance.
This will allow us to describe interfaces between different
types of materials.

Using the Hartree-Fock mean-field decomposition this
Hamiltonian can be transformed into a one-particle mean-
field Hamiltonian:

H = �
�ij��

�− tij − �ij��ci�
† cj� + �

i

��ici↑
† ci↓

† + H.c.�

+ �
�ij�

��ij�ci↑
† cj↓

† + ci↓
† cj↑

† � + H.c.� . �2�

For planar junctions, infinite surfaces can be considered
and therefore translational invariance in the direction parallel
to the surface is recovered. By doing a Fourier transform of
the Hamiltonian in the direction parallel to the surface we
only have to solve one-dimensional inhomogeneous prob-
lems. For any point in k space the problem becomes a one-
dimensional inhomogeneous problem. In the case of a 2D
superconductor with an infinite surface along the ŷ direction
the Hamiltonian becomes

H = �
ky

�
�ij��

	− �1 − �ij�tij
� − �ij��

+ 2ti

 cos�kya���ci�

† �ky�cj��ky�

+ �
ky

�
i

��i + 2�i

 cos�kya��ci↑

† �ky�ci↓
† �ky� + H.c.

+ �
ky

�
�ij�

�ij
��ci↑

† �ky�cj↓
† �ky� + ci↓

† �ky�cj↑
† �ky�� + H.c.,

�3�

where i and j are now in the direction perpendicular to the
surface and a is the lattice constant. t� and �ij

� are the hop-
ping amplitude and pair potential in the direction perpen-
dicular to the surface and t
 and �i


 are the hopping amplitude
and the pair potential in the direction parallel to the surface.
The mean-field order parameters are to be calculated self-
consistently:

�i =
1

Ny
�
ky

Ui�ci↓�ky�ci↑�ky�� , �4�

�i

 =

1

Ny
�
ky

Vi

�ci↓�ky�ci↑�ky��cos�kya� , �5�

�ij
� =

1

Ny
�
ky

Vij
�

2
��ci↓�ky�cj↑�ky�� + �ci↑�ky�cj↓�ky��� , �6�

where �i is the s-wave order parameter, �i

 is the d-wave

order parameter of a link in the direction parallel to the sur-
face, and �ij

� is the d-wave order parameter of a link in the
direction parallel to the surface.

In the 3D c-axis geometry, the surface is considered to be
in the x̂-ŷ plane. After Fourier transforming in these direc-
tions, the Hamiltonian becomes

H = �
kxky

�
�ij��

	− �1 − �ij�tij
� − �ij	� + 2ti


�cos�kxa�

+ cos�kya����ci�
† �kx,ky�cj��kx,ky� + �

kxky

�
i

	�i

+ 2�i

�cos�kxa� − cos�kya���ci↑

† �kx,ky�ci↓
† �kx,ky� + H.c.

�7�
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The self-consistency in the order parameters is now given by
the following equations:

�i =
1

NxNy
�
kx,ky

Ui�ci↓�kx,ky�ci↑�kx,ky�� , �8�

�i

 =

1

NxNy
�
kx,ky

Vi

�ci↓�kx,ky�ci↑�kx,ky���cos�kxa� − cos�kya�� ,

�9�

where i is now taken to be the site index in the ẑ direction. �i
is the on-site s-wave order parameter while �i


 is the d-wave
order parameter which has components only in the x̂ and ŷ
directions.

We follow the standard procedure27 of introducing a ca-
nonical transformation of the electron operators:

ci↑�kx,ky� = �
n

un
i �kx,ky�
n↑ + vn

i*�kx,ky�
n↓
† , �10�

ci↓�kx,ky� = �
n

un
i �kx,ky�
n↓ − vn

i*�kx,ky�
n↑
† . �11�

This transformation will diagonalize the Hamiltonian and
one obtains the BdG equations for each pair of momentum
vectors kx ,ky:

�H0�kx,ky� ��kx,ky�
�*�kx,ky� − H0�kx,ky�

�u�kx,ky�
v�kx,ky�

 = ��kx,ky��u�kx,ky�
v�kx,ky�

 .

�12�

These equations describe the quasiparticle states in inhomo-
geneous superconductors. The BdG equations are equivalent
to an eigenvalue problem with parameters that require self-
consistent calculation. We start with an initial guess for the
order parameter profile and we diagonalize the resulting
Hamiltonian. In our infinite-surface setup, we need to diag-
onalize a one-dimensional Hamiltonian for every point in
momentum space. Using the self-consistency Eqs. �4�–�6� we
recalculate the order parameter profile. The solution is ob-

tained when the difference in the order parameters between
two steps is smaller than a desired accuracy.

The self-consistent calculation of the order parameter en-
sures that the order parameter in the “normal metal” region
has knowledge about the pair potential in this layer. If the
initial guess is a step function, i.e. the order parameter in the
middle region is zero, after one iteration the pair amplitude
will become nonzero because of the proximity effect. In the
case U�=0, the order parameter will remain zero: �
�Ui��ci↑ci↓�, while for the case U��0 the new order param-
eter has a finite value throughout the layer. If we were to fix
the order parameter in the superconducting regions �we do
not�, the U�=0 solution would need only one iteration to
converge.

The BdG formalism allows us to calculate the dc current
in the absence of applied voltages. In the tight-binding for-
mulation the current operator is

Jij = �
�

tij�ci�
† cj� − cj�

† ci�� . �13�

The expectation value of the current will be nonzero only if
the order parameters in the two superconducting layers have
different phases. For the mean-field Hamiltonian with
s-wave order parameters one gets for the continuity equation:

� �ni

�t
� = ��H,ni��

= �
�

tij��ci�
† cj�� − �cj�

† ci��� + �ci↓ci↑��i
� − �ci↑

† ci↓
† ��i.

�14�

If the order parameter is calculated self-consistently �i
��ci↓ci↑�, then we recover the continuity equation, ��ni /�t�
= �Jij�. Otherwise, if the order parameters are not calculated
self-consistently but set to a desired value �the case of hard
boundary� then the last two terms in Eq. �14� can be seen as
current source terms.

In our calculation the coherence factors, uk and vk, are
complex numbers and they will give the magnitude and the
phase of the order parameters. The magnitude of the order

FIG. 1. �Color online� The pair amplitude pro-
file through a Josephson junction. The pair ampli-
tude is shown for U=−3t and U�=0. The regions
0-A and B-N are superconducting, while the re-
gion A-B is a superconductor above its critical
temperature. The interfaces are considered to
have perfect transmission and the whole system
is in the clean limit.
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parameters is calculated self-consistently and after each it-
eration the phase of the external layers is set to a desired
value. For the calculation of the dc Josephson current we
restrict the phase of the two superconductors to a desired
phase difference, while for the weak link, the phase is calcu-
lated self-consistently.

III. RESULTS FOR SN�S

For the SN�S �strong s-wave/weak superconducting/strong
s-wave� trilayers the interactions are only on-site attractive
interactions. The value of the parameter Ui will set the mag-
nitude of the order parameter throughout the sample. We
consider the following setup �Fig. 1�, Ui=U for 0� i�A and
B� i�N, while Ui=U� for A� i�B. In this particular case
Vij is vanishing, because we ignore the d-wave symmetry.
The value of U� is chosen so that �U��� �U�, allowing us to
describe the N� material with a lower critical temperature Tc�.
For temperatures greater than Tc� the a-b region cannot sus-

tain superconductivity by itself. The order parameter will
leak from the stronger superconductors, and the characteris-
tic length is called the “leaking” distance.

Figure 1 shows the order parameter profile for U=−3t,
U�=−2t and T=0.21t. Note that Tc�=0.205t for the weak
superconductor, while Tc=0.459t for the strong one. Similar
to the Tc�=0 case the order parameter has an exponential
dependence on distance away from the interface,
���0 exp�−x /��. This is true only for temperatures much
larger than Tc� and for distances from the interface greater
than the coherence length of the stronger superconductors.
The coefficient of the exponential decay is given by the leak-
ing distance, �. In the normal metal case �Tc�=0 K� the
clean limit leaking distance is inverse proportional to the
temperature:

� =
vF

kBT
. �15�

FIG. 2. �Color online� The pair amplitude at
L /2 as a function of L for different temperatures
above Tc� for the SN�S system with U�=−2t and
U=−4t.

FIG. 3. �Color online� The pair amplitude at
L /2 as a function of temperature for different L
for the SN�S system with U�=−2t and U=−4t.
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For the case of a weak superconductor, the relevant tem-
perature scale is T-Tc�. Plotting the order parameter versus
distance from the interface on a semilog scale �Fig. 2� for
different temperatures, we can extract the leaking distance.
As expected from the Tc�=0 K case, the leaking distance is
decreasing with increasing temperature.

If we plot the order parameter as a function of tempera-
ture for different lengths �L� of the weak link �Fig. 3�, we can
observe two main effects. First, at T=0 K, the proximity
effect will modify the order parameter at L /2. For lengths
smaller than ten lattice constants this effect is important. Be-
cause the N� layer is superconducting at T=0 K, the main
length scale in this layer is the superconducting coherence
length �=vF /�. The second effect is observed at tempera-
tures close to Tc�. If the N� layer was not connected to the
superconducting layers, then, according to the mean-field be-
havior, the order parameter would vanish at Tc�. For tempera-
tures higher than Tc� the N� layer cannot sustain superconduc-
tivity by itself. It is only in the presence of the S layers, that

the order parameter at L /2 has nonzero values. Note that the
length L for which we obtain nonzero values of the order
parameter above Tc� is much larger than the value of the
length beyond which effects are unobservable at T=0 K. In
Fig. 4, we compare the order parameters at L /2 for two
cases: U�=0 and U�=−2t. We observe that the order param-
eter for the case U�=−2t is larger and that close to Tc� the
discrepancy is enhanced. This is a clear indication that the
Cooper pair leaking distance is larger in the case of a non-
zero Tc�.

In order to investigate further the dependence of the leak-
ing distance on the magnitude of the superconducting corre-
lations in the N� layer, in Fig. 5, we summarize the extracted
leaking distance obtained for different parameters. The Tc�
=0 K line �dashed� is inversely proportional to the tempera-
ture, as expected. For Tc��0 K the leaking distance is di-
verging at Tc�; this, of course leads to a giant proximity effect
near these temperatures, as the figure visually demonstrates.
Another feature of the calculation is that for any given

FIG. 4. �Color online� The pair amplitude at
L /2 as a function of relative temperature for dif-
ferent L for the SN�S system for U=−4t, U�=0
and U=−4t, U�=−2t.

FIG. 5. �Color online� The leaking distance as
a function of 1/T for different interaction param-
eters U� for the SN�S system with U=−4t. The
vertical dashed lines represent the inverse of the
critical temperatures for the corresponding U�
parameters: Tc�U�=−1.5t�=0.104t, Tc�U�=−2t�
=0.205t, and Tc�U�=−3t�=0.46t.
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temperature, a higher Tc� will result in a larger leaking dis-
tance. For repulsive on-site interactions, U�= +2t, the leak-
ing distance is even smaller than in the normal metal case.
This is a clear demonstration of the fact that interactions in

the N� layer will influence the way Cooper pairs leak from
the superconducting side. Such “feedback” will not be cap-
tured in calculations that are not self-consistent.

The proximity effect can be observed either by growing
superconducting thin films on top of normal metals and mea-
suring the critical temperature of the system, or by forming a
Josephson junction and measuring the Josephson current
through the weak link. If the two superconducting sides are
not coupled then there is no Josephson current. As we bring
the superconducting sides closer to one another, the proxim-
ity effect will influence the value of the order parameter in
the N� layer. A nonzero value of the order parameter through-
out the whole system will result in a nonzero value of the
Josephson current.

The BdG equations are well suited for calculating the dc
Josephson current. In order to have current between the two
superconducting sides, the order parameters in the two sides
have to have different phases. In our calculation we fix the
phases of the order parameter on the S layers, and our self-
consistent calculation will give the magnitude and the phase
of the order parameter in the N� side. The results of such a
calculation are shown in Figs. 6�a� and 6�b�. The phase of the
order parameter in N� will vary continuously from �left to
�right and the dc Josephson current will be constant through-
out the layer. An interesting case is the one where ��=�, for
which there is a phase-slip point at L /2. Right at the phase
slip the order parameter vanishes. In order to extract only the
proximity effect from the current calculation, we need to find
the phase difference for which the current is maximal. For a
point contact Josephson junction the current has the follow-
ing behavior:28

J = Jm sin���� , �16�

while for a long junction it deviates from the sinusoidal
behavior.29

We calculate the dc Josephson current for different
lengths of the weak link and for different temperatures for
U�=−1.5t and U=−3t. The results are summarized in Fig. 7.
When the two superconducting layers �S� are close together

FIG. 6. �a� Phase profile and �b� dc Josephson current as a
function of position. The phase is calculated self-consistently only
in the middle layer and the continuity equation is satisfied only in
this layer.

FIG. 7. �Color online� The dc Josephson cur-
rent in the middle layer as a function of tempera-
ture for different lengths L of the weak link for
the SN�S system with U=−3t and U�=−1.5t. The
arrow represents the critical temperature of the
middle layer, Tc�U�=−1.5t�=0.104t.
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the proximity effect modifies the magnitude of the order pa-
rameter at L /2 in the N� layer. A large value of the order
parameter will give a large value for the current. As L in-
creases the order parameter decreases exponentially. This re-
sults in a decay of the current as a function of L. The main
result is that the behavior of the Josephson current as a func-
tion of L and T reflects the existence of a leaking distance
larger than the one expected from a normal metal. For U�
=−1.5t and T=0.125t, the normal metal gives a leaking dis-
tance of �0�2a while the self-consistently calculated one
gives a value of ��7a. This is seen in Fig. 7, where for L
=16a the current is nonzero for temperatures close to but
greater than Tc�, and it has a linear dependence on tempera-
ture near Tc�.

As shown in previous attempts to explain the “giant prox-
imity effect,” the presence of pockets of superconductivity in
the N� layer will greatly enhance the current through the
system, even for long weak links. Coupled with the enhance-
ment of the leaking distance around Tc� the presence of the

superconducting pockets will effectively decrease the length
of the weak link. We consider equally spaced superconduct-
ing areas with on-site interactions of strength U=−4t embed-
ded in the weak link with interaction strength U=−2t. In Fig.
8 we show the Josephson current for different lengths of the
weak link and with superconducting pockets occupying a
volume percentage p=0.2 of the weak link. The size of the
considered pockets is one lattice site. The effect on the Jo-
sephson current is drastic—the current has nonzero values
well above Tc�. We also notice that for this volume of embed-
ded superconductivity, the current has a weak dependence on
the length of the junction.

The strength of the coupling between the exterior super-
conductors will be given by the volume of these pockets.
This is seen in Fig. 9, where we plot the Josephson current
for a weak link of length L=40a as a function temperature
for different percent volumes of strong superconducting
pockets embedded in the weak superconductor. As expected,
for p=0.0 the junction is too long to couple the strong su-

FIG. 8. �Color online� The dc Josephson cur-
rent in the middle layer as a function of tempera-
ture for different lengths L of the weak link for
the SN�S system with U=−4t and U�=−2t.
Equally spaced areas of superconductivity in the
N� layer are considered. The percent volume of
the pockets of superconductivity with U=−4t is
p=0.2.

FIG. 9. �Color online� The dc Josephson cur-
rent in the middle layer as a function of tempera-
ture for different percent volumes of embedded
superconductivity in N� for the SN�S system with
U=−4t and U�=−2t. The length L of the weak
link is L=40a.
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perconductors and the current vanishes above but very close
to Tc�. Increasing p, the junction will effectively shorten and
the two exterior superconductors will be coupled well above
Tc�.

IV. RESULTS FOR DN�D

The d-wave symmetry of the order parameter is attained if
we consider nearest-neighbor interactions Vii+�=−Vi and
vanishing or repulsive on-site interactions. The d-wave order
parameter is calculated in the following way:

�d�i� = 1
4 ��x�i� + �−x�i� − �y�i� − �−y�i�� , �17�

where �x describes superconducting correlations in the x̂ di-
rection. In a similar manner, as detailed in the SN�S case, we
set up Vi so that Vi=V for 0� i�A and B� i�N, while Vi
=V� for A� i�B. This will allow us to describe a weak link
with a nonzero critical temperature.

For the 100 interface �between the a-b planes of a high-Tc
superconductor�, the dependence of the order parameter is
very similar to the s-wave case. Figure 10 shows the semi-
logarithm plot of the order parameter as a function of dis-
tance from the interface for different temperatures. Again, we
can observe the exponential decay and define the leaking
distance �. The dependence of the order parameter on tem-
perature for different lengths of the weak link is shown in
Fig. 11 and the two manifestations of the proximity effect are
seen. First at T=0 K the order parameter is modified if L /2
is of the order of the superconducting coherence length in the
N� layer. Secondly, above Tc� the order parameter decays with
increasing temperature but has a nonzero value even if L /2 is
greater than the conventional leaking distance defined by the
Tc�=0 K case. The self-consistently calculated leaking dis-
tance is shown in Fig. 12. Similar to the s-wave case it di-
verges at Tc� and, for the same temperature, larger interac-
tions in the weak superconductor will increase the leaking
distance.

FIG. 10. �Color online� d-wave order param-
eter at L /2 as a function L for different
temperatures—100 d-wave case with V=−4t and
V�=−2t.

FIG. 11. �Color online� d-wave order param-
eter at L /2 as a function of T for different
lengths—100 d-wave case with V=−4t and
V�=−2t.
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The coherent transport in the c-axis direction will be de-
scribed by the hopping amplitude in the ẑ direction, t�

=0.5t
. Figure 13 shows the Josephson critical current as a
function of temperature for different lengths of the weak su-
perconducting layer. The general behavior is similar to the
one of the s-wave junction. The d-wave order parameter has
no kz dependence, and thus in the ẑ direction it is an effective
on-site order parameter. For short weak links the current
does not vanish abruptly above Tc� but rather has a smooth
dependence on temperature. This dependence on temperature
above Tc� shows that the length of the weak link is compa-
rable to the leaking distance in this layer. The increase of the
leaking distance due to the finite Tc� cannot explain by itself
the observed “giant proximity effect.” It is only the conjunc-
tion with the presence of disordered pockets of superconduc-
tivity in the weak link that makes this effect possible. The
calculation of the Josephson current in the presence of the
disordered pockets from the previous section stands also for
the c-axis geometry. The extra dimension will only affect the
necessary volume of superconductivity needed to observe a
“giant proximity effect.”

V. SUMMARY

In summary, using a tight-binding formulation of the ex-
tended Hubbard Hamiltonian, we solve the BdG equations
for a system composed of three layers: two superconducting
layers �either s wave or d wave�, and a weaker supercon-
ductor sandwiched in between. We examined the proximity
effect induced by the exterior superconducting layers in the
“normal metal” interior layer. We observed that, in agree-
ment with previous calculations, the order parameter has an
exponential decay behavior, the characteristic decay length
being the leaking distance. In both s-wave and d-wave cases
the leaking distance is only dependent on the properties of
the N� layer. For Tc�=0 K �normal metal� for both s-wave
and d-wave symmetries the leaking distance is inversely pro-
portional to the temperature. If Tc��0 K, the leaking distance
diverges at Tc� and at the same temperature larger attractive
interactions in the middle layer will increase the leaking dis-
tance. Essentially, the BdG formalism provides a means for
the normal layer to feel pairing fluctuations above its critical
temperature, Tc�. These are not spontaneous, in that they arise

FIG. 12. �Color online� Leaking distance as a
function of inverse temperature for different in-
teraction strengths—100 d-wave case with
V=−4t. The vertical dashed lines represent the
inverse of the critical temperatures for the corre-
sponding V� parameters: Tc�V�=−2t�=0.4t,
Tc�V�=−3t�=0.67t.

FIG. 13. �Color online� The c-axis dc Joseph-
son current in the middle layer as a function of
temperature for different lengths L of the weak
link for which V=−4t and V�=−2t. The c-axis
hopping amplitude is t�=0.5t
.
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from an “applied” pairing field produced by the outer layers.
This accounts for the much higher leaking distance for a
weak superconductor.

We also calculated the dc Josephson current, and ex-
tracted the maximum value. We observed that the current has
a nonzero value for lengths of the weak link much larger
than the “conventional� leaking distance, and for tempera-
tures well above Tc�. Although the divergence of the leaking
distance at the critical temperature of the N� layer enhances
the Josephson current for temperatures above Tc�, it is not
enough to explain the experimental measurement of the “gi-
ant proximity effect.”1 As prompted by previous attempts to
explain the giant proximity effect,22,23 we considered areas of
superconductivity with critical temperature Tc�Tc�, which

are embedded in the N� layer. Further enhancement of the
Josephson current is observed. Depending on the volume of
the superconducting pockets, nonzero values of the Joseph-
son current are obtained even for temperatures T�2Tc�.
These results form the basis for a qualitative understanding
of the giant proximity effect observed by Bozovic et al.1
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